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Abstract—The decisions made by admission control algorithms are
based on the availability of network resources viz. bandwidth, energy,
memory buffers, etc., without degrading the Quality-of-Service (QoS)
requirement of applications that are admitted. In this paper, we
present an energy-aware admission control (EAAC) scheme which
provides admission control for flows in an ad hoc network based
on the knowledge of the present and future residual energy of the
intermediate nodes along the routing path. The aim of EAAC is to
quantify the energy that the new flow will consume so that it can
be decided whether the future residual energy of the nodes along
the routing path can satisfy the energy requirement. In other words,
this energy-aware routing admits a new flow iff any node in the
routing path does not run out of its energy during the transmission
of packets. The future residual energy of a node is predicted using
the Multi-layer Neural Network (MNN) model. Simulation results
shows that the proposed scheme increases the network lifetime. Also
the performance of the MNN model is presented.

Keywords—Ad hoc networks, admission control, energy-aware
routing, Quality-of-Service, future residual energy, neural network.

I. INTRODUCTION

N the recent literature, ad hoc networks (AHN) have

gained much attention, due to the convenience of building
mobile wireless networks without any need for pre-existing
infrastructure. The nodes in an ad hoc network cooperatively
maintain network connectivity. Each node acts as a router
and forwards packets to the next hop in order to reach the
final destination via multiple hops. The AHN environment is
typically characterized by energy-constrained nodes, variable-
capacity, bandwidth-constrained wireless links and dynamic
topology, leading to frequent and unpredictable connectiv-
ity changes. Multimedia applications that use these type of
networks require QoS support for effective communication.
Therefore, the QoS has to provide applications with guarantee
in terms of bandwidth, energy, delay, etc [3].

Many dynamic routing protocols for AHNs have been pro-
posed and evaluated. The on-demand source routing protocols
such as DSR[1] and AODV[2] are energy-unaware. Routing
is done based on number of hops or end-to-end delay at the
time when route is established and they do not proactively
modify the routes until they break. If nodes are energy-
constrained, such metrics may have adverse effect on the
network lifetime leading to performance degradation. Several
works has been done on energy-aware routing in mobile ad
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hoc networks since the nodes are characterized by their limited
battery power [8], [9], [12], [15], [16], [17], [18]. Motivated
by the increasing importance of real time and multimedia
applications with different QoS requirements e.g., VoIP and
video conferencing, several QoS-constrained algorithms for
multimedia communications in wired/wireless networks have
been proposed in the literature [4], [5], [6], [12]. Because
of the provision of high speed wireless Internet services,
QoS-guaranteed applications are crucial to new generation
wireless multimedia communication systems. To meet the
QoS requirements of the applications, routing protocols are
required to construct routes, with the QoS being guaranteed.
The goal of any QoS support is to provide applications with
guarantee in terms of bandwidth, energy, etc. To provide such
guarantee in a networked environment, the MAC layer is
responsible for resource allocation at individual nodes, while
the network layer must consider resources along the entire
route of communication.

Energy-aware communication is a challenging issue in
AHNs due to the energy constraint of battery in each node,
which are responsible for relaying data packets for neighbor
nodes. Therefore, considerable research has been devoted to
the research on energy-aware routing. Care has been taken not
only to reduce the overall energy consumption but also balance
individual battery usage, since unbalanced energy consumption
will result in earlier node failure for overloaded nodes, leading
to network partition and reduced network lifetime. In this
paper, we present an energy-aware admission control (EAAC)
scheme for AHNs based on the knowledge of the present
and future residual energy of each node along the routing
path. Only nodes with sufficient residual energy to complete
the transmission of data by the application will take part in
forwarding packets. Therefore, it can be avoided that any node
in the routing path does not run out of its energy during the
transmission of packets. The future residual energy of a node
is calculated using MNN model.

Rest of the paper is organized as follows. In Section II, some
previous energy-aware routing protocols relevant to AHNs
are reviewed. Some key characteristics of wireless mobile ad
hoc communication are discussed in Section III. Section IV
discusses the challenges and solutions for providing admission
control based on energy in ad hoc networks. The MNN model
and its training procedure for residual energy predictions are
described in Section V. In Section VI, we present the design
of EAAC protocol in detail. Simulations are carried out to
demonstrate the effectiveness of the proposed work and is
presented in Section VII. In Section VIII, this paper concludes
with some remarks.
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II. RELATED WORKS

The early literature on ad hoc networking primarily ad-
dressed the design of efficient routing algorithms but without
the consideration of energy of mobile nodes. After the work of
Singh et. al. [9], there has been a growing literature on energy-
aware routing in wireless ad hoc networks. Many energy-
aware routing protocols have been proposed from a variety
of perspectives and some of the related works are briefly
described below.

