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 
Abstract—The UK has had its fair share of the shale gas 

revolutionary waves blowing across the global oil and gas industry at 
present. Although, its exploitation is widely agreed to have been 
delayed, shale gas was looked upon favorably by the UK Parliament 
when they recognized it as genuine energy source and granted 
licenses to industry to search and extract the resource. This, although 
a significant progress by industry, there yet remains another test the 
UK fracking resource must pass in order to render shale gas 
extraction feasible – it must be economically extractible and 
sustainably so. Developing unconventional resources is much more 
expensive and risky, and for shale gas wells, producing in 
commercial volumes is conditional upon drilling horizontal wells and 
hydraulic fracturing, techniques which increase CAPEX. Meanwhile, 
investment in shale gas development projects is sensitive to gas price 
and technical and geological risks. Using a Two-Factor Model, the 
economics of the Bowland shale wells were analyzed and the 
operational conditions under which fracking is profitable in the UK 
was characterized. We find that there is a great degree of flexibility 
about Opex spending; hence Opex does not pose much threat to the 
fracking industry in the UK. However, we discover Bowland shale 
gas wells fail to add value at gas price of $8/ Mmbtu. A minimum gas 
price of $12/Mmbtu at Opex of no more than $2/ Mcf and no more 
than $14.95M Capex are required to create value within the present 
petroleum tax regime, in the UK fracking industry. 

Keywords—Capex, economical, investment, profitability, shale 
gas development, sustainable. 

I. INTRODUCTION 

HE UK has long had the potential to extract shale gas but 
policymakers treated this as a non-existent opportunity [1] 

relative to more conventional hydrocarbon resources until a 
recent shift in focus, to meet part of the country’s growing 
energy needs from unconventional sources. In consequence 
parliamentary sanction for a campaign for shale gas 
exploration in the UK led to the award of blocks for the 
exploration of shale gas during the country’s 13th Round of 
Onshore Licensing in 2008 [2]. While this is a major 
milestone attained by the fracking industry, there yet remains 
other hurdle that must be managed in order to render shale gas 
production in the UK sustainable - high capex that 
characterize shale gas reservoirs. 

This paper presents an evaluation of the economic viability 
of a commercial scale extraction of the Bow land shale gas 
play using the Two-Factor Model applied by [3] in a similar 
work on Haynesville shale gas wells in the US. NPV, IRR and 
Parameter Sensitivity Analysis are used as decision outputs to 
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assess the conditions under which investment in Bow land 
shale gas play and hence production of the same would be 
economical and sustainable.  

The rest of the paper is organized as follows. Section II 
offers some background to the Bow land shale play and 
summarizes the UK’s petroleum tax regime, Section III 
presents our economic model, major cost components and 
results from production simulation, Section IV presents and 
discusses the results, and Section V concludes. 

II. THE BOWLAND SHALE PLAY AND THE UK PETROLEUM TAX 

REGIME  

A. The Bowland Shale Gas Play 

The British Geological Survey (BGS) produced a report for 
the Department of Energy and Climate Change (DECC) in 
2012 in which it identifies the geological maps where Britain’s 
most prolific shale gas potential is located. Geological models 
indicate that carboniferous organic rich basinal marine shale 
formations are present in the Bowland- Hodder unit of Central 
Britain among others running roughly through North-East 
England to the South and South-West coast [2] (Fig. 1). Of the 
basins assessed by the British Geological Survey in 2010, the 
Bowland Basin (Fig. 2) was the largest in the assessment area, 
continuing westwards below the Irish Sea, where the Upper 
Bowland Hodder, is a source rock for conventional fields [2].  

TABLE I 
TOTAL GIP AND RECOVERABLE RESERVES [2], [4] 

Total gas in-place estimates 
(tcf) 

Total gas in-place estimates 
(tcm) 

Low 
(P90) 

Central 
(P50) 

High 
(P10) 

Low 
(P90) 

Central 
(P50) 

High 
(P10) 

