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Abstract—This paper investigates the control of a bouncing 
ball using Model Predictive Control. Bouncing ball is a benchmark 
problem for various rhythmic tasks such as juggling, walking, 
hopping and running. Humans develop intentions which may be 
perceived as our reference trajectory and tries to track it. The 
human brain optimizes the control effort needed to track its 
reference; this forms the central theme for control of bouncing ball 
in our investigations. 

Keywords—Bouncing Ball, impact dynamics, intermittent 
control, model predictive control.

I. INTRODUCTION

YNAMICS and control of bouncing ball has been 
extensively  studied and is a common model for 

numerous rhythmic tasks such as juggling ,walking, hopping 
and running. One degree of freedom juggler is nothing but a 
bouncing ball controlled via a sinusoidally actuated table. 
This can be perceived as a human controlling the bounce of 
a ball using a racquet / bat. Complex rhythmic tasks such as 
biped walking and locomotion of multiped robots are 
designed using juggling models. These models provide a 
theoretical basis for control of such rhythmic tasks. 

The control technique applied in this paper is based on the 
belief that juggling, walking and hopping etc are human 
skills which are developed over a period of time. A juggler 
does not learn to juggle over a few attempts. He develops his 
skill over many attempts and during each he tries to master 
his inter-limb co-ordination and hand-eye co-ordination. The 
juggler first forms an intended trajectory of the juggled 
object in his mind, which can be perceived as a reference 
trajectory for the object. Using his skills, which have been 
mastered over many attempts, he tries to track his reference 
trajectory. An infant doesn’t learn to walk overnight. It 
learns over a period of time developing its inter-limb and 
hand-eye co-ordination. 

In short a human develops an intention to perform certain 
things in a certain manner before performing any task. He 
then uses his skills, which has developed over various 
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practice efforts to get the desired result. During each attempt 
the human brain optimizes the control effort required to get 
the desired action. So the human through its actions acts as a 
Model Predictive Controller (MPC).  

Fig. 1 Motor Sensory control in humans 
         

This paper is organized as follows. Section II introduces 
the basic theory of MPC. We introduce the dynamics of 
bouncing ball in Section III. Section IV discusses about the 
implementation of control strategy. Stability and Robustness 
are discussed in Section V while results are presented in 
Section VI.  

II. THE FINITE HORIZON MPC PROBLEM

Before getting to our benchmark example we discuss the 
basics of MPC in this section. Literature on MPC is 
abundantly available [4], [5], and [6]; here we briefly give 
an overview of it.  

A. Model 
Suppose a linear discrete-time, state space model of the 

plant is given in the form: 

( 1) ( ) ( )x k Ax k Bu k                      (1) 

( )yy(k) C x k                                (2) 

( ) ( )zz k C x k                                (3) 

where x is an nx dimensional state vector, u is an nu

dimensional input vector, y is ny dimensional vector of 
measured outputs and z is nz dimensional vector of outputs 
which are to be controlled, either to a particular set-points, 
or to satisfy some constraints, or both. We assume y=z, and 
will then use C to denote both Cy and Cz. 
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B. Problem Formulation 
We shall assume that the plant model is linear, cost 

function is quadratic and there is no constraints i.e. 
unconstrained problem. Furthermore, we shall assume that 
the cost function does not penalize particular values of the 
input vector u(k), but only changes the input vector u(k),
which is defined as:  

)1()()( kukuku .

We shall not assume that the state variables can be 

measured, but that we can obtain an estimate )|(
^

kkx  of 
the state )(kx , the notation indicating that this estimate is 
based on measurements up to time k – that is, on 
measurements of the outputs up to y(k), and on knowledge 
of the inputs only up to u(k - 1), since the next input u(k) has 
not yet been determined. Signals )|( kjku will denote a 
future value (at time k + j) of the input u, which is assumed 
at time k. Signals )|( kjkx  and )|( kjky will denote 
the predictions, made at time k, of the variables x and y at 
time k+j, on the assumption that some sequence of inputs 

)|( kjku  (i = 0; 1; : : : ; j ¡1) has been applied. These 
predictions will be made consistently with the assumed 
linearized model (1)–(3).  