Two main representative energy-aware routing protocols
are minimum total transmission power routing (MTPR) [8]
and min-max battery cost routing (MMBCR) [9]. MTPR
was initially developed to minimize the total transmission
consumption of nodes in the acquired route. This routing
mechanism prefer routes with more hops having short trans-
mission ranges to those with fewer hops but having long
transmission ranges and increases end-to-end delay. MMBCR
considers the residual power of nodes as metric for acquiring
routes to prolong the lifetime of each node.

A conditional max-min battery capacity routing (CMM-
BCR) protocol arbitrate between MTPR and MMBCR is
presented in [10]. It considers both the total transmission
energy consumption of routes and the remaining energy of
nodes. When all nodes in some possible routes have sufficient
remaining battery capacity (i.e., above some pre-specified
threshold), a route with minimum total transmission energy
is chosen among these routes.

In [11], an energy preserving mechanism is proposed which
considers total energy consumption and residual energy of
nodes as routing metrics. The energy cost calculation is based
on the prediction of node energy consumption in the future
using ARIMA model. The OLSR protocol is extended using
this mechanism.

In [14], two routing mechanisms for mobile AHNs, mini-
mum drain rate (MDR) and conditional minimum drain rate
(CMDR) based on the energy drain rate is proposed. In MDR,
each node computes the energy drain rate (DR) every T’
seconds. This DR metric is used to predict the lifetime of
nodes according to the current traffic conditions. Combined
with the value of residual energy, this metric is used to
establish whether or not a node can be part of an active
route. The CMDR mechanism is based on choosing a path
with minimum total transmission energy consumed among all
the possible paths constituted by nodes with a lifetime higher
than a given threshold as in MTPR approach. In case no routes
verifies this condition, CMDR switches to the basic MDR
mechanism.

In [15], routing algorithms for traffic-dependent and energy-
based time delay for improving the energy efficiency in AHNs
were proposed. Two algorithms energy-based time delay rout-
ing (EBTDR) and highest energy routing (HER) try to increase
the operational life time of the network by implementing a few
modifications to the basic DSR protocol and making it energy
efficient in routing packets. In EBTDR, the modification is
enabled by introducing a delay in forwarding the packets by
nodes, which is inversely proportional to the remaining energy
level of the node. In HER, the route selection is based on the

energy drain rate information that constitutes the route. The
drain rate is used to predict the lifetime of nodes, according
to the current traffic conditions similar to [14].

Based on the above related works and literature [16], [17],
[18], [19] in the area of energy-aware routing in AHNS, the
observations made are as follows.

o Since MTPR [8] does not consider the remaining energy
of nodes, it may not succeed in extending the lifetime of
each node.

o MMBCR [9] extends the lifetime of nodes, but it does not
guarantee that the total transmission energy is minimized
over a given route.

« However, the CMM-BCR protocol [10] does not guar-
antee that the nodes with high residual energy will
survive without energy breakage even when heavy traffic
is passing through the node.

« Routing mechanisms based on the current residual energy
cannot be used to establish the best path between source
and destination nodes. If a node accepts all route requests
only because it has enough residual energy, much traffic
load will be injected through that node. This results with
the sharp reduction of energy, causing the node to halt
soon.

e The mechanisms in [14], [15] calculates the drain rate
based only on two values, i.e., previous and newly
calculated DR values. Therefore, these values used to
predict the lifetime of a node based on the current traffic
conditions is not (nearly) accurate.

« When a node that lies on several routes forwarding pack-
ets generated from different source applications, could
not determine when it completely drains out its energy.

o Less attention is paid to the issues related to the energy-
based QoS requirement of a route, i.e., to provide guaran-
teed battery power for the transmission of packets along
the path from a source node to the destination such that
any node in the path does not run out of its power during
the transmission of packets.

To mitigate these problems, we predict the future residual
energy of a node based on the history of nodes’ energy and
admit a new flow only if the future residual energy can meet
the energy requirement of the new flow while maintaining the
energy levels of the already admitted applications.

