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Abstract—An increasingly dynamic and complex environment
poses huge challenges to production enterprises, especially with
regards to logistics. The Logistic Operating Curve Theory, developed
at the Institute of Production Systems and Logistics (IFA) of the
Leibniz University of Hanover, is a recognized approach to
describing logistic interactions, nevertheless, it reaches its limits
when it comes to the dynamic aspects. In order to facilitate a timely
and optimal Logistic Positioning a method is developed for quickly
and reliably identifying dynamic processing states.
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1. INTRODUCTION

LOBAL competition and considerable economic

fluctuations pose huge challenges for manufacturing
enterprises also with regards to logistics. The Logistic
Operating Curves, a method based on modeling theory,
describe the interactions between the logistic objectives such
as Work in Process (WIP), utilization, throughput time and
schedule reliability [1]. The dynamic influences of the market
or structural changes that are expressed in strongly fluctuating
batch sizes and consequently, work contents, complicate
implementing this method though. Since they are based on
average values, the Logistic Operating Curves Theory requires
long periods of analysis and stable processing states in order
to be able to execute a sufficiently precise Logistic Positioning
[2]. Dynamic processing states (cf. [3], [4]), however, comply
with neither of these conditions.
Within the frame of the collaborative research centre 489
“Processing Chains for the Production of Precision Forged
High Performance Components”, sponsored by the German
Research Society (DFG), an approach was thus developed that
allows the application of the Logistic Operating Curves
Theory to also be extended to dynamic processing states.
Currently, there are no models that support continuously
monitoring dynamic processes and deriving decisions for
improving logistics within them.
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In order to identify when a new Logistic Positioning is

required, dynamic processing states that are not caused by

natural variance in the process, but rather by structural
changes first have to be reliably and quickly identified.

As a result of structural changes a process can experience
significant alterations and shifts in its mean values as well as
deviation in the relevant key parameters. Within the frame of
the statistical process monitoring and control the mean values
and variance parameters are predominantly drawn upon to
identify deviations [5], [6]. In the following paper, the use of
control charts and statistical ‘two sample tests’ for identifying
simulation generated structural changes in the work content
distributions will be examined.

II. LOGISTIC OPERATING CURVES THEORY

The Logistic Operating Curves Theory, which is
implemented in the operational practice and has become a
recognized concept, is based on the quantitative description of
the function correlations between the logistic objectives:
throughput time, WIP, utilization and schedule reliability.
Because the Logistic Operating Curves clearly depict the
discord between the targets and the impact of the prioritization
becomes clear (cf. Fig. 1) they are well suited for conducting a
Logistic Positioning within the field of conflict between the
logistic objectives. The central variables for the ideal Logistic
Operating Curves are the maximum output rate (ROUT,,,)
and the ideal minimum WIP (WIPI,,) on a workstation. The
ideal minimum WIP is primarily influenced by the mean and
standard deviation of the work content (WC,,, WCj). Since the
input parameters for the model are generally data which is
influenced by the production planning and control (PPC)
functions, it seems obvious to draw upon the Logistic
Operating Curves as a basis for a continual process model and
to orient these on the logistic factors.
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Fig. 1: Field of Conflict between the Logistic Objectives [2]
Logistic Operating Curves can generally be constructed for
different conditions and compared with one another. The
impact of interventions in the production process can thus be
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evaluated in view of logistic aspects. With a certainty of 95%,
an accuracy of 20% (permissible deviation of expected and
found values) and an underlying (normal) distribution, Nyhuis
estimates the number of required feedback responses from the
production to be 49 value pairs [2]. Furthermore, it is
necessary that the input and output on a workstation are
aligned with one another over the long term and thus that the
observed workstation has adopted a steady state [1-2]. In the
industrial practice e.g., in the forging industry which mostly
has very long throughput times, a longer period can pass
before this number of feedback responses are attained.
However, because of the aforementioned conditions are
necessary to apply the Logistic Operating Curves, they often
reach their limits when the observational periods are short and
processing states are fluctuating. As a result it is important to
identify structural changes that subsequently allow a new
Logistic Positioning as reliably and quickly as possible.

