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Abstract—This paper presents an ESN-based Arabic phoneme 
recognition system trained with supervised, forced and combined 
supervised/forced supervised learning algorithms. Mel-Frequency 
Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) 
techniques are used and compared as the input feature extraction 
technique. The system is evaluated using 6 speakers from the King 
Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia 
dialectic and 34 speakers from the Center for Spoken Language 
Understanding (CSLU2002) database of speakers with different 
dialectics from 12 Arabic countries. Results for the KAPD and 
CSLU2002 Arabic databases show phoneme recognition 
performances of 72.31% and 38.20% respectively.  

 
Keywords—Arabic phonemes recognition, echo state networks 

(ESNs), neural networks (NNs), supervised learning. 

I.  INTRODUCTION 

ANY different types of Neural Network (NN) 
architecture have been used for a variety of speech 

recognition purposes. These include: Multi-Layer Perceptron 
(MLP) [1]-[3], Recurrent Neural Networks (RNNs) [4] and 
Echo State Networks (ESNs) [5], [6]. 

ESNs are particularly well suited for classifying temporal 
signals as part of a dynamic pattern recognition task [7]. An 
ESN with delay and sum readout has been used to perform as 
a nonlinear Audio signal identification system [8], for time 
series modeling [9] and as a 10th order NARMA (The Non-
linear Auto-Regressive Moving Average) system [10], [11]. 
Moreover, ESNs have shown good ability for learning 
grammar structure as part of a natural language task [12], [13]. 
ESNs, in addition, have been used for pattern recognition 
tasks. It has been shown that ESNs have the capability to 
extract low dimensional features from a dynamic reservoir for 
a handwriting recognition task. The main use of the ESN in 
this process was to generate the features of data in a high 
dimensional representation [13]. For complex speech 
recognition problems, ESN have been used to successfully 
classify ten isolated English digit [5], [11], [14] and perform 
Japanese Vowels classification [15]. 

Recently, an English vowel classification system was 
investigated in [16]. The AEV vowel database was used to 
train an Echo State Network (ESN) using a forced supervised 
learning algorithm. This dataset contains 12 vowels uttered by 
48 women, 45 men, and 46 children. Cochlear filtered audio 
was used as input to the 74 input neurons connected to the 
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network reservoir. The overall performance of the vowel 
classification system was 81.7% with a maximum 
performance of 84.2% for male speakers. 

The work in [15] investigated the ability of an Echo State 
Network (ESN) for Japanese Vowel classification. In actual 
fact, the Japanese Vowels dataset only contained recorded 
utterances of the one vowel /ae/ for nine male speakers. 
However, the training and test datasets consisted of 270 and 
370 samples respectively. These datasets were used to train 
ESNs containing different reservoir network sizes ranging 
from one to 1000 nodes with spectral radius from 0.993 to 
0.996. The best performance was 100% classification for 
network sizes between 500 and 1000. 

In [7], an ESN-based speech recognition system was used to 
predict the English digits. In this system, each frame-based 
prediction model was used to predict one digit. Human factor 
cepstral coefficients (HFCC) were used as the feature 
extraction technique within 20 ms Hamming windows. 12 
HFCC coefficients were extracted and used as input to the 
ESN classifier. The total dataset consist of 4130 utterances of 
isolated English digits from Zero to Nine from8 female and 8 
male speakers. These were split in half to produce a training 
dataset consisted of utterances from 4 female and 4 male 
speakers, and a testing dataset contained the same number of 
speakers. The claimed classification accuracy was 100% and 
99.1% for training and test sets respectively with a reservoir 
network size of 60. In comparison, the same datasets gave 
94.7% testing classification accuracy with a conventional 
Hidden Markov model (HMM). 

In this paper ESNs trained with supervised, forced 
supervised and combined supervised/forced supervised 
learning algorithms are compared for Arabic phonemes 
classification and recognition. Section two presents details of 
the supervised and forced supervised Echo State Networks 
(ESN). The proposed Arabic databases and feature extraction 
techniques are then briefly described in section three. Finally, 
the results of the experiments performed on the proposed 
Arabic datasets are discussed in section four. 