III. CHARACTERISTICS OF ENERGY-AWARE ROUTING IN
AHNS

To enable services such as streaming real-time multimedia
and voice data in multi-hop wireless networks, it is necessary
to develop algorithms that guarantee QoS. Energy and band-
width are both limited and precious resources in wireless mo-
bile ad hoc networks. Investigating the utilization of energy in
mobile nodes while routing is necessary in energy-constrained
ad hoc environments. In the following, we highlight some of
the important characteristics energy-aware routing in ad hoc
networks.

A. Battery Problems

Battery power is a precious resource in AHNs since it
is nonrenewable: a mobile node has a finite, monotonically
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decreasing energy store [20]. Mobile node batteries has unique
characteristics of drain rate (energy dissipation rate) that
depends on the make, model, property, capacity, etc. The
drain rate of some batteries are higher/lower as compared
to other batteries. These characteristics have made designing
an efficient and reliable QoS routing based on energy a
challenging problem.

B. Mobility

The features of mobility affects mobile communications
on all the components, including devices, networks, services
and also the protocol stack. Mobility consumes more energy
because of the network connection and packets transaction
overhead. It may be possible to follow a strict QoS in wired
networks, but the same cannot be guaranteed in an AHN where
mobility is present. Because mobility can break routes fre-
quently and is unpredictable. Therefore, the QoS requirements
in these type of networks should be realized to allow a better-
than-best-effort service.

C. Admission control

Admission control is a fundamental mechanism used for
QoS provisioning in a network. It restricts the access to the
network based on resource availability in order to prevent
network congestion, service degradation, connection failures,
etc. for already supported users. A new request is accepted
only if there are enough amount of resources to meet the QoS
requirements without violating the QoS of already accepted
requests.

D. QoS Routing

QoS routing protocols search for routes with sufficient
resources in order to satisfy the QoS requirements of a flow.
Depending on the applications involved, the QoS constraints
could be bandwidth, cost, end-to-end delay, jitter, energy,
probability of packet loss, and so on [3]. The energy metric is
concave (i.e., a certain amount of energy must be available on
each node along the path). The energy considered for making
a routing decision is the residual energy available for the new
traffic flow. The energy of a path is defined as the minimum of
the residual energy of all nodes on the path or the bottleneck
energy.

This work addresses the above challenges with the goal of
providing an effective admission control scheme for AHNs
so that end-to-end connections with QoS requirements (i.e.,
energy-satisfied route) can be established.

IV. ENERGY-AWARE ADMISSION CONTROL (EAAC)
SCHEME

The aim of EAAC is to determine whether the available
resource (i.e., energy in our case) can meet the requirements
of a new flow while maintaining energy levels for the existing
flows. So, the source node admits a new flow to the network
only if any node along the path to the destination do not run out
of its energy during the transmission of packets. Due to the fact
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Fig. 1. Residual energy values of two selected nodes recorded over a period
of time.

that each node’s energy dissipation rate depends on the number
of transmission (7,), reception (R,) and overhearing (O},) ac-
tivities, it is required to calculate the energy consumption when
single/multiple flows are considered, predicting the residual
energy (RE) in the future and quantifying the energy that a
new flow will consume, so that it can be decided whether the
RE can satisfy the requirements of the flow without disrupting
the completion of the entire flow. In the following, we discuss
these challenges and their solutions.

A. A Smple Scenario

In this section, we demonstrate a simple simulation scenario
of the energy dissipation of nodes in an ad hoc network
environment when multiple flows are considered using ns-
2[30]. In this scenario, 50 nodes move within a 800x800 area.
The node speed is varied between 0 to 20m/sec. Each node has
a fixed transmission range of 250 meters. The simulation had a
duration of 800 seconds. Ten CBR connections were generated
producing 4 packets/sec with a packet size of 512 bytes in
different times. All nodes have different initial energy values.
The DSR protocol is used as the underlying routing protocol.
Fig. 1 shows the dissipation of energy of two randomly se-
lected nodes. The residual energy values are recorded between
470-800 seconds duration. From the graph, it is observed that
as the simulation time increases, the remaining energy of the
two nodes in consideration decreases. The recorded residual
energy data over a period of time is a non-linear monotonically
decreasing data.