[I. IDENTIFICATION OF STRUCTURAL CHANGES BY MEANS OF
CONTROL CHARTS

Control charts are a very common instrument used in the
industry to continually monitor and control manufacturing
processes. The principle of control charts is based on the idea
that systematic disruptions can be discovered and corrected
through process correcting measures. Generally, relevant
distribution parameters for the characteristic being monitored
are used as control variables [7-9]. In this paper, the
characteristic we will consider is the distribution of the work
content, described by the mean and standard deviation of the
work content (WC,, WC). Unlike for example monitored
standard tolerances, work contents do not follow any pre-
determined target values. The structure of the work content
can therefore change from one order to another, whereby the
lack of clearly defined warning limits significantly
complicates the control of the work content. Together with the
assumed normal distribution of the work contents, the
distribution form of this data is described by the expected
value and variance. In order to monitor these distribution
characteristics the traditional standard control charts
(according to Shewart [7]) or a slightly modified variation are
frequently implemented in the industrial practice.

At the Institute of Production Systems and Logistics, the
control chart method was analyzed regarding its applicability
among others within the frame of monitoring the work
content. Implementing this method however proved to be
unsuitable due to the dynamic characteristic of the work
content. One of the fundamental prerequisites for applying
control charts is a so-called “controllable process”. That
means that the process has already been optimized and only
random factors cause the deviations in the monitored
parameter. In turn with a controlled or stationary process the
mean and standard deviation of the monitored characteristic
continually moves within known tolerance levels. Moreover,
there is a strong agreement between the provided target values
and those realized [10].

This is exactly where the difference between the work

content data and the parameters that are traditionally
controllable with control charts lies: Usually no target values
are provided for the work content. The mean work content
does not describe a concrete objective and thus does not
contain any fixed planned values. Whereas when standard
control charts are applied warning and action limits are
initially set based on target parameters and subsequent
samples are drawn and compared to these defined limits, this
procedure cannot be transferred to the dynamic work content
data. As a possible alternative to standard flow charts,
research at the Institute of Production Systems and Logistics
has developed methodical approaches proven to be well suited
to monitoring the work content, particularly with regards to
dynamic states.

IV. USING TWO-SAMPLE TESTS FOR IDENTIFYING
STRUCTURAL CHANGES

The challenge in monitoring work content distributions is
defining dynamic control variables or test procedures that
continually adjust to the conditions. It thus seems obvious to
implement the statistical method referred to as ‘two-sample
tests’. Instead of strict control limits that can only be
insufficiently provided when it comes to work contents, the
tests compare samples with one another.

A current sample (e.g. 15 new work contents) can be tested
for the identity of the distribution parameters with a saved
sample (e.g. 15 work contents immediately preceding them).
When the difference between the respective parameters is too
large, the tested samples are characterized as unequal and thus
identified as an indication of a structural change. The dynamic
of the logistic data is considered in a manner that allows a
current sample to be continually compared with a previous
sample. Data that is significantly older is not considered,
therefore false warnings due to “outdated” structures are
decreased. In this context, continually means that as soon as
the number of current realizations corresponds to the defined
range of the sample, the test is repeatedly executed. Every
‘current sample’ thus becomes the ‘previous sample’ in the
following test. The parametric two-sample test verifies the
equivalence of both the means and standard deviations of the
samples.

Based on the assumption of normally distributed and
unrelated samples, it is possible to choose either the two-
sample Gauss test or the two-sample t-test in order to test for
equality of the means. When the samples are sufficiently large
the Gauss test can be applied with the critical values of the
normal distribution. For smaller samples such as those used in
the analysis presented here, the mean (as the test variable) can
no longer be characterized as normally distributed. In this
case, the two-sample t-test with a t-distributed test function is
drawn upon. The application of the t-test is facilitated by the
fact that the sample variance of the work content is generally
unknown and consequently can only be given as an estimated
value. The t-test is also preferred in this case [11].

Parallel to shifts in the mean, a significant change in the
variance indicates a change in the distribution structure of the
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work content. Instead of the t-test a two sample F-test is used
to compare the sample variance. The quotient of the sample
variance estimator, whose function with normally distributed
variables follows an F-distribution, is used as the test function
[L1].

The test procedures each describe a bi-directional test, with
which the equivalence of the expected values or the variance
between two samples are tested under the Hy-hypothesis
(Table I). The so-called p-value, which is defined as the
degree of plausibility for the Hy-hypothesis is drawn upon as
the test variable [12]. If the p-value is smaller than the
selected significance level o, then the null hypothesis is
rejected in favor of the alternative hypothesis (“structural
interruption”).