II.  ECHO STATE NETWORKS (ESN) 

There are several types of training algorithm that can be 
used to train recurrent networks: real-time recurrent learning 
(RTRL), back-propagation revisited, back-propagation 
through time (BPTT), Extended Kalman Filtering techniques 
(EKF) [17], and Hessian-Free (HF) Optimization [18]. Usually 
these algorithms result in suboptimal solutions with slow 
convergence. Echo state networks (ESNs), invented by Jaeger 
[17], are a novel structure of recurrent neural networks 
(RNNs) that contain a large, random, fixed and untrained 
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recurrent “dynamic reservoir” network. The learning 
algorithm of the ESNs is very simple and linear, in that only 
the weights from the reservoir to the outputs neurons are 
adapted (see Fig. 1). As a result, the learning process is fast 
with less computation. The optimal output weights for the 
ESN are obtained when the MSE is minimized. 

 

 

 

Fig. 1 Comparison between RNNs and ESN architecture and training 
In A, all the RNN weights are changed during training whilst in B 

only the ESN output weights are changed [17] 

A. ESN Architecture 

The reservoir size effectively determines the ESN’s 
performance. In addition, connectivity, spectral radius, 
reservoir and output activation functions, shift and scale 
parameters also have effect. The architecture of the ESN used 
in this project was based on the work of Ted et al. [16] and 
Jaeger [17]. The ESN connections used are shown in Figs. 2 
and 3. During the ESN training and testing, the activations of 
their servoir and output neurons were calculated using either a 
supervised or forced supervised learning algorithm. 

1. ESN with Supervised Learning Algorithm 

Learning systems observe a training dataset constructed 
from features of instances with its labels as pairs, represented 

by {( , ), ..., ( , )}1 1x d x dn n . The aim of this learning is to predict 

the output y for any given input feature x .  

The activations of the ESN reservoir and output neurons in 
a supervised learning mode are calculated using (1) and (2): 

 

( 1) tanh( ( 1) ( ) ( ))in backx n W u n Wx n W y n

leftover

+ = + + +

+

       (1) 

 

where ( 1)x n + is the reservoir state for time step ( 1)n + ,

( 1)u n + is the input vector, ( )y n is the calculated output for the 

supervised learning for time step ( )n , and the leftover , as  

used in [16], is calculated as follows: 

( ) (1 _ )leftover x n d leakRate= ∗ −               
 (2) 

 
The calculated output y(n+1) is given by: 
 

( 1) tanh( ( 1) ( 1))out out
y n W x n W u n+ = ∗ + + ∗ +       (3) 

 
where ( 1)y n + is the calculated output states for time step

( 1)n + . 

Weight vectors
in

W , W , 
back

W , and 
out

W  are initially 

generated with random values between -1 and 1, and with a 
connectivity parameter between 0 and 1 in order to generate 
random connections between neurons (see Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 ESN connections with supervised learning, the weight 

connections in the figure as follows: 
in

W is input weight vector,W is 

reservoir weight vector, 
out

W is the output weight vector, 
back

W is 

the feedback weight vector, and leftover  is a variable calculated 

using (2) 
 

The supervised ESN network was implemented and 
optimized for the KAPD and the CSLU2002 Arabic speech 
datasets. The final network parameters are shown in Table I. 

2. ESN for Forced Supervised Learning 

Forced supervised learning replaces the actual output ( )y n  

by a teacher output (desired output) ( )d n  during the training 

stage [16]. This is often called Teacher-Forced supervised 
learning. 

For the forced supervised learning ESN, the activations of 
reservoir and output neurons are calculated using (4) and (5): 

 

( 1) tanh( ( 1) ( ) ( ))in backx n W u n Wx n W d n

leftover

+ = + + +

+

     (4) 

 
where ( 1)x n + is the reservoir state for time step ( 1)n + , 

( 1)u n + is the input vector, ( )d n  is the desired output vector 

(target output vector) for time step ( )n , and the leftover  was 

calculated using (2). 
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TABLE I 
SUPERVISED ESN PARAMETERS 

Parameter Value 

Reservoir size:  

Connectivity:  

Spectral Radius:  

Activation function:  

Input size:  

Input connectivity:  

Input Shift:  

Input Scale:  

Output size:  

Output activation:  

Feedback connectivity:  

Feedback Shift: 

Feedback Scale: 

D_leakRate 

Alfa 

Wash-out time 

400 

0.2 

0.996 

tanh 

11 

0.5 

0 

1 

33 

tanh 

0.3 

0 

1 

0.0 

0.33 

0 

 

ˆ ( 1) tanh( ( 1) ( 1))out outy n W x n W u n+ = ∗ + + ∗ +      (5) 

 
where ˆ ( 1)y n + is the calculated output states for time  ( 1)n + . 