B. Calculation of RE in a single flow

Each node in the network monitors its energy consump-
tion caused by the transmission and reception activities and
calculates the RE every A seconds. In general, let E.;; be
the energy dissipated to run the transmitter or receiver by
the node’s circuit. Assuming d? energy loss, where d is the
distance between nodes, a node further consumes FE.;,ss for
transmitting packets!. Thus, to transmit a packet of size [ units
to a distance d, the energy consumed is:

Ef (1,d) = Eegy X 1+ Eeoss X 1 X d? 1)

"Ecir and Eejpss is measured in nJoule/bit and nJoule/bit/m? units
respectively.
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and to receive a packet of size ! units, the energy consumed
is:
Ej (1) = Ecke x 1 )

Hence, the total energy consumption to relay a packet is given
by:
Efy=Er +Eg +Ep, 3

O

where E¢, is the energy consumed in overhearing activities.
The newly calculated RE after receiving and transmitting a
packet of [ units is:

RE;

new

= REyq4 — E}, “4)

where RE,;, is the residual energy calculated up to the
previous interval.

C. Calculation of RE with multiple flows

To calculate the RE of a node v, when multiple flows are
considered, depends on the number of upstream nodes (nu)
transmitting packets to node v and the number of downstream
nodes (nd) receiving packets from v. Thus the energy required
by node v to transmit packets of [ units to its downstream
nodes which are at a distance d is given by:

nd
Ept =Y Er, (I,d;) 5)
i=1
and the energy required by node z to receive packets of [ units
from its upstream nodes is given by:

ER =Y Eg, () (6)
=1

The total energy consumed when multiple flows are considered
is given by:
Ej, = BY. + BR, + B3, ™

where Ej is the energy consumed in overhearing activities.
Thus, the newly calculated residual energy when multiple
flows are considered is calculated as:

RE.., = REqyq — ET, ®)

new

D. Predicting the RE in future

Each node in the network is able to calculate its current
RE independently and continuously in regular time intervals
according to Eqn. 8. For efficiency purpose, such calculation
interval may be set to the generating Topology Control (TC)
messages interval. Every time the calculation is made, the
most recent amounts of measured residual energy are used
to predict the residual energy in future intervals. If the RE
are recorded at regular time intervals, generally it shows
some pattern according to the energy consumption behavior.
Since the nodes’ energy tends to dissipate all the time
based on the flows passing through it, the dissipate curve
is a monotonically decreasing one. This constitutes a time
series data obtained at determined time interval. The time
series consists of measurements of the previous outcomes
that are made sequentially over time. If these consecutive
observations are dependent on each other, then it is possible

to attempt a prediction. In addition, as highlighted in section
I, the energy dissipation rate of a mobile node may be
different from another mobile node depending on the make,
model, property, capacity, etc. Any node which acts as a
router in reception (transmission) of packets from (to) the
neighboring nodes with the current traffic flow, consume its
energy depending on the number of downstream nodes (1-hop
receivers), number of upstream nodes (1-hop transmitters),
packet arrival rate, etc. If the RE after such activities are
recorded for several times as RE pattern and investigated,
then some periodicity in the pattern is exhibited. Therefore,
this periodicity is a key in predicting the future RE of a
mobile node. Section V describes the future RE prediction
of a node using Multi-layer Neural Network. This method
predicts the future RE of a mobile node based on the
data obtained from the history of the node’s RE, which is
recorded at regular time intervals. The MNN is trained with
respect to the history of RE pattern for making the predictions.

Why MNN?: As demonstrated in section IV. A, the energy
consumption of mobile nodes recorded over a period of
time in an AHN environment is a non-linear data. Several
techniques has been developed to predict the future behavior of
a particular series of events from the knowledge of its present
and past data. The most well known and widely used methods
are the ARMA and ARIMA models for non-stationary time
series. However, these models attain results with great deal of
difficulty and has limited applicability [26]. Among non-linear
methods, neural network techniques have been widely used
for time series prediction problems (for ex. [27], [28]) than
other models which are known for its convenience, dynamic
capability, high prediction veracity, etc.

E. Energy Consumption of the new flow

It is essential to quantify the energy consumed by the new
flow so that it can be decided whether the available energy can
satisfy the requirements of the new flow. The energy consumed
by a node when single and multiple flows are considered are
given in Eqns. 3 and 7 respectively. If P is the maximum
number of packets generated by the application in the source
node, the energy requirement is:

Ereq=E;,, xP ©)]

To summarize, the energy consumed by a node when single
and multiple flows are considered can be calculated by using
Eqns. 3 and 7, residual energy pattern are recorded at regular
intervals of time to predict the future RE and the energy
requirement for the new flow can be calculated based on
amount of packets generated by the application and energy
consumed for each packet.