A cost function J penalizes deviations of the predicted 
controlled outputs )|( kjky  from a (vector-valued) 
reference trajectory )|( kjkyref . Again the notation 
indicates that this reference trajectory may depend on 
measurements made up to time k; in particular, its initial 
point may be the output measurement y(k). But it may also 
be a fixed set-point, or some other predetermined trajectory. 
We define the cost function to be 

2
( )

1

1
2

( )
0

|| | | ||

                       || ( | ) ||

N

Q j
j

Nc

R j
j

Jk(x(k); u) y(k j k) yref(k j k)

u k j k
 (4) 

There are several points to note here. The prediction 
horizon has length N, but we do not necessarily have to start 
penalizing deviations of y from yref immediately, because 
there may be some delay between applying an input and 
seeing any effect. Nc is the control horizon. We will always 
assume here that Nc = N, i.e. the control horizon is equal to 
the prediction horizon. The form of the cost function (4) 
implies that the error vector y(k+j|k)-yref(k+j|k) is penalized 
at every point in the prediction horizon if Q(j) > 0. But it is 
possible to penalize the error at only a few coincidence 
points, by setting Q(j) = 0 for same values of j. It is also 
possible to have different coincidence points for different 
components of the error vector by setting appropriate 
elements of the weighting matrices Q(j) to 0. To allow for 
these possibilities, we do not insist on Q(j) > 0, but allow the 

weaker condition Q(j)  0. This condition is required, to 
ensure that Jk  0. 

We also need R(j)  0 to ensure that Jk > 0. Again, we do 
not insist on the stronger condition that R(j) > 0, because 
there are cases in which the changes in the control signal are 
not penalized. The weighting matrices R(j) are sometimes 
called move suppression factors, since increasing them 
penalizes changes in the input vector more heavily. 

C. Prediction: Full State Measurement 
We deal with a simple situation here by assuming that the 

whole state vector is measured, so that )|(
^

kkx = x(k) = 
y(k) (so C = I). Also assume that we know nothing about 
any disturbances or measurement noise. Then all we can do 
is to predict by iterating the model (1)–(3). So we get 

j

1

0

1

0

x(k  j|k)  A x(k)
( | )

       .
                             ...   B

       .
( 1)

                        ( 1)

j
i

i

j i
i

u k k

A B

u k j

A Bu k

 (5) 

for j  N. 

The prediction of y is now obtained as 
k)|jCx(kk)|jy(k                 (6) 

for j = 1;…. ;N. 

D. Solving the MPC Problem  
We can rewrite the objective function (4) as  

)()()( 22
RQ kUkYrefkYJk           (7) 

where 

k)|Ny(k
:

)|1(
)(

kKy
kY

k)|Nyref(k
:

)|1(
)(

kKyref
kYref

k)|1-Ncu(k
:

)|(
)(

kku
kU

And the weighting matrices Q and R are given by  
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Q(N)00

0Q(2)0
00)1(Q

Q

1)-R(Nc00

0R(2)0
00)1(R

R

From  (5)-(6), we see that Y(k) has form  

G1)-()()( kUkukxkY y              (8) 
For suitable matrices, ,  and Gy. Define 

)1u(k-x(k) Yref - E(k)                  (9) 

This vector can be thought of as a “tracking error”, in the 
sense that it is the difference between the future target 
trajectory and the “free response” of the system, namely the 
response that would occur over the prediction horizon if no 
input changes were made – that is, if we set U(k) = 0. If 
E(k) really were 0, then it would indeed be correct to set 

U(k) = 0. Now we can write 

2 2( ) ( ) ( )

      ( ) ( ) ( ) ( )

             ( ) ( )

      ( ) ( )

            2 ( ) ( ) ( ) ( )

K y RQ

T T T
y y

T

T T
y y

T T
y

J G U k E k U k

U k G E k Q G U k E k

U k R U k

U k G QG R U k

E k QG U k E k QE k

(10) 

This has the form  

.)()()(
2
1 constkUfkUHkUJ TT

K    (11) 

where  
   )(2 RQGGH y

T
y

and  
   )(2 kQEGf T

y

and neither H nor f depends on U(k). 

