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Dynamically Monitoring Production
Methods for Identifying Structural Changes relevant to Logistics
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Abstract—Due to the growing dynamic and complexity within
the market environment production enterprises in particular are faced
with new logistic challenges. Moreover, it is here in this dynamic
environment that the Logistic Operating Curve Theory also reaches
its limits as a method for describing the correlations between the
logistic objectives. In order to convert this theory into a method for
dynamically monitoring productions this paper will introduce
methods for reliably and quickly identifying structural changes
relevant to logistics.

Keywords—Dynamics, Logistic Operating Curves, Production
Logistics, Production Planning and Control

|. INTRODUCTION

UE to the recent economical up and downs, manufacturing

enterprises find themselves confronted with significant
challenges, particularly with regards to logistics. Optimally
positioning themselves within the conflicting field of logistic
objectives (such as WIP, utilization, throughput times and
schedule reliability) is usually only inadequately possible. The
Logistic Operating Curves, an approach based on modelling
theory and developed at the Institute of Production Systems
and Logistics (IFA), can be used to describe the interactions
between these logistic objectives [1]. However, the dynamic
influence of the market or structural changes that are then
reflected in strongly fluctuating lot-sizes and thus varying
work content, make implementing this mean based approach
more difficult [2]. In order to undertake a sufficiently precise
Logistic Positioning, long periods of analysis and stable
processing states are required (see [3]), however, given the
existing structural changes, conditions such as these cannot be
met. A technique that converts the Logistic Operating Curves
into a method for dynamically monitoring production is thus
being developed within the context of the collaborative
research centre 489 “Processing Chains for the Production of
Precision Forged High Performance Components”, funded by
the German Research Foundation (DFG).
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Currently, there is no model that allows logistics to be
continually monitored and improvement measures to be
derived. In order to recognize when a new Logistic Positioning
iS hecessary, dynamic processing states that are not caused by
natural variance but rather structural changesin processes have
to be reliably and quickly identified. From a logistics
perspective, significant changes in the mean or standard
deviation of the work content are critical since these directly
influence the ideal minimal WIP required for the production
and thus the shape of the Logistic Operating Curves. In the
following paper, the possibility of transferring the
methodology of quality control charts to monitoring the work
content will be examined based on simulated work content
structures. Since work content distributions are not subject to
any strict planned or target values, existing statistical quality
control approaches cannot be directly adapted. A new
approach using dynamic quality control charts and dynamic
CUSUM control charts (CUSUM: cumulated sum) is thus
developed and examined here with regards to its suitability for
identifying structural changes.

I1.STANDARD CONTROL CHARTS FOR MONITORING THE MEANS
AND STANDARD DEVIATION

A. Fundamental Assumptions of Standardized Control Charts

Standardized control charts that are utilized for monitoring
industrial manufacturing processes come in different forms [4].
In practice, normally distributed quality characteristics, which,
in a stable (undisrupted) state do not exhibit variability in their
distribution or mean, are assumed [5]. Structural changes in
the work content can be identified by changes in the standard
deviation of the work content (WC), the mean work content
(WC,) or a combination of both. Normally distributed data
form the ideal conditions, however, these are only rarely found
on the shop floor [3]. Chambers and Wheeler [6] have shown
in simulation studies that moderate deviations from the normal
distribution fail to have any noteworthy influence on the
function of the control charts. With deviating distributions the
number of ‘false alarms’ can increase, whereby this increase
turns out to be reasonably low [6]. As a result, the research
conducted in this project was initially conducted using
approximately normal, simulation-generated work content
distributions.

B. Mean and Sandard Deviation Control Charts

The mean and standard deviation control charts commonly
used in the industrial practice can be traced back to Shewhart’s
traditional control charts [7]. The methodology of these
control chartsis based on statistical hypotheses tests. Based on
these hypotheses and assuming normally distributed data, it is
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verified whether or not the sample mean p or the sample
standard deviation ¢ corresponds to a given process level g or
permissible standard deviation oo (see (1)). In applying so-
caled ‘two-sided’ control charts, both deviations above and
below target values are detected. In order to verify the
hypotheses from (1) the test statistics, the arithmetic sample
mean 7 as well as the sample variance S* or the standard
deviation ¢ according to (2), are used (see [5]).