Weight vectors
in

W , W , 
back

W , and 
out

W are randomly 
generated as described previously using the connections 
shown in Fig. 3 and main the parameters are as described in 
Table I. 

 

 
 
 

Fig. 3 ESN connections with combined supervised/forced supervised 
learning algorithm, the weight connections in the figure as follows: 

in
W is input weight vector,W is reservoir weight vector,

out
W is the 

output weight vector,
back

W is the feedback weight vector, and

leftover is a variable calculated using (2) 

3. ESN for Combined Supervised/Forced Supervised 
Learning 

Unfortunately, an ESN trained with the standard forced 
supervised learning algorithm is not suitable for recognition 
purposes. This is because the target output would be required 
for calculating the reservoir states during the testing stage. To 
address this shortcoming, a combined supervised/forced 
supervised learning was implemented. In this novel algorithm, 
the calculated network outputs are first passed through a 
maximum likelihood stage to effectively produce teacher 
outputs before being fed back into the reservoir (see Fig. 4). 
The target outputs used as feedback connections are binary 

values zero or one, whilst the calculated outputs are floating 
point numbers between -1 and 1.  

During testing, all the outputs were converted from floating 
point numbers into zeros or ones using the maximum 
likelihood algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 ESN connections with modified supervised/forced learning 

algorithm, the weight connections in the figure as follows: 
in

W is 

input weight vector, W  is reservoir weight vector, 
out

W is the output 

weight vector, 
back

W is the feedback weight vector, and leftover is a 

variable calculated using (2) 

4. Updating Weight Vectors 

In all ESN architectures presented here, the outputs weights 
are updated using the offline pseudo inverse method to 

calculate the new output weights 
out

W  after each training 
epoch. The following steps describe this algorithm: 

• An autocorrelation matrix (state matrix) A of size 

( ( ))n X N K+ is accumulated from the state vector ( )x n

and input vector ( )u n for each time step n . 

• A cross-correlation matrix (output matrix) B of size

( )n X L  is also accumulated from the target output ( )d n for 

each time step n . 

• The pseudo inverse matrix is then calculated using (6) 
 

2 1(( ) )out T T TW A A I A Bα
−

= +                     (6) 

 

where I is the identity matrix, 
1

( )A −
is the inverse matrix of 

A , and 
TA donates the transpose of matrix A , and α is the 

smoothing factor where 1α ≤ . When 0α =  (6) reverts to a 
linear regression (the Wiener-Hopf solution [16]) as in (7): 

 
1(( ) )out T T TW A A A B−

=                             (7) 

 

The strongest regularization is obtained when 1α = . 

III.  DATABASE AND FEATURE EXTRACTION 

A. Arabic Databases 

The KAPD contains 340 utterances containing each of the 
33 Arabic phonemes presented in 12 semi-words spoken by 7 
male speakers in a quiet environment with a Saudi Arabia 
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dialectic. This database recorded using microphone and 
sampled at 10 kHz 16-bit. This KAPD dataset was previously 
used for Arabic phoneme classification using a conventional 
multi-layer perceptron neural network [3].

The CSLU database consists of 22 group datasets 
telephone speech for 22 languages. Eastern Arabic is one of 
these languages. The Arabic corpus contains fluent continuous 
speech of 98 native callers (5 Childs, 23 females and 70 
males) from more than 12 countries. Ea
corpus talks about fixed topics (e.g. address, time home town, 
weather etc.). A total of 1997 sentences files collected over 
telephone lines in different environments for the Arabic 
database and sampled at 8 kHz 8-bit. 34 speakers (17 females 
and 17 males) were selected arbitrarily
dataset. 3802 phonemes were manually segmented from 
database to train and test the ESN for speech classification and 
recognition tasks. This resulted in 1894 pho
training and 1908 phoneme samples for testing.