The relationship between the input increments u and 
control input u is given by  

)1(

k)|1-Ncu(k

)|1(
)|(

)1u(k

)|1(
)|(

kFu
kku

kku

M

Nc

kku
kku

  (12) 

where  

I

I
I

F,
0
00

III

II
I

M

So, from (11) we see that we have to solve the following 
unconstrained optimization problem 

)()()(
2
1min

)(
kUfkUHkU TT

kU
           (13) 

This is a standard optimization problem known as the 
Quadratic Programming (QP) problem, and standard 
algorithms are available for its solution. 

Remember that we use only the part of this solution 
corresponding to the first step, in accordance with the 
receding horizon strategy. So if the number of plant inputs is 
nu then we just use the first nu rows of the vector Uopt(k). 

We can represent this as 

)(00)( kUIku optnuopt

III. DYNAMICS OF BOUNCING BALL

We use the model given by [3] which provides us with a 
two dimensional map for repeated impacts of a ball with a 
massive, sinusoidally vibrating table. We take the usual 
impact relationship. 

))()(()()( jjjj tWtUetWtV            (14) 

where U,V, and W are, respectively, the absolute velocities 
of the approaching ball, the departing ball and the table, 
0<e 1 is the co-efficient of restitution, and t = tj is the time 
of the jth impact. If we further assume that the distance the 
ball travels between impacts under the influence of gravity, 
g, is large compared with the overall displacement of the 
table, then the time interval between impacts is easily 
approximated as 

,
)(2

1 g
tV

tt j
jj                             (15) 

and the velocity of approach at the (j+1)st impact as 
)()( 1 jj tVtU                            (16) 

Combining (14)-(16) and non-dimensionalizing, we 
obtain the recurrence relationship relating the state of the 
system at the (j+1)st impact to that at the jth in the form of a 
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linear map.  

1

1

jjj

jjj ue
                             (17) 

where gWeugVt /)1(2and/2,

IV. MODEL PREDICTIVE CONTROL OF BOUNCING BALL

From the dynamics of bouncing ball, we get a linear 
discrete-time, state space model of the form (1) where 

.)(,1,,)1( 1 jj ukuBeAkx
Since no control is applied to get 1j , we consider here 

only velocity as we get a simple model which renders full 
state measurement. 

(a)

(b) 
Fig. 2 Reference trajectories (a) period one (b) period two 

Fig. 3 Flowchart of Model Predictive Control 

Following is the algorithm implemented to stabilize the 
bouncing ball around period one and two orbit.    

1. Take state measurements using (8). 
2. Calculate the tracking error using (9). 
3. Solve the unconstrained optimization problem (13) 

to get a sequence of U
4. Implement the current control action )(kU

using the control )1()()( kukuku
5. Repeat steps 1-4. 

V. STABILITY AND ROBUSTNESS

With a linear model and a quadratic objective, the 
resulting optimization problem takes the form of a highly 
structured convex Quadratic Program (QP) for which there 
exists a unique optimal solution. Several reliable standard 
solution codes are available for this problem. 

Fig. 4 depicts the standard deviation of the normalized 
post-impact velocity v(k)/v* over 100 impacts, for 
increasing noise level. We observe that our controller 
obtains good noise rejection. This result is comparable with 
[1], where they compare the robustness with blind mirror 
law and piecewise quadratic laws with a suitable negative 
acceleration. 
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Fig. 4 Simulation result of a noisy bouncing ball dynamics 

VI. SIMULATION RESULTS

Fig. 5 Period 2 stabilization of bouncing ball. Reference trajectory 
is depicted by square. For Q=R=1trajectory is depicted by solid 
line. For Q=10, R=1 is depicted by dashed line while for Q=10, 

R=0.001 is depicted by dash dot line 

Fig. 6 Control input applied for achieving period 2. Control input is 
constant over a two successive impacts 

Fig. 7 Bouncing ball from period one to period two 

Fig. 8 Ball tracking period two trajectory with initial velocity v(1) 
= 2 

VII. CONCLUSION AND FUTURE WORK

We have started applying the control paradigm presented 
in this paper to other rhythmic tasks like juggler and biped. 
Encouraging results have been obtained which will be 
reported in the future. 
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