TABLEI
FORMULARY FOR MEAN AND STANDARD DEVIATION CONTROL CHARTS

testing hypothesis
mean control chart Ho: = Ho VS. Hi: p# o
standard deviation control chart Hg: 6 =60 vs. Hy: 6 # o9

@

analysis, the difference of the 1 step ahead prediction is
defined as the cumulated sum [10]. For controlled
(undisrupted) processes the observations are randomly
distributed around the processing level, so that the sum of
these differences (CUSUM) is aso distributed around zero.
This assumption is at the same time summed up under the Hq
hypothesis (see (3)). In other words, when there are structural
changes, the sum of the residue significantly and increasingly
deviates from zero (see [8]).

TABLEII
FORMULARY FOR THE CUSUM-TEST

testing hypothesis
Ho:Ci=0vs. Hy:Ci #£0 (3)

H,: mean p and standard deviation o equal the rated values 1, and o, of the
process

H1: mean p and standard deviation o differ significantly from the rated values Ko
and o,

test statistic

mean control chart p=X= 1Zn: X;
n=
. @
standard deviation control chart S =4/S? = ﬁz(xi _p)z
n-1%3

W: arithmetic mean

S: estimator of the standard deviation o
Xi: ith value in a sample withi=1,...,n
n: sample size

The control limits are thus defined so that, for a undisrupted
process, a percentage of (1-o)-100% of all realizations on
average is within a defined tolerance interval [5]. Control
limits are frequently sub-divided into ‘warning limits” (WL)
and ‘intervention limits’ (IL). Warning limits are then defined
based on a significance level of a=5% and intervention limits
on a significance level of a=1% (see [8]). Instead of 99% or
95% control limits, so-called ‘3-sigma limits’ are frequently
applied. These correspond with a a-level of only 0.27% (see
[9]). Generally speaking, when test variables exceed the
corresponding control limits the Hy hypothesis from (1) is
rgected in favour of the aternative hypothesis and
consequently assessed as a process not in control. Extensive
information about configuring relevant control limits can be
foundin[5, 8, 9].

C.CUSUM Tests: Control Charts with Memory

The CUSUM approach (cumulative sum) is also referred to
as so-caled ‘control charts with memory’. The memory of
these cards is based on the property that the underlying test
variable is derived from the current value and a number of
previous values, thus establishing a relationship between the
current processing situation and earlier ones. Methods such as
this are frequently applied in order to reveal structural changes
in the manufacturing. As a control variable, CUSUM uses the
cumulated sum of the differences (C) calculated from a
current observation x; and the process level or target value (see
(4)) [8]. Alternatively, within the frame of the time sequence

test statistic

CUSUM = Ci = Z (Xi - Xprocess level ) (4)
i=1
C;: cumulated sum of differences (cusum)

Xi: ith value in a sample withi=1,...,n
Xprocess level - €Stimated mean based on former periods

In order to verify the hypotheses from (3), control limits are
required. Here too, within the frame of this verification process
different approaches to constructing the control limits are
described in publications. Monitoring the CUSUM can for
example be conducted via a so-called ‘V-mask’ (see [11]), a
method that can be traced back to Barnard [12]. Alternatively,
supplementary test variables can be introduced and used as a
basis for monitoring. For this, Faes [8] describes the use of so-
caled ‘tolerance parameters’ which can be implemented for
monitoring decision limits. From the field of time sequence
analyses the method developed by Brown, Durbin und Evans
[10] for designing relevant warning limits can be referred to.