Upper unit 164 264 447 4.6 7.5 12.7 
Lower unit 658 1065 1834 18.6 30.2 51.9 

Total 822 1329 2281 23.3 37.6 64.6 

A 2013 BGS/DECC report presents a preliminary 
assessment of the gas – in – place (GIP) for the Bowland shale 
gas play. In this initial assessment the DECC reports that 
potential shale gas resources could reach 1,329 tcf (Table I) 
with an organic content in the range of 1% - 3% or even up to 
8% [2]. In this assessment DECC thinks that the Bowland 
shale is prolific and draws a potential comparison between the 
Bowland and Barnette shale and estimates that if the two are 
equivalent then the former could yield up to 4.7 Tcf as its 
central estimate of recoverable reserves, in instances where 
organic material have been buried to sufficient depths to 
generate gas [2]. Table II summarizes some current general 
information available concerning the nature of the Bowland 
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included in the well cost.  
Opex is assumed to increase over a well’s life due to 

equipment repair costs, water treatment and disposal costs, 
and costs arising from the need for compression and 
maintenance. The central case Opex used in this paper is $1.5/ 
Mcf and an Opex escalation of 3% per annum was assumed. 

D. Natural Gas Price 

Shale gas development proposals may receive a final 
investment decision (FID) or may be suspended or delayed 
due to the gas price to be received form gas sales and or the 
(un)certainty surrounding the price. Shale gas price is affected 
by the same factors that affect conventional gas price [3]; 
hence we apply the DECC’s projections for conventional gas 
price to the Bowland project. The UK prices gas in pence per 
Therm. These have been converted into $/ MMBtu at 10.028 
using Barclays Bank’s $/ £ exchange rate forecast of $1.54/ £. 
Gas prices are escalated at 3% per annum to cater for inflation. 
The central case gas price used is $9.55/ MMBtu. 

E.  The Two-Factor Model  

The development of shale gas wells very much depends on 
gas price [3], [11], [10] in addition to a host of other factors 
including Opex, Capex, production volumes, etc. The effects 
of variations in these input parameters on the decision to 
develop the Bowland shale wells was evaluated using the 
sensitivity of the project NPV and IRR. The method of 
sensitivity analysis applied here follows the concepts laid out 
in the Two-factor model used by [3] to appraise the 
profitability of Haynesville shale gas wells in the US. The 
output from a discounted cash flow analysis for 3 production 
well scenarios following the triangular distribution (P10, P50 
and P90) was used to quantify the complete range of 
prospective outcomes of the project. The P50 represents the 
average and most likely case while the defined expected 
boundaries for all outcomes were represented by the P10 
(optimistic outcome) and P90 (pessimistic outcome). P10 
production profile yields the most favorable economics 
whereas the P90 results in the least favorable economics, with 
the scale of the differences between these 2 scenarios 
indicating possible sets of results as well as the possible risks 
and rewards to the project. Here, we use the project input 
parameters to capture the operating conditions under which 
the shale gas production form the Bowland shale is 
economically viable. Table III summarizes the input 
parameters and their notations. The input variables are 
combined thus; gas price and capex, gas price and Opex, and 
Opex and capex. Every other variable is held unchanged and 
output variables are NPV and IRR. Tables IV–VIII present the 
results.  

IV. RESULTS 

A.  Results of the DCF Analyses 

In this section we present results of the 30-years DCF 
model to evaluate the economic viability of Bowland shale gas 
wells. 

 