B. Challenges of Arabic Databases 

The KAPD database is very limited as 
male speakers. In addition, one of the speakers’ 
very noisy, meaning that it was excluded from the
experiments. This dataset is, however, used here in order to 
allow direct comparison between the ESN results 
and our previous work with an MLP based Arabic phoneme 
recognition system [3]. 

The CSLU2002 databases as described are recorded using a 
telephone channel. As a result, the quality of the
the databases is dependent on the speakers’ environments
several of the utterances containing car and home noise such 
as baby crying and children talking. Moreover, 
the utterances is dependent on the speaker. 
were talkative, producing many phoneme
speech, however, contained very limited speech, producing 
recorded utterances that contained few or even zero examples 
of some phonemes. An additional problem is that 
were from 22 different countries; consequently, they have 
different dialectics. Several of these dialectics 
phonemes. For example, the Egyptian
phonemes /q,ق/, /j,ذ,!/ ,/ج/, /Z,ظ/whilst the Lebanese dialectic 
misses /!,ذ/ and /Z,ظ/. Furthermore, phoneme pronunciation is 
completely different from one dialectic to another. For 
example, phoneme /!,ذ/ in the Egyptian dialectic is pronounced 
as /z,ز/ - a standard Arabic sound. Likewise, 
/q,ق/ in the Yamane dialectic has a sound that has 
standard Arabic sounds. Finally, different 
different speed of speech during recording.

C. Feature Extraction Technique 

The Mel-Frequency Cepstrum Coefficients (MFCCs) 
algorithm was used to extract features from the KAPD and the 
CSLU2002 corpus. A frame window of 6.4 
50% was used for the speech signal frames
represented by 12 cepstral coefficients.  

The Linear Predictive Code (LPC) technique was 
to extract features from the KAPD for 

recorded using microphone and 
This KAPD dataset was previously 

used for Arabic phoneme classification using a conventional 
. 

22 group datasets of 
ech for 22 languages. Eastern Arabic is one of 

these languages. The Arabic corpus contains fluent continuous 
speech of 98 native callers (5 Childs, 23 females and 70 
males) from more than 12 countries. Each speaker in this 

dress, time home town, 
). A total of 1997 sentences files collected over 

telephone lines in different environments for the Arabic 
bit. 34 speakers (17 females 

arbitrarily from the Arabic 
dataset. 3802 phonemes were manually segmented from this 
database to train and test the ESN for speech classification and 

in 1894 phoneme samples for 
1908 phoneme samples for testing. 

very limited as it consists of only 7 
speakers’ dataset is also 

excluded from the 
used here in order to 

allow direct comparison between the ESN results it provides 
previous work with an MLP based Arabic phoneme 

databases as described are recorded using a 
uality of the utterances in 

the databases is dependent on the speakers’ environments with 
and home noise such 

Moreover, the length of 
nt on the speaker. Several of speakers 

phonemes. Some of recorded 
contained very limited speech, producing 

utterances that contained few or even zero examples 
An additional problem is that speakers 

re from 22 different countries; consequently, they have 
different dialectics. Several of these dialectics omit some 

ian dialectic misses 
whilst the Lebanese dialectic 

. Furthermore, phoneme pronunciation is 
dialectic to another. For 

dialectic is pronounced 
ikewise, the phoneme 

that has no similar in 
different speakers had 

different speed of speech during recording. 

Frequency Cepstrum Coefficients (MFCCs) 
features from the KAPD and the 

6.4 ms over lapped by 
frames. Each frame was 

Linear Predictive Code (LPC) technique was also used 
features from the KAPD for input feature 

comparison purposes. 

IV.  EXPERIMENTS

A. Results Using the KAPD 

1. Closed Set Speaker Independent 
Learning 

For comparison purposes, two KAPD databases were 
created – one being the raw data and the second 
anormalized version of the raw data
phonemes datasets were used to train the ESN with 
supervised learning algorithm as describe
I. The results of normalized and ra
Fig. 5. 