II1. ADAPTING CONTROL CHARTS TO DYNAMIC STATES

One of the basic conditions for implementing quality charts
is the assumption of a controlled and steady process. A
controlled process is characterized by uniform variance,
equivalent means, agreement between the target and actual
means as well as normally distributed processing data (see
[13]). At the same time, these conditions form the primary
limits for directly transferring the standardized methodol ogy of
control charts to monitoring dynamic work contents. On the
one hand, when considering dynamic states no strict target
values can be provided, on the other hand, the statistical limits
aligned with these are no longer applicable when conditions
are dynamic. Research at IFA has extensively pursued this
problem. Following, techniques for extending the initially
described control chart approach to dynamic processing states
will be introduced.

A. Dynamic Mean and Dynamic Standard Deviation Control
Charts

In order to adapt the control charts to dynamic conditions,
the test variables from (2) are first adjusted. To do so, a
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method for calculating rotating test variables is selected: The
mean work content (WC,,,) and the standard deviation of the
work content (WC,) are continually calculated over a fixed
window (k) (see (5)).

TABLEIII
FORMULARY FOR DYNAMIC MEAN AND STANDARD DEVIATION CONTROL
CHARTS
test statistic
fp=i—k+1
dynamic mean control chart (i; K)o = % Zx(i) with k=20
=i
®)
dramiostandad (g, [ 55 etk
deviation control chart k-1 £ " Withk=20
W(i;K)ron: cyclically calculated mean with i, i-1, i-2, ..., i-k+1
S(i;K)ron: cyclically calculated estimaor of the standard deviation with i, i-1, ..., i-k+1

X(i): aktud vauei
k: sample size for cyclica cdcutlation of the test statistics

As depicted in Fig. 1, it is important to select an appropriately
sized window. If the length of the window selected is too
small, the smallest random changes or outliers can enormously
impact the test variables when there is a dynamic state and
consequently, frequently lead to undesired false alarms.
Selecting too large of a rotating window results in strongly
smoothing the test variables and may delay reactions to
actually existing structural changes. Since research at IFA has
shown that a rotating data span of k=20 observations is
sufficient, thisis the length of the window chosen.

s_roli(k=5) === s_roll(k=30)

W_roli(k=5) === p_roll(k=30)

order number [qty] order number [qty]

Fig. 1 Rotating Calculations of Means and Sample Estimates of
Variance

In addition to dynamically calculating the test variables, the
control limits also have to be adapted to the new conditions. In
doing so the dynamic control limits must fulfil the following
characteristics: On the one hand, a continual adjustment to
continuous changes has to occur. On the other hand, the
control limits have to demonstrate a certain inertia so that
sudden structural changes can nevertheless be registered. To
do so, based on the current situation (Observation x;) arotating
process level of n=100 values is applied. Dynamic control
limits are defined in accordance with [5] and [8] and
summarized in (6) and (7), whereby, the standard control
charts form the basis for these control limits.

TABLEIV
CONTROL LIMITSFOR DYNAMIC MEAN AND STANDARD DEVIATION CONTROL
CHARTS
control limit
. So (M
mean control chart Ly, =Ho(i;n),o £t —_ 6
. k) «/R
2

standard deviation X8y L,

L, = 2 i Y s 7
control chart T “So(iiM L, = T selin)

with L,,; upper/lower limit
k=20 and n= 100

fyion+t

Ho (i), :E ZX(i)

fi=i

dynamic standard deviation So (5N = \/

dynamic mean value

T

> (X))

n-113

t: percentile of the normal distribution with k- 1 degrees of freedom and the
level of significance a
Xz(u; k-1)- chi-square-distribution with k-1 degrees of freedom

B. Dynamic CUSUM Control Charts

In calculating a traditional CUSUM control chart, al of the
underlying observations are integrated into calculating the
CUSUM. The number of the addends thus increases with
every new observation. In a dynamic field this can
occasionaly lead to the approach being largely inert. As a
result, the test variable is henceforth calculated dynamically by
means of a rotating window of n=100 realizations. Moreover,
the method (see (4)) initially only takes into consideration the
monitoring of changes in levels. This procedure can however
also be transferred to monitoring the WCs. In this case the
differences between the current deviation s based on k=20
values and the process variability of the work content are
added (see (8)) when calculating the CUSUM. In order to
differentiate these approaches the designator CUSUM,, was
introduced for monitoring the WC, and CUSUMy for
monitoring the WC,. Furthermore, the V-mask method is
applied in a dightly modified form for monitoring the
CUSUM (see Fig. 2) and an independent definition of the
control limitsis developed (see (9)).