V. MULTI-LAYER NEURAL NETWORK DESIGN

In this section, we discuss the construction and design of the
multi-layer neural network. The MNN is constructed for pre-
diction which uses back propagation learning algorithm[24],
[25]. The role of this MNN is to capture the unknown relation
between the past and the future values of the RE pattern.
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TABLE I
TRAINING PATTERNS DERIVED FROM THE RE PATTERN OF A MOBILE
NODE.
Training | 1 I | I3 | I4 Expected
Pattern Output(O)
T1 1 T2 r3 T4 T5
P Ty | T3 | T4 | TH TG
T3 T3 | Ta | T5 | T6 r7
Ty T4 T5 T6 r7 8
T5 rs | reé | T7 | T8 r9
Ts re | r7 | T8 | T9 710

A. Preliminaries

Prior to the discussion of the proposed MNN model, we
present some of the definitions below.

Definition 1: Residual energy pattern (R,): It is the
history of the node’s RE recorded for a period of time &,
where n is the number of regular time intervals at which
the node’s RE are recorded. The RE pattern R, can be
represented by a series of residual energy, R, = ri,72,...,Ty
at regular time intervals t1,to,...,t,, respectively, where r;
indicates the RE of a node during the time interval ¢;.

Definition 2: Training pattern (7°): Training patterns
are derived from the RE pattern. Suppose we have the
RE pattern R, with RE recorded for n time intervals,
then we have n — m training sub-patterns, where m is a
predicting order and m << n. The first training sub-pattern
Ty is composed of the RE pattern with 71,79, ...,7p,
as input and 7,41 as the expected output. The second
training sub-pattern 75 is composed of the RE pattern with
72,73, ...,"m+1 as input and 7,42 as the expected output.
Finally, the last training sub-pattern 7;,_,, is composed of
Tn—m>Tn—m+1,---,"n—1 as input and 7, as the expected
output. The prediction order m determines the input of the
training pattern for training the neural network?.

An Example: For n 10 and m
training patterns are shown in Table 1.

4, the derived

B. Selection of neurons for MNN model

The MNN model is constructed with three layers namely,
the input layer, hidden layer and output layer. The number of
hidden layers are restricted to one since the complexity of the
problem is moderate. For easy analysis and from the universal
approximation theorem a single hidden layer is sufficient for
achieving good generalization [23]. The number of neurons in
the input layer is an important parameter since it corresponds
to the length of the sub-pattern used to discover the underlying
features in the given RE data. Too few or too many input
neurons can have significant impact on the learning and
prediction ability of the neural network[22]. In practice, the
number of neurons is often chosen through experimentation

2value of m has to be varied to get the best prediction accuracy.

weight connecting

neurons Iand H , \\

Input
sub—pattern

Input layer

Hidden layer

Output layer

Fig. 2. Multi-layer neural network architecture.

or by trial-and-error to have more generalization capability
for the MNN model.

For the training set data given in Table 1, with m = 4,
requires four neurons in the input layer. The number of hidden
layer neurons depends on the length of the sub-pattern, and the
number of sub-patterns provided for training[23], [25]. In this
work, we consider twice the number of input layer neurons as
the number of hidden layer neurons. The number of neurons in
the output layer depends on the expected output of the training
pattern. For the training pattern given in Table 1 requires one
output neuron.

C. Training procedure

The training procedure uses back propagation learning algo-
rithm. There are three layers in the proposed MNN architecture
as shown in the Fig. 2. The input layer, hidden layer and output
layer consists of I, H and 1 number of neurons respectively.
The output of the 1°¢ layer is fed as input to the 2"? layer and
the output of the 2"? layer is fed as input to the 3" layer.
The neurons in the i** layer are connected to neurons in the
(i 4+ 1)t" layer with an adaptive weight. The output of each
neuron is determined by applying a transfer function f(.) to
the neurons’ input. We use the sigmoid function:

fw) = (1+e)!

The training is done by using back propagation in two passes,
forward and reverse. The forward pass is used to evaluate the
output of the neural network for a given input in the existing
weights. In the reverse pass, the difference in the actual output
and the desired output is compared and is fed back to the
MNN as an error to change the weights of the neural network.
The neural network training model for future RE prediction
is given in Fig. 3. The actual (computed) output 7'; m 18
compared with the desired (expected) output of the training
pattern 7;4,, and the error values are used to calculate new
weights of connections between neurons of all input, hidden
and output layers, thereby reducing the error in the output.