TABLE III  
ECONOMIC MODEL PARAMETERS 

Parameter Notation Unit Minimum Maximum

Well Cost CAPEX $MM 14.94 20 

Operating Expenditure OPEX $/Mcf 1 2.5 

Gas Price GASP $/MMBtu  15.83 

Land Acquisition LANDA $M/ ac 6.67 16.67 

Well Spacing WELSPC ac 40 40 

Cost of Capital COSCAP % 10 10 

Ring Fence Corp Tax RFCT % 30 30 

Supplementary Charge SC % 20 20 

Initial Production IP Mcfd 3,555 3,878 

Gas Price Escalation GASPe % 3 3 

Opex Escalation OPEXe % 3 3 

Capex escalation CAPEXe % 3 3 

 
The pre-tax results indicate acceptable economics for the 

Bowland shale gas wells with P50 wells yielding a NPV @ 
10% of $3.6 billion and an IRR of 22%. The total investment 
of $20.4 billion in 1160 wells in this scenario is recouped in 
approximately 6 years from production and renders the project 
very competitive with a breakeven gas price of $7.69/ 
MMBtu. The post – tax results, however, are markedly 
unfavorable for the central scenario with a negative NPV of 
$1.9 billion and a breakeven gas price of more than $11/ 
MMBtu. The IRR is 2.5% and thus given cost of capital of 
10%, this renders the project uneconomical. We attribute this 
to the present petroleum tax environment in which shale gas 
finds itself. We argue that the present tax regime is 
unfavorable for the fracking industry which unnecessarily 
introduces a high degree of uncertainty in an operator’s cash 
flows. In contrast, the P10 results are far more robust and 
better than the P50 economics. This is due to the favorable 
reservoir conditions assumed for the present scenario with an 
annual decline rate of 30%. This rate is typical of US shale 
plays [11], [18] and thus can be thought of as a very much 
conservative assumption for our P10 scenario, if indeed the 
Bowland shale is equivalent to prolific shale plays in the US 
per BGS/ DECC’s prediction. The post-tax NPV now recovers 
from negative in the P50 scenario and sits at about $15 billion 
with pay out occurring in just about 3 years with a breakeven 
gas price of $5.77/ MMBtu and an IRR of 75%. This 
economics is very much robust and supports any argument to 
invest in the Bowland shale play. P90 economics are just 
prohibitive of any investment in the Bowland shale with a post 
–tax breakeven price of $17.45/ MMBtu. It is significant to 
note, however, that the present petroleum tax regime appears 
to be regressive in the shale gas environment. The P50 case 
results in Government Take of approximately 90% and leaves 
the fracking company just about10% cash flows, which is 
insufficient to even cover their investment. The P10 scenario 
which is much more economically profitable sees the 
Government Take reduce overwhelmingly by approximately 
40%. If not addressed this will be a major obstacle to the 
development of the Bowand shale gas and the UK’s shale gas 
in general as such a regressive fiscal environment has been 
found to discourage investments in hydrocarbons – leaving 
suboptimal benefits to the government and contractor in the 
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long term [19] [20]. Even though the shale gas fiscal regime is 
still under creation in the UK, it will be very necessary to 
introduce high order progressive features to offset any 
tendencies of discouraging capital spending by the fracking 
companies within the tax framework. We therefore highlight 
here that the post-tax economics of the Bowland shale play are 
not very stable as much as they are robust for the pre-tax 
results. We attribute this to the application of the conventional 
oil and gas tax regime, which has rather proved regressive, to 
the shale gas industry and wish to mention that once resolved 
investment in the Bowland shale, should be very much viable. 
Government take is very high during low price, high cost 
environment but overwhelmingly shrinks during favorable 
economic environments. 

 
TABLE IV 

PRE-TAX ECONOMICS FROM DCF ANALYSIS 

Economic Indicators Unit P10 P50 P90 

Pre-Tax 

POT Year 1.26 5.96 n/a 

NPV at 10% MM$ 31,269 3,635 (8,736) 

IRR % 125.36 22.35 n/a 

Economic Limit Year 30 30 25 

Break Event Gas Price $/MMBTU 3.98 7.69 11.93 

Post-Tax 

POT Year 2.71 20.97 n/a 

NPV at 10% MM$ 14,921 (1,944) (10,465)

IRR % 75.55 2.53 n/a 

Economic Limit Year 30 27 25 

Break Event Gas Price $/MMBTU 5.77 11.30 17.45 

Government Take % 49.24 89.77 n/a 

IOC Take % 50.76 10.23 n/a 

B. Gas Price and Capital Expenditure Sensitivities 

Table V summarizes the results from modelling the 
sensitivity of gas price and capital expenditure variations 
alone. This enabled the capturing of the implications of 
differing gas prices scenarios for investment requirements and 
hence a measure of the risks and rewards for any investment in 
the Bowland shale wells as indicated by the elasticity of the 
NPV to such variations. Every other model parameter was 
held constant as follows; $11,670/ ac for land acquisition 
costs, 40 acre well spacing, $1.5/ Mcf for operating expenses 
and 10% cost of capital. 

At $4/ MMBtu gas price, the project fails to be profitable 
under all CAPEX scenarios for all well types, including P10 
wells. Operators are thus unlikely to hold their acreage under 
low gas price conditions. Given, the lower levels of losses for 
lower CAPEX scenarios such as $5MM and $10MM, a risk-
taking and highly efficient operator may wish to use their 
expertise to drill sweet spots in order to leverage their costs 
and produce high quality shale. Similar to Kaiser’s [3] 
discovery in his Haynesville shale study, if wells in such a low 
price environment turn out to be average producers then the 
Bowland shale will not be profitable in such environments.  