TABLEI
TESTING HYPOTHESIS OF THE T-TEST AND F-TEST

the data streams are characterized by either a single change of
the mean, the standard deviation of the work content or a
combination of both.

Consequently, within the work content structural changes
of varying degrees can be simulated and the appropriateness
of different methods of identification can be tested. Generally
speaking the distribution models in Table II are simulated so
that the tests can be conducted. For testing the mean and
standard deviation, three different distribution models were
generated for each as well as an additional work content
structure that represents a combination in the shift of the mean
and change in the standard deviation (Model A-G).
Distribution model C is exemplarily depicted in Fig. 3.

TABLEII
DISTRIBUTION PARAMETERS FOR SIMULATED WORK CONTENTS

Distribution Parameters

distribution Limiting Value WC [h]

H,-hypothesis versus H;-hypothesis test model ualh] ws [h] UAZ[hZ] UBZ[h2] W, LV,

t-test Mean values of the samples are equal Mean values of the samples are not equal A 2 3 0,25 0,25 24 24
Hx = Hy Hy # Hy t-test B 1 3 1 1 5 7

; Variances of the samples are equal Variances of the samples are not equal C 3 2 1 1 24 24

-test

o’y = o’y o’y # 0y t-test / F-test D 10 2 1 0,25 24 24

1, respectively o’: mean value respectively variance of the current sample E 4 4 2 2,5 8 10

Wy respectively Uzy: mean value respectively variance of the saved sample F-test F 10 10 10 35 24 24

G 5 5 2 5 8 24

V.EXECUTION AND EVALUATION

A. Data Simulation

The analyses are conducted based on simulated
approximately normally distributed work content. Strictly
speaking this assumption is not fully met in the industrial
practice. Research has shown though that moderate deviations
from the normal distribution e.g., in connection with statistical
control cards only lead to a minor distortion of the test results
[13].
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Fig. 2: Simulation of Structural Changes

Using LOCCS 1.56, a tool developed at the IFA, two
normally distributed streams of data A and B were generated
and merged together into one total distribution (cf. Fig. 2).
Each data stream included 200 orders. The difference between

WC: work content h: hour
Ha/ UAZ: mean value / variance of the work content before structural changes
We / aaz: mean value / variance of the work content after structural changes

The aim of monitoring the work contents is to be able to
identify structural changes reliably and quickly as possible. In
order to do this as quickly as possible the selected range of the
sample should be as small as possible. Nevertheless, if the
selected range is too small there is the danger that false
warnings will increase due to random blips. Accordingly, a
compromise between the actuality of the test results and their
reliability has to be found.

B. Results

The simulated work content distributions from Table II
form the basis of the two-sample tests. In each of the
distributions a current sample n, was alternatively examined
for deviations with an older sample n,. Samples with different
sizes ranging from n=5 to n=30 were tested. Moreover, the
test results were considered at different levels of significance
a = 1%, 5% and 10%. This research is primarily concerned
with the general suitability and reliability of continual two-
sample tests. Parallel to this, the questions of an optimal
sample size and the influence of the levels of significance
were also pursued. Generally it should be kept in mind that in
the industry the significance level is provided and is
subsequently considered in the test decision.
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Fig. 3: Structural changes in model C

The results of the conducted tests are summarized in
Table III. It can be clearly seen that in the distribution models
A, B and D, the two-sample t-test reliably identified the
structural changes of the mean value during the transition
from distribution A to B (cf. Fig. 2). In all of the analyzed
sample deviations and significance levels there was only one
exception to this. However, when we consider all of the
significance tests in model C the structural changes were not
detected in approximately 28% of the tested cases. This result
can be explained in that the changes to the processing state
during the transition from distribution A to B are comparably
minimal while the deviations are relatively high (cf. Fig. 3).