cusuml[h]

time [h]
cusum: cumulative sum of differences between actual value and process level
d: lead distance parameter
kiR slope angle of the v-mask

Fig. 2 V-Mask Diagram (based on [11])
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The method based on (9) describes an independent
approach to deriving dynamic control limits. The control limits
are first oriented on the average CUSUM of the last 100 or 20
observations (C; (n=100); C; «(k=20); C; (n=100); C;
«(k=20)). Weighting these terms differently can ensure that
current only-temporary changes or outliers do not lead to an
overrating. In addition to this consideration of the means, a so-
caled ‘safety margin’ is defined. Within the frame of
monitoring the levels, this safety margin considers 3-times the
process level (3*1(100)) and is also supplemented by 6-times
the work content variability (6*s,(100)). In comparison, when
monitoring the CUSUMq only 6-times the deviation of the
process variability is considered.

TABLEV
CONTROL LIMITSFOR THE DYNAMIC CUSUM-TEST

CUsuM,, CUSUM ¢
test statistic

CUSUM, = C, () = 3 (x) ~o (i) CUSUM, =C, (1) = 3 (5K ~ 50 ) ®

Iy
g

control limit
weighted mean of . weighted mean of N
CuSUM, safety distance cusum, safety distance
[w]t(wnn>m..+6so<i:n)mu) [erwm @

IV. ANALYSISAND EVALUATION

A.Data Smulation

The andlysis is conducted based on simulated work
contents. For this purpose, the LOCCS 1.56 tool, developed at
IFA, was used to generate two (approximately) normally
distributed data series (Distribution A and Distribution B, see
Fig. 3) and aggregated into atotal distribution.

cumulative distribution model B

distribution A distribution B

1% structural
- change

workonterb]

amb/Rf (0]
Fig. 3 Simulation of Structural Changes based on the Example of
Distribution Model B
TABLE VI
DISTRIBUTION CHARACTERISTICS FOR SIMULATED MODELS

model distribution A distribution B work content distribution

HUa GA UB B

with x(i): aktual valuei
W(i;N)on: cyclically calculated mean of the sample with =100
S(i;K);11: cyclically calculated actual standard deviation of the sample with k=20
So(i;K)ron: cyclically calculated standard deviation of the sample with n=100
Ews(n;k): sliding CUSUM-mean calculated with the last n=100 and k=20 CUSUM-values
parameter v-mask

0=26.6° 6=21.8°
AB, AC = 5*s(i; Mo AB, AC = 15*sy(i; Mo (10)
AF = 15 values AF = 15 values

The V-mask (see schematic depiction in Fig. 2), a control
mechanism whose origin can be traced back to Bernard [12], is
used as an additional supplement. A VV-mask is thus positioned
within the CUSUM chart so that the line AO runs paralel to
the X-axis or the horizontal axis. The vertex of the V mask,
point O, indicates forward in the direction of the x-axis and
point A marks the last (current) observation. If all of the
previous CUSUMs lay within the limits of the V-mask the
process is considered in statistical control. In comparison, a
significant change in the analyzed process is indicated by the
intersection of the CUSUM and the v-building axis of the V-
mask [11]. Generally, the design of the V-mask is determined
by the “lead distance” d and the angle 6 (see Fig. 2). These can
for example be adapted empirically by developing different
masks based on previous data. Within the frame of the
CUSUM,, test the parameters of the V-mask are tightly defined
based on Oakland [11] (slope angle 6 =26.6°, decision
interval AB and AC with 5*s(n=100)). In the CUSUM, test,
the control parameters are set more closely in order to reveal
smaller differences in the variability (slope angle 6 = 21.8°,
decision interval AB and AC with 1.5*5,(100)). The definition
of the test variables CUSUM, and CUSUM; as well as the
derivation of the applied control limits are presented in (8) and