At $8/ MMBtu gas price, most wells types are still 
uneconomical under most capex scenarios although P10 wells 
may be brought on stream at $10 MM for a marginal NPV of 

$2.27 billion and $5.73billion at $5MM. It appears that in 
order for an operator to produce the P50 and P90 wells, they 
have to be very much cost efficient and leverage any 
geological challenges that may come with shale gas extraction 
in the Bowland basin.  

 At gas price of $12/ MMBtu and higher, P10 wells are 
economical for most capex scenarios, except for $20MM. P50 
wells are mostly profitable but only fairly so in relation to P90 
wells.  

Important from the foregoing is that the Bowland shale 
wells cannot be developed for less than $10MM in a low price 
environment. Given that investment in shale gas wells are 
typically much more expensive, low gas price prohibits 
investing in these wells for most scenarios. These must be 
managed in order to render shale gas extraction attractive 
enough, especially as gas from shale has to compete against 
conventional gas. 

 
TABLE V  

GAS PRICE, CAPEX SENSITIVITY ANALYSIS 

NPV (Gas, CAPEX) Sensitivity Analysis ($ Billions) 

P10, OPEX = $1.5/Mcf 

Gas Price CAPEX/Well ($MM) 

($/MMBTU) 5 10 15 20 25 

4 -0.23 -2.00 -7.25 -9.98 -14.00 

8 5.73 2.27 -1.21 -4.70 -8.16 

12 11.67 8.21 4.75 1.29 -2.18 

16 17.58 14.15 10.69 7.23 3.77 
P50, OPEX = $1.5/Mcf 

Gas Price CAPEX/Well ($MM) 

($/MMBTU) 5 10 15 20 25 

4 -1.22 -4.76 -7.73 -11.76 -15.82 

8 3.25 -0.22 -3.71 -7.15 -10.73 

12 7.66 4.20 0.74 -2.70 -6.21 

16 12.06 8.62 5.16 1.70 -1.76 

P90, OPEX = $1.5/Mcf 

Gas Price CAPEX/Well ($MM) 

($/MMBTU) 5 10 15 20 25 

4 -1.57 -5.08 -8.37 -12.41 -16.49 

8 2.36 -1.11 -4.61 -8.11 -11.65 

12 6.23 2.77 -0.70 -4.17 -7.67 

16 10.09 6.64 3.18 -0.29 -3.75 

C. Gas Price and Operating Expenditure Sensitivities 

In Table VI, the impact of gas price and Opex sensitivities 
is measured. Here, capex is fixed, just as every other input 
variable as before, at $14.95MM per well. Well spacing is 
fixed at 40 acres and land acquisition cost of $11,670/ ac is 
used. 

P10 and P50 wells fail to create value under all capex 
scenarios at $4/ MMBtu and $8/MMBtu, except for P10 wells 
that are marginally profitable at $8MM and $0.50/ McfOpex. 
Both well types are profitable at gas price of $12/ MMBtu and 
higher for almost all Opex scenarios, except for P50 wells that 
may be brought on stream for slightly less than $2.5/ Mcf. It is 
noteworthy that the white portion of the matrix representing 
the profit window is larger for the present analysis than it was 
for the “Gas price, Capex” analysis. This is indicative of the 
fact that the Opex chosen for our analysis is favorable and that 
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Opex may not be a big hindrance to the development of shale 
gas in the Bowland basin. When gas price is $12/ MMBtu P10 
wells are profitable across the entire matrix. P50 wells may 
also be brought in for all Opex scenarios up to a little under 
$2.5/Mcf. Such a wide variation in Opex allows the operator a 
high degree of flexibility in spending and project management 
in order to create value/ make profits. It appears that the safety 
net for making Bowland shale profitable under Opex scenarios 
is gas price of $12/ MMBtu and opex of not more than $2/ 
Mcf. P90 wells are not profitable for the most part of the 
analysis except at gas price of $16/ MMBtu and across the 
entire Opex range.  