(10)

Predicted
Output
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rv
i+m
(Desired output)

Error

MNN

|
Titm

I — (Predicted
i+m-1 T output)

Fig. 3. Neural Network training model for future RE prediction.

ith sub—pattern

r—

Input

r
n-m+2
sub—pattern MNN

=
Tt

Predicted output

Fig. 4. MNN model for immediate next RE prediction.

This training procedure is iterated over all the entries in the
training data set for several times until the mean square error
reaches some specified threshold (for ex., the threshold value
may be between 0.001 to 0.005 for better accuracy).

D. MNN model for future RE prediction

The RE prediction is to find the future RE of a node from
the MNN model trained with respect to the training data set.
To predict the future RE of a node, we can either predict the
immediate next RE (i.e., next interval) or the RE after n+ s
(i.e., multiple) time intervals as follows.

1) Immediate next RE prediction: In this case, we predict
the RE of a node in the ¢, time interval, i.e., 41 for the
given residual pattern R,,. To obtain the immediate next RE
prediction, the sub-pattern {r, 1, "n—m+2, ..., T } is fed as
input to the trained MNN which gives the output 7,4;. Fig.
4 illustrates the immediate next RE prediction model.

2) Prediction of RE after n + s time intervals: It is the
prediction of the RE of a node after n + s time intervals,
i.e., 45 Which is done recursively, first predicting 1, then
predicting 7,42, and finally predicting r,, s, where s > 1. Fig.
5 illustrates the MNN model for RE prediction after n + s
time intervals. The RFE pattern of a node over a period of time
[0,T,) is recorded and is processed to construct the MNN
model for future RE prediction. If the RE of a node is to
be known at time T}, for T}, > T;,, the algorithm calculates
the time difference between 7T, and T} to find the number of
time intervals ahead the prediction is to be carried out, i.e.,
|s| = % time intervals, where At = ¢, —t;_;. If s = 1,
then a immediate RE prediction is carried out, else if s > 1,
then a multiple RE prediction.

Tngiem+T
Tnti—m+2 Predicted output
Input MNN T
sub—pattern

for I <i<s+l

Fig. 5.  MNN model for RE prediction after n + s time intervals.

Based on the method of predicting the future RE, the
RE patterns of a node can be further classified into uniform,
regular and random changes. Uniform changes are the ones
in which the changes in residual energy of nodes will be same
over a period of time considered. However, in realistic ad hoc
network conditions, the uniformity in the RE pattern is rare.
Therefore, by recording the RE pattern over a long period
of time could yield better accuracy. Regular changes in the
RE pattern is periodic and deterministic in nature. However,
random changes are stochastic in nature.

VI. BASIC PROTOCOL DESIGN

In this section, we describe the EAAC protocol. EAAC
combines both energy-aware routing and admission control.
EAAC consists of three parts: route discovery, admission
control, and mobility management.

A. Route Discovery

The aim of the route discovery is to find a route between the
source and destination with the condition that all intermediate
nodes along the routing path have enough energy for the flow
to complete the transmission. EAAC uses on-demand route
discovery with source routing, similar to DSR [1]. The source-
routing approach is used because it allows EAAC to specify
directly which route the flow will use so that the packets for the
flow are ensured to only go through the specified route that has
been admitted by the admission control and has enough energy
for the flow. It can also provide a provision for easy traffic
splitting at the source node so that different flows with the
same destination can follow different route to avoid congestion
in the network.

To reduce the message overhead, EAAC performs admission
control during the route discovery process to preliminarily
eliminate routes without enough energy. When a source node
has data to send, to know the route to the destination, it
broadcasts a route request (RREQ) packet to its neighbors.
The RREQ contains source-ID, destination-ID, the energy
requirement for the new flow calculated using Eqn. 9, and
a record of the sequence of hops taken by the RREQ as it
is propagated through the ad hoc network. Each node that
receives a RREQ performs the admission control to determine
if the node has enough energy for the flow along the partial
route. If not, or the route so for determined contains loops,
the RREQ is dropped. Otherwise, the node adds its own ID
to the partial route and rebroadcasts the route request.