9).

welh]

A 14 08 31 10

100 time [h]

| B 102 20 45

c 152 34 165

o
S
o
=
©
~
©
w
=]

wclh]

werh

I E 108 48 156 94

werh]

F 85 27 119 75

®
©
)
~N
[$;]
o
D
o
=)
wc[h]

werh]

H 58 22 70 68

o o w0 20 500 time [h]
e ISta]

W: mean value o: standard deviation
model group |: predominantly normal distributed models with major changes
model group II: predominantly asymmetric distributed models with mgjor changes

model group I11: asymmetric distributed models with minor changes
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Each data series consists of 200 orders. The evaluation of
the testing methods introduced here, will be subsequently
presented based on different distribution models (Models A to
H). The test models are summarized in Table VI along with
the underlying distribution parameters. The difference
between the data series are identified either by a change of the
WC,,, the WC; or a combination of both. Furthermore, within
the test models varying degrees of structural changes are
detected. Distribution Model B is exemplarily depicted in Fig
3.

B. Experiment Results

In the evaluation and, in particular, the assessment of the
tests introduced here, the following aspects are to be included:

- the relative order of magnitude of the work contents’
structural changes,

- the type of the structural change: changes in the level,
variability or a combination of both distribution
characteristics,

-the actual shape of the data distribution before and
after the structural break: normally distributed,
symmetric data models, or distributions skewed to the
right with an extremely long tail.

Considering these assessment criteria, it can be assumed that
the different tests could lead to deviating results. The results
thus should always be evaluated in view of the respective
model distributions. Table VII summarizes the results of the
experiments in the form of a test matrix. The results of each
method as well as the number or range of false aarms are
alocated to each of the distribution models. Following that
Fig. 4 depicts the dynamic means and standard deviation
control charts as well as the corresponding CUSUM charts

based on the example of Distribution Model B.
TABLEVII
OVERVIEW OF EXPERIMENT RESULTS

method
dynamic mean dynamic standard deviation CUSUMu CUSUM's
T control chart control chart
é control limits control limits
a=5% o=1% 0=5% o=1% regarding (9) V-Mask regarding (9) v-mask
201/ 203/
false warning: false warning:
A 201/- 203/- n=190- 200 203/- 205/- n=187- 189 268/ -
n=253- 264
204/ 204/
— B fasewaning 206/ fdsewarning: 206/ - 208/ - 202/- 2461 - 241/-
n= 386 n=188- 189
-1 204/
¢ [fdwmwanng -, fdewanng ) -1 204/ 219/- 217/-
n=119-124 n=126
n=192-199
206/ 202/
205/ severa  false warning: false warning:
b 2061- 200 e warnings n=155-162 200" n=151- 153 o 2l
n=354- 361 n=348- 353
215/ 2141 2217
E fdsewaning 219/- fdsewarning: 219/- 219/- false warning: 2271- -1-
= n=142- 143 n=250 - 364 =350
211/ 206/ 208/ 206/
false warning: falsewarning:  false warning: false warning:
n=287-288 n=75-76 n=342-344 n=149-152
F 216/- n=155- 165 221/ n=286- 287 217/- 210/-
n=315
n=342- 347
220/ 220/ 2241 2481 -1
G fasewaming 224/- fasewaring fasewaming ~ 220/- e flsewarning  false warning:
n=363 n=365-383 n=365-383 n=380-384 n=2370-382
= 216/ 209/ 209/ 2187 209/ 2187 2217
false warning: several false  several false falsewarning:  false warning: falsewarning:  false warning:

o-
n=113- 116 warnings wanings  n=108-114 n=112-116 n=102-116 n=311-322
n=134 n=352-363 n=286-287 n=347-380 n=346- 368