TABLE III
TABLE OF RESULTS FOR THE TWO-SAMPLE TESTS

sample size
model ny=ny=5 ny=ny=10 ny=10; ny=20 ny=ny=15 ny=ny=20 ny=n,=30
o=1% +/2 +/1 +,0/0 +/0 +/0 +/0
A a=5% +/6 +/1 +,0/2 +/1 +/3 +/1
a=10% +/8 +/1 +,0/2 +,0/2 +/4 +,0/2
a=1% +/1 +/0 +,0/0 -/0 +/0 +,0/0
B a=5% +/4 +/0 +,0/0 0/0 +/0 +,0/0
a=10% +/6 +/0 +,0/1 0/0 +/0 +,0/0
a=1% -/2 -/2 o/1 -/0 +/1 o/1
C a=5% +/9 -/4 0/6 0/0 +/2 o/1
a=10% +/11 -/8 0/8 0/0 +/3 +,0/2
a=1% +/0 +/1 +,0/0 +/1 +/0 +,0/0
D; a=5% +/3 +/1 +,0/1 +0/1 +/2 +,0/1
a=10% +/8 +/2 +,0/3 +,0/2 +/3 +,0/2
a=1% -/0 -/1 +,0/1 +,0/0 +/0 +,0/0
D, a=5% -/3 +/2 +,0/2 +,0/1 +/1 +,0/0
a=10% -/6 +/3 +,0/2 +,0/1 +/1 +,0/2
a=1% -/0 -/0 0/0 -/0 -/0 0/0
E a=5% -/3 -2 o/1 0/0 +/2 +0/0
a=10% -/3 -/4 o/1 o/1 +/4 +,0/0
a=1% /1 -/0 /1 /1 -/0 -/0
F a=5% +/6 -1 -2 -/1 /1 -/0
a=10% +/10 +/2 +/5 -/2 +/1 0/0
a=1% -/2 +/0 +/0 +/1 +/0 +/0
G a=5% -/7 +/1 +,0/1 +/2 +/3 +/0
a=10% +/11 +/4 +,0/5 +,0/3 +/5 +/0

Code: */** ~ reliability of the identifikation/ sum of false warnings
*: +: directly identified; o: late identified; -: not identified
Dy: t-Test; D,: F-Test

The test results for Model C however could be considerably
improved when a higher significance level is provided.
Generally the results show that t-tests provide reliable

warnings in most cases even when there are complex
distribution structures with gradual changes instead of sudden
ones.

Nevertheless, the test results from the sample test of the
deviations (distributions D, to G) greatly diverge from the test
results of the mean value. The evaluation of the trial results
from Table Il clearly shows that both the range of the
samples as well as the significance levels strongly impact the
percentage of reliably identified structural changes. The tests
results are particularly positive when the current sample size
n, =10 was selected and the historical sample n, was more
broadly designed with a data range of 20 values. A further
fundamental advantage of this test design is that with a
relatively small sample n, = 10 a quick reference to the current
processing situation can be ensured.

Furthermore the frequency of false warnings needs to be
considered. As was to be expected, the significance level had
a decisive influence on the error rate. On average the
percentage of false warnings across all of the models, test
methods and sample ranges increased by 1.18% with a a-level
of 1% to a approximately 5.10 % (a0 = 5 %) and to
approximately 9.04 % (o = 10 %). As a result the theoretical
probability of a mistake (error type 1) and the tested error rate
were very close to one another. However, the influence of the
sample size was less systematically spread across the
percentage of false warnings. Generally, the two-sample t-test
tended to have fewer false warnings in the interval
10<n<15.

VI. SUMMARY AND OUTLOOK

At the Institute of Production Systems and Logistics both
control charts and statistical two-sample tests were analyzed
with regards to their suitability for identifying logistically
relevant  structural changes. Due to the dynamic
characteristics, the traditional control charts method developed
by Shewhart [7] proved to be unsuitable in comparison to
“continual” two-sample tests. In analyzing the mean value and
deviations of structurally changed work content with two-
sample tests it was found that structural changes within the
context of the distribution structures used here were
predominantly well identified. Warnings were reliably
provided for clearly pronounced sudden changes in the
distribution structure and even with less pronounced
distribution structures (i.e., sliding distribution changes) the
method was primarily able to identify them. However, it was
determined that as a compromise between the highest possible
scoring ratio and the least number of false warnings, a
combination of the best sample size and test significance
levels is required. These evaluations show that with a sample
size of ny=n,=15 and a a-level of 5 %, a higher ‘hit rate’ can
be attained with at the same time comparably fewer false
warnings. Moreover, a differentiated sample analysis with
n,=10 und n,=20 has the advantage that the structural changes
can be discovered relatively quickly and reliably, while at the
same time the false impact of individual blips within a sample
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n, can be reduced.

For an even quicker and more accurate identification of also
smaller structural changes other test methods should be
analyzed in the future as well as possibly implementing a
combination of different methods and tests for identifying
logistically relevant structural changed.
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