When the intended destination node receives the RREQ,
the partial route in the RREQ becomes the full route which
contains the sequence of hops through which the request
traveled to reach the destination. The destination then reverses
the full route contained in the RREQ, and use this route to
send the route reply (RREP) packet back to the source along
that route. Suppose if the destination receives multiple such
RREQs carrying different routes, the destination only sends the
RREP along one route based on a selection criteria (minimum
number of hops, first RREQ or may adopt the HER mechanism
from [15]). However, other routes are cached for a short period
of time as backup in case the RREP does not reach the source
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due to link breakage, mobility, node expiration or admission
failure.

Suppose, if the energy dissipation rate of the mobile nodes
are different from one another as highlighted in section III,
then the RREQ may contain an extra field that defines the
maximum number of packets to be transmitted by the source
application (i.e. P). In this case, each node calculates the
energy requirement for the flow so that it can be decided that
whether the node has enough energy to accommodate the flow
and participate in route discovery process.

B. Distributed Admission Control Algorithm

Route discovery finds the possible route(s) to reach a
destination. Admission control is used to determine which of
these routes can admit the new flow. At each node on the
route, admission decisions is based on the expected energy
consumption of the flow as well as the present and future resid-
ual energy at the node. When a node receives a RREQ packet,
partial admission control is performed by comparing the future
residual energy with energy requirement of the flow. If the
future residual energy is not satisfied with energy requirement
of the new flow, admission control fails. Otherwise, admission
control succeeds and the route request can be forwarded to the
next hop.

In the route reply phase, when a node receives a route reply,
it performs full admission control. The energy requirement of
the flow is compared with the nodes’ future residual energy.
Since the route reply carries the full route, the admission
control is accurate. If the full admission control succeeds at the
node, soft reservation of energy can be set up in the node and
a RREP is forwarded to the next hop. Otherwise, an admission
failure message is sent to the destination. In this case, the soft
reservation of energy along the route need to be explicitly torn
down when nodes along the route receive the admission failure
message. When the destination node receives the admission
failure message, it selects another cached route and sends a
RREP along it. When the RREP successfully arrives at the
source, enough end-to-end energy has been reserved for the
flow.

Routing protocols usually integrate route discovery and
route maintenance by continuously sending periodic routing
updates. It is possible that once a route is computed, it may
remain active for a long period of time. In such cases, it might
happen that the future residual energy of one or more nodes on
the route may fall below a given threshold (explained below) as
they deplete their energy in forwarding or overhearing packets.
If this continues for a long time then nodes may die leading
to network partition. During such conditions, the node sends
a route warning (RW AR) packet back to the source(s). The
RW AR is propagated much like the RERR [1] packet, except
that the route is not erased. Thus the flow of data packets is
not interrupted. A new route discovery process can be initiated
or an alternate route may be used (if available in the cache)
at the source on the receipt of RW AR.

C. Residual Energy Threshold Mechanism

In the EAAC scheme presented above, it is stated that
the threshold for the RE of a node is incorporated. Each

node is categorized by two states: normal state and warning
state. Nodes are in normal state if their current RE is greater
than 20% of its initial energy (i.e., above the threshold). This
signifies that these nodes have ample energy to take part in
routing process. Nodes are in warning state, if their current
energy is less than 20% of its initial energy (i.e., below the
threshold). This signifies that the nodes are running low on
energy and the protocol should avoid the use of these nodes
(if possible).

D. QoS Molations and Mobility Management

Strict QoS cannot be guaranteed in ad hoc networks since
the nodes in an AHN are inherently subjected to mobility
that is beyond any protocol’s ability to predict and control.
Therefore, it is likely that QoS violations can be quite frequent
in AHNS . In such dynamic situations, each node shall monitor
the where abouts of its neighbors and future RE prediction
of the next hop node along the route. If the node notices that
one of its one-hop next neighbor along the route does not get
enough energy or running out of energy in the near future due
to newly added flows, increased congestion, or if the next hop
of the flow moves out of the range of the node, a notification
message is sent to the source of the flow indicating changes
in the route. The source can either search for a new route
(select an alternate route already available in its route cache
or perform a fresh route discovery process) or reduce its QoS
requirement to accommodate the degraded or broken route. Of
course, this reestablishment of a QoS commitment may take
a long time and cost extra message overhead, it is desirable
to reduce the frequency of QoS violations.

An alternate approach is for all source nodes periodically
perform route discovery in order to find a new energy-aware
route that take into account the continuously changing energy
states of nodes even when there is no route breakage or QoS
violations.