Code: * /**

* order number when idertifying structural changes
** value mergin of false warnings

a: level of significance

In order to simplify evaluating the results, the analyzed
models were divided into three classes. In Class | al of the
models that are characterized by a significant structural change
and for which the data structure is predominantly normal
distributed are categorized. Models A, B and C are counted
among these. Within these work content distributions the
results for all of the tests considered were very good. Thisis
demonstrated by the very quick detection of structural changes
as well as a very low rate of false alarms. Due to the almost
‘ideal’ structure of the distributions even the smallest changes
in the work content variability could be reliably identified for
these models (see Model A and B).

control charts model B

Mo (K=20) [h]
Sron (K=20) [h]

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

cusum, [h]

1500 2000 2500 8000

time [h]

time [h]

Fig. 4 Dynamic Means, Standard Deviations and CUSUM Control
Charts (Example based n Model B)

Class Il categorizes al of the models that have an
asymmetric, right skewed distribution shape. The structural
changes are however, clearly expressed. Test models D, E and
F are alocated to this class. The methods introduced here also
attain good results with these distribution models. The primary
differences between this class and Class | isadlight increase in
fase adarms as well as a brief delay in reporting actualy
existing structural changes. If the results from al of the
methods are considered and evaluated at the same time instead
of considering individual experimental results, then undesired
false alarms can also be differentiated from actual structural
changes in these models relatively quickly and with a high
degree of certainty. It should be noted here that right skewed
distributions as presented and tested here are also observed in
practice and also generaly reflect real distribution forms of the
work content. Based on these results it can be concluded that
the test developed and applied here are relevant for the
industrial practice.

Models G and H are classified under Class I11. Within this
category of models, the structural changes are less ‘clearly’
expressed. Furthermore, the work contents are characterized
by an asymmetrical distribution form with an extremely long
tail. Especially with these models, it is possible to reduce false
alarms by combining a number of tests.

V.SUMMARY AND OUTLOOK

In conclusion, it can be said that the tests developed for
controlling and monitoring the work contents under dynamic
conditions can be successfully applied both to normally
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distributed as well as complex and skewed distribution forms.
In this context, particularly right skewed distributions with so-
called ‘long tails” demonstrate a strong basis in the industria
practice. Complex structures such as these can however lead to
delayed reports or to an undesired increase in false aarms.
Simultaneously applying and evaluating different tests can
counteract this effect.

The CUSUM method (see (9)) presented here and the
dynamic control charts thus primarily detect seldom occurring
and chronologically further apart structural changes. The
reason for this is the definition of the process level with a
rolling window of n=100 observations. The size of the interval
means that after there has been a change, the control limits first
take on a new stationary state only after n=100 realizations. If
there are renewed structural changes during the transition
phase, the impact can overlap on the test variables and control
limits thus complicating the identification of structural
changes. One of the fundamental advantages of these methods
though is their robustness to false alarms. In order to shorten
the ‘reaction time’ to structural changes the data basis for
calculating the rotating test variables could be reduced at the
cost of increasing the number of false alarms. Alternatively,
applying so-called ‘V-masks’ offers the possibility to monitor
test variables already after k=15 realisations and thus also
detect structural changes that occur chronologically closer to
one another. By simultaneously applying the dynamic tests
introduced in this paper the advantages of the individual
approaches can be combined and the advantages reciprocally
compensated for. False alarms can thus be practicaly
considered by comparing the different test results in order to
identify actual structural changes with a higher certainty.

The developed methods are suitable not only for monitoring
work content distributions but also for other parameters that
are relevant to logistics e.g., WIP. In order to facilitate a
dynamic evaluation of the Logistic Postioning and
corresponding measure derivation, part of the on-going
research project is aimed at implementing the tests within a
software demonstrator. Moreover, the next step in converting
the Logistic Operating Curves into a method for dynamically
controlling the production is the development of new
parameters that can be monitored by means of the introduced
tests and drawn upon for describing the dynamic process
stated.
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