 
TABLE VI  

GAS PRICE, OPEX SENSITIVITY ANALYSIS 

NPV (Gas, OPEX) Sensitivity Analysis ($ Billions) 

P10, CAPEX= $ 14.95MM 

Gas Price OPEX ($/Mcf) 

($/MMBTU) 0.5 1 1.5 2 2.5 

4 -5.76 -6.50 -7.21 -7.29 -8.67 

8 0.29 -0.44 -1.17 -1.90 -2.64 

12 6.23 5.51 4.79 4.07 3.34 

16 12.17 11.45 10.72 10.00 9.28 

P50, CAPEX= $ 14.95MM 

Gas Price OPEX ($/Mcf) 

($/MMBTU) 0.5 1 1.5 2 2.5 

4 -7.13 -7.64 -7.69 -8.73 -9.81 

8 -2.58 -3.13 -3.68 -4.22 -4.77 

12 1.85 1.31 0.78 0.24 -0.30 

16 6.27 5.73 5.19 4.66 4.12 

P90, CAPEX= $ 14.95MM 

Gas Price OPEX ($/Mcf) 

($/MMBTU) 0.5 1 1.5 2 2.5 

4 -7.64 -7.43 -8.33 -9.25 -10.24 

8 -3.62 -4.10 -4.58 -5.06 -5.51 

12 0.28 -0.19 -0.66 -1.13 -1.60 

16 4.15 3.68 3.21 2.74 2.27 

D. Capital Expenditure and Operating Costs 

In this section we fix gas price at $9.55/ MMBtu, $11,670/ 
ac. Well spacing, 10% cost of capital, and 44% effective tax 
rate. Table VII presents the results. P10 and P50 wells see a 
broader profit window in this analysis. Value is created across 
all Opex scenarios at a maximum capex of $10MM per well. 
P90 wells are not profitable here but markedly improve to 
create value across all Opex scenarios at capex of $5MM and 
at $10MM for $1.5/ Mcf or less.  

At $15MM capex and $0.50/ McfOpex, there is a loss of 
$2.11 billion recorded. As capex reduces by 50% to $10MM 
but Opex triples to $1.50/ Mcf, we see a remarkable increase 
in NPV to +$0.40 billion. A further 50% reduction in capex to 
$5MM and a 50% increase in opex see even bigger increase in 
NPV to $3.39 billion, an increase of 747.5%. This further 
supports the earlier discussion that Opex is not a critical 
problem for the development of the Bowland shale. In the 
present analysis the reduction in capex very much overwhelms 
the tripling up of the Opex each time and results in higher and 
higher NPVs.  

 

TABLE VII  
CAPEX, OPEX SENSITIVITY ANALYSIS 

NPV (CAPEX, OPEX) Sensitivity Analysis ($ Billion) 

P10, Gas Price= $ 9.55/MMBTU 

CAPEX OPEX ($/Mcf) 

($MM) 0.5 1 1.5 2 2.5 

5 9.48 8.75 8.03 7.31 6.59 

10 6.02 5.30 4.57 3.85 3.13 

15 2.56 1.84 1.12 0.39 -0.34 

20 -0.91 -1.64 -2.37 -3.10 -3.83 

25 -4.40 -5.13 -5.86 -6.59 -7.32 

P50, Gas Price= $ 9.55/MMBTU 

CAPEX OPEX ($/Mcf) 

($MM) 0.5 1 1.5 2 2.5 

5 6.03 5.49 4.96 4.42 3.88 

10 2.57 2.03 1.50 0.96 0.42 

15 -0.89 -1.42 -1.97 -2.52 -3.06 

20 -4.38 -4.92 -5.47 -6.01 -6.56 

25 -7.87 -8.42 -8.96 -9.45 -10.07 

P90, Gas Price= $ 9.55/MMBTU 

CAPEX OPEX ($/Mcf) 