VII. SIMULATION STUDY

In this section, we evaluate EAAC by simulations in ns-
2 simulator [30] and construct the MNN model using C++
programming language. The MNN model is used offline
to determine the future residual energy of a node. In the
experiments, 50 nodes move within a 1km x 1km area. The
node speed is varied between O to 25m/sec. Each node has a
fixed transmission range of 250 meters. We assume all nodes
are equipped with 2Mbps IEEE802.11 network interface cards.
Each traffic source is made to start at different times at the
beginning and stay active throughout. Each simulation was
executed for 900 seconds duration. Constant bit rate (CBR)
flows are used that generates 4 pkts/sec with packet size of
512 bytes.

The initial energy values of nodes is varied between 400
to 1200 Joules with assigning more values for source and
destination nodes, so that the combined network wide initial
energy value equals 40,000 Joules. The intermediate nodes
forwarding packets which have low energy levels (entering
warning state) sends a warning packet to the source node(s)
to find an alternate route. Figures in 6 and 7 shows the number
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of nodes that are alive during different simulation times for
10 and 20 traffic sources respectively. It is observed that more
number of nodes using EAAC remains alive than the regular
DSR leading to increase in network lifetime.

A. MNN prediction for uniform, regular and random changes

The MNN model is devised with m neurons in the input
layer, where m is made to vary depending on the RE pattern
for better prediction accuracy. It is observed that too few
or too many input neurons can have significant impact on
the learning and prediction ability of the neural network.
For simulation purpose, we used 4, 6, and 8 input neurons
for uniform, regular and random changes respectively. The
number of hidden layer neurons taken is twice the number of
input neurons, whereas the number of output neurons is one.
All training data are normalized into real values between 0.0
and 0.1. The learning rate parameter o = 0.2. For a mobile
node, we have considered a desired RE pattern recorded over
the time intervals of 100 to 200. The training of MNN is
performed by using first 60% of the desired RE pattern as
training data set and remaining part of the RE pattern as a
test data set for predictions. Also the training is performed by
picking a portion of the RFE pattern in random as training data
set and the prediction test is carried out over the remaining
portion of the RE pattern. An example of the pattern with
training and test data set are shown in Fig. 8. The results
are taken for both immediate next and future predictions. The
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average learning error (ALE) and prediction accuracy (PA)
measures are defined as follows:
1 100
_ 2
ALE = m Z(Ol Oi)

i=m

where o; and o; denotes the desired output and actual output
at the i*" interval respectively and m is the prediction order
and,

PA = N, correct

Ntotal

where Neorrect 1S the number of times the correct prediction
of RE of a node and Ny, is the total number of times the
prediction of RE of a node. Results are taken by considering
different sets for each RE pattern to find the average pre-
diction accuracy. The graph shown in Fig. 9 is plotted for
learning error with respect to the number of iterations used
during training of MNN. From the graph plotted, it is observed
that the number of iterations used for training required for
uniform and regular are much less than the random patterns,
for a given learning threshold value. The results shows the
time required for training the MNN for a given RE pattern
of a node. In Fig. 10, the graph is depicted for the average
prediction accuracy of MNN against the number of prediction
intervals. It is observed that the average prediction accuracy
for uniform RE patterns is 90%, for regular RE patterns is
45% — 70% and for random RE patterns is 1% — 30% which
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decreases drastically with respect to the time ahead intervals.
Thus, as the prediction intervals increases, prediction accuracy
decreases, especially for random RFE patterns it decreases
drastically.

VIII. CONCLUSION

This paper presents an energy-aware admission control
scheme for ad hoc networks based on the knowledge of
present and future residual energy of each node along the
routing path. This scheme admits a new flow only if any node
along the routing path do not run out of its energy during
the transmission of packets. Such distributed mechanisms in
each individual node participating in routing of packets is
desirable to increase the network lifetime. Simulation results
show that EAAC satisfies the energy requirement and found
that it performs better than DSR in terms of increasing the
network lifetime.

In addition, this scheme uses a Multi-layer neural network
model to predict the future residual energy of a node based
on the history of energy usage pattern. The performance has
been verified for prediction accuracy by considering different
such patterns and learning accuracy. Simulation results used
for predicting future residual energy shows that the average
prediction accuracy was achieved upto 90%, 60% and 20%
for uniform, regular and random patterns respectively.

EAAC can be used in any of the existing AHN’s source-
initiated routing protocols during the route discovery and
maintenance phases and can be applied to other energy-
constrained routing in mobile networks.
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