It is clear from Fig. 5 that, for 
of KAPD Arabic phonemes are 
accuracy and there are no phonemes
In comparison most of phonemes in the normalized 
training dataset were classified with 
accuracy. Moreover, for the testing dataset, most of 
raw Arabic phonemes were recognized between 70% and 80%
accuracy; with just two of 
recognized with performance less than 50%. In contrast, the 
average recognition of the 
phonemes was between 60% and 70%, and approximately
phonemes recognized with performance less th
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Fig. 5 Histograms for Arabic phonemes recognition performances for 
training dataset for raw data (a) and normalized data (b), and for 

testing dataset for raw data (c) and
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For comparison purposes, two KAPD databases were 
one being the raw data and the second being 

version of the raw data [3]. Both KAPD Arabic 
used to train the ESN with the 

supervised learning algorithm as described in Fig. 2 and Table 
The results of normalized and raw databases are shown in 

hat, for the raw training dataset, most 
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phonemes in the normalized KAPD 
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testing dataset, most of the KAPD 
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phonemes recognized with performance less than 50%. 
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istograms for Arabic phonemes recognition performances for 
training dataset for raw data (a) and normalized data (b), and for 

testing dataset for raw data (c) and normalized data (d) 
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database (the KAPD) - see Table II.    
In [3], the KAPD Arabic dataset was also categorized into 

five classes (Stops, Fricatives, Nasals, Letretive and Vowels). 
For comparison purposes this experiment was also performed 
on the ESN network with supervised learning algorithm using 
the same network structure as detailed in Fig. 2 and Table I. A 
comparison between the average results of Arabic phonemes 
recognition for the five Arabic categories using the MLP NN 
and ESN are shown in Table III. 

It is obvious from the results that the ESN has a better 
performance than the MLP NN system for all classes. The 
results also show that for the ESN system the Stops class 
(class 1) has the lowest accuracy on the testing dataset. This is 
probably due to the similarity in phoneme’s pronunciation. 
Stops phonemes are also very short phonemes and hence 
contain little information with which to classify.  

 
TABLE III 

A COMPARISON BETWEEN THE PERFORMANCE OF THE ESN SUPERVISED AND 

MLP NETWORKS LEARNING ALGORITHM FOR THE KAPD DATABASE  

Class Performance 

 MLP ESN 

Stops 59.90 64.67 

MLP fricatives 59.32 81.00 

Nasals 77.78 85.57 

Letretive 88.35 98.01 

Vowels 58.92 79.65 

2. MFCC’s Features verse LPC Features Using Closed Set 
Speaker Independent ESN with Supervised Learning 

The same KAPD Arabic phonemes dataset was used to 
compare the performances of the ESN when trained with the 
supervised learning algorithm on the KAPD dataset using the 
LPC and MFCC feature extraction techniques: see Table IV. 

3. Open Set Speaker Independent ESN with Supervised 
Learning  

The ESN with forced supervised leaning was used for a 
speaker independent test (open-set). Speakers 6 and 7 in the 
KAPD were not used during training of the network. During 
subsequent testing of the trained ESN network, the average 
phoneme classification accuracy for these two speakers were 
40.79% and 39.12% respectively. 

 
TABLE IV 

A COMPRESSION BETWEEN THE PERFORMANCE OF THE MFCCS AND LPC 

FEATURE EXTRACTION TECHNIQUES USING ESN WITH SUPERVISED LEARNING 

ALGORITHM FOR THE KAPD 

Feature extraction technique Performance % 

MFCC 92.92 

LPC 66.75 

B. Results Using the CSLU2002 Dataset  

ESN networks with supervised and combined forced 
supervised/supervised learning algorithms were used to train 
and test on the CSLU2002 Arabic database in different 
experiments. Firstly, each gender of this database was 
examined separately using the ESN with the different learning 
algorithms (supervised learning forced supervised learning 
and combined supervised/forced supervised learning). 

Secondly, a combined ‘female & male’ dataset were collected 
to build a final CSLU2002 Arabic phonemes database. This 
was then tested using all ESN learning algorithms. 

1. Closed Set Speaker Independent ESN for CSLU2002 
Female Speakers 

17 female speakers were arbitrarily selected from the CSLU 
dataset and used to create a CSLU2002 female phonemes 
dataset. This dataset was used to train and test on the ESN 
with the supervised and forced supervised learning algorithms. 
Fig. 6 shows the average results of Arabic phonemes for the 
17 female speakers. 

As you can see from Fig. 6, the ESN trained with the 
combined supervised/forced supervised training algorithm can 
correctly classify the majority of the phonemes from 
CSLU2002 female speakers with an average phoneme 
recognition performance of 83.84% for the training dataset. 
However, the average performance of the testing dataset 
phonemes is 45.78% phoneme recognition. For the ESN 
trained with the supervised learning algorithm, the average 
result of phoneme recognition was 73.94% training dataset 
and 44.89% for the testing database. Details are presented in 
Table V below. 