($MM) 0.5 1 1.5 2 2.5 

5 4.80 4.33 3.86 3.39 2.92 

10 1.34 0.87 0.40 -0.08 -0.54 

15 -2.11 -2.61 -3.09 -3.56 -4.04 

20 -5.63 -6.10 -6.58 -7.06 -7.54 

25 -9.12 -9.60 -10.03 -10.57 -11.07 

E. IRR Sensitivity Analysis for P50 Profiles from Tables IV - 
VII (Percentage) 

Table VIII shows the results of post-tax IRR for all P50 
wells presented in Tables IV–VII. The results indicate the 
broad envelope of returns and are consistent with the NPVs 
discussed earlier. Project returns are very high at gas price of 
$12/ MMBtu and capex of no more than $20MM at Opex of 
$1.5/ Mcf. Also, value is created at gas price of $8/ MMBtu 
and Opex of $1.5/ Mcf with a capex of $10MM or less. At the 
average Capex of $14.95MM, value is created throughout all 
Opex scenarios with gas price of $12/ MMBtu or higher. The 
average gas price used in our model, of $9.55/ MMBtu is still 
profitable at capex of $15MM and Opex of $1.5/ Mcf. Also, 
an increase in Opex of up to $2.5/ Mcf with a reduction in 
Capex to $10MM and subsequently to $5MM at Opex of 
$9.55 present a post-tax IRR of up to 43%. This is remarkable 
performance and brightens the prospects for the development 
of the Bowland shale. It is significant to note, however, that at 
gas price of $8/ MMBtu or less almost all the matrix is shaded 
grey for all capex scenarios and the profit window disappears. 
These regions (marked n/a) are characterized by large negative 
returns/ huge losses as the projects fail to even break even. 
Thus although there are good prospects in the Bowland shale 
play, low gas prices render production of the play 
economically unsustainable. It is noteworthy that an effective 
tax of 44% may be too high for the fledgling fracking industry 
and if shale gas production is to be sustainable in the UK, a 
large incentive that rewards efficiency and technological 
advancements, geared towards a low Capex future for the 
fracking industry.  
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TABLE VIII  
POST-TAX IRR FOR ALL P50 PROFILES 

IRR Post-Tax Sensitivity Analysis for P50 Profiles (%) 

P50, OPEX = $1.5/Mcf 

Gas Price CAPEX/Well ($MM) 

($/MMBTU) 5 10 15 20 25 

4 n/a n/a n/a n/a n/a 

8 35.24 8.84 n/a n/a n/a 

12 65.58 31.00 12.78 2.03 n/a 

16 93.43 51.93 28.88 14.93 5.82 

P50, CAPEX= $ 14.95MM 

Gas Price OPEX ($/Mcf) 

($/MMBTU) 0.5 1 1.5 2 2.5 

4 n/a n/a n/a n/a n/a 

8 n/a n/a n/a n/a n/a 

12 16.90 14.91 12.92 10.90 8.87 

16 32.92 30.99 29.06 27.12 25.18 

P50, Gas Price= $ 9.55/MMBTU 

CAPEX OPEX ($/Mcf) 

($MM) 0.5 1 1.5 2 2.5 

5 54.52 50.86 47.18 43.47 39.73 

10 23.09 20.43 17.75 15.02 12.23 

15 6.62 4.58 2.45 n/a n/a 

20 n/a n/a n/a n/a n/a 

25 n/a n/a n/a n/a n/a 

V. CONCLUSION 

The discovery of shale gas in the UK has aroused keen 
interests from across industry, academia and not for profit 
organizations. Although, the development of shale gas is 
largely agreed to have been delayed, there is now momentum 
in what the UK looks forward to in deriving gas supplies to 
augment its energy needs, create jobs and generate revenues to 
the exchequer. For industry, shale gas has, although has lower 
exploration risks and is mined onshore, the resource is 
expensive to extract. We presented a characterization of the 
operating conditions under which the most prolific UK shale 
gas play, the Bowland shale, would be economically 
sustainable. Pre-tax economics are generally highly 
economical with an IRR of up to 125% in our P10 scenario. It 
is however unfortunate as post-tax economics are not 
encouraging enough. In our P50 analysis, the project fails to 
return the cost of capital with only 2.53% IRR at $9.55/ 
MMBtu gas price and a realistic capex of $14.95 per well.  

Break even costs are generally between $0.5 and just under 
$2.5/ Mcf for most cost scenarios. Operators thus have a great 
degree of flexibility in managing Opex. The safety net for 
making Bowland shale profitable under Opex scenarios is gas 
price of no less than $12/ MMBtu and Opex of no more than 
$2/ Mcf at $14.95MM capex. 

We analyzed pre-tax and post-tax economics as well as 
government take outputs and find that government take is 
rather unacceptably high at 90% in low-price/ high cost 
environment, leaving the operator with a huge loss and an IRR 
0f 2.53%. In a profitable environment however, the 
government take dropped sharply by 40% whereas the 
operators IRR recovered quickly to 75%. We attribute this to 
the application of the conventional oil and gas tax regime, 

which has rather proved regressive, to the shale gas industry 
but we wish to add that once resolved investment in the 
Bowland shale will be very much viable and sustainable.  

Finally, at realistic gas price of $8/ MMBtu or less the 
Bowland shale play fails to create value in the present tax 
environment. There is a potentially bright operational future 
for the Bowland shale play; however, it appears that low gas 
price render production of the play economically 
unsustainable under the present ring fence petroleum tax 
regime.  
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