 

 

Fig. 6 Average results of phonemes for female speakers’ dataset 
when it trained and tested on the ESN with supervised learning and 

combined supervised/forced supervised learning algorithms 

2. Closed Set Speaker Independent ESN for CSLU Male 
Speakers 

17 males also were randomly selected, and used to train and 
test on one ESN with the supervised and with one ESN with 
the combined supervised/ forced supervised learning 
algorithms. The average results of phonemes for this dataset 
are presented in Fig. 7. 

As you can see from Fig. 7, the ESN with forced learning 
algorithm can classify most of the phonemes from the 
CSLU2002 male speakers with an average performance of 
83.92% for the training database, and 44.89% with the testing 
datasets. For the ESN trained with the supervised learning 
algorithm, the average results of Arabic phonemes recognition 
was 72.03% training dataset, and 35.43% for testing dataset. 
Details are shown in Table V. 
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Fig. 7 Average phonemes recognition results for male speakers’ 
dataset when trained and tested on the ESN with supervised learning 

and combined supervised/forced supervised learning algorithms 

3. Closed Set Speaker Independent ESN for CSLU Female 
and Male Speakers 

A dataset of 30 speakers (15 males and 15 females) was 
constructed from the CSLU2002 females and males datasets 
and used to evaluate the ESN with supervised and combined 
supervised/forced supervised learning algorithms. The results 
of this database are shown in Fig. 8. 

It is obvious from Fig. 8 that, using supervised learning, the 
average Arabic phoneme recognition rate is 51.28% for the 
females & males training database. In comparison for the 
same training database using the combined supervised/forced 
supervised learning algorithm, the average Arabic phoneme 
recognition rate is 60.50%. For the testing dataset, most of 
Arabic phonemes in the females & males testing database 
were recognized with accuracy between 30% and 60% using 
supervised learning. In contrast, the average recognition of the 
Arabic phonemes with combined forced supervised/supervised 
learning was between 50% and 80%. 

A comparison between the average results of the 
CSLU2003 databases using supervised learning and combined 
supervised/forced supervised learning is shown in Table V.  

It is clear from average results of the CSLU2002 female and 
male speakers’ database that, the ESN with combined forced 
supervised/supervised learning algorithm is best for phonemes 
classification problems.  

The low performance of phoneme recognition in the testing 
datasets is due to several reasons. The most critical issue is 
that the speakers are from different countries so have 
completely different dialectics. Moreover, the limited 
examples of some phonemes lead to inefficient training for the 
ESN. Finally, many of the speaker samples contain 
background noise from the environment; so affecting the ESN 
performance. 

 

Fig. 8 Histograms for Arabic phonemes recognition performances for 
the females & males CSLU2002 database, training dataset for 

supervised learning (a) and combined supervised learning (b), and for 
testing dataset for supervised learning (c) and combined supervised 

learning (d) 
 

TABLE V 
ESN WITH DIFFERENT LEARNING ALGORITHMS FOR 17 FEMALE SPEAKERS, 17 

MALE SPEAKERS, AND A DATASET OF 30 FEMALE AND MALE SPEAKERS  

Speakers 
Supervised learning 

Combined supervised/forced 
learning 

Train Test Train Test 

Female 73.94 37.72 83.84 45.78 

Male 72.03 35.43 83.92 44.89 

Female & Male 51.28 33.50 60.50 38.20 

V.  CONCLUSION 

This paper investigates Echo State Networks (ESN) for 
Arabic phoneme recognition. A novel supervised/forced 
supervised learning algorithm is proposed that shows 
improved performance on the CSLU2002 dataset. 

In general, speech recognition is a challenge for most 
standard languages, and Arabic dialectics are no exception. 
ESN has good performance for the single dialect KAPD 
dataset. However, a significantly lower performance is 
obtained for the same ESN when trained with the noisy multi-
dialect CSLU2002 dataset. It is suggested that a new Arabic 
phonetic database for speech recognition purpose should be 
constructed that addresses the limitations of both the KAPD 
and the CSLU Arabic databases. 
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