
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

639

Dynamic Measurement System Modeling with
Machine Learning Algorithms

Changqiao Wu, Guoqing Ding, Xin Chen

Abstract—In this paper, ways of modeling dynamic measurement
systems are discussed. Specially, for linear system with single-input
single-output, it could be modeled with shallow neural network.
Then, gradient based optimization algorithms are used for searching
the proper coefficients. Besides, method with normal equation and
second order gradient descent are proposed to accelerate the modeling
process, and ways of better gradient estimation are discussed. It
shows that the mathematical essence of the learning objective is
maximum likelihood with noises under Gaussian distribution. For
conventional gradient descent, the mini-batch learning and gradient
with momentum contribute to faster convergence and enhance model
ability. Lastly, experimental results proved the effectiveness of second
order gradient descent algorithm, and indicated that optimization with
normal equation was the most suitable for linear dynamic models.

Keywords—Dynamic system modeling, neural network, normal
equation, second order gradient descent.

I. INTRODUCTION

IN the industry, kinds of measuring systems are adapted

to dynamic measurement scenarios. With the increasing

requirements for the products, increasingly importance has

been attached to the dynamic performance of sensors. Usually,

one needs to model the system properly for better usage,

or dynamically compensates for measurement error caused

by dynamic property of the system. With knowing the

orders of the model, conventional dynamic modeling takes

use of attenuation amplitude to determine the dynamics

parameters indirectly [1], or after the difference equation is

established, one performs Z transform and bilinear transform

to obtain discrete and continuous transfer function [2]. After

the introduction of functional link artificial neural network

(FLANN) [3], the method of learning differential model

parameters is applied to sensor dynamic modeling and is

well recognized [4]–[6], which describes the dynamic property

of the sensor by constructing a shallow network with time

delay characteristics. For conventional compensation methods,

the zero-pole analysis method is based on the known modal

parameters, which has no universality [7]; the premise of the

deconvolution method is the accurate estimation of discrete

Changqiao Wu is with Department of Instrument Science and Engineering,
School of Electronic Information and Electrical Engineering, Shanghai Jiao
Tong University, Shanghai, P. R. China (e-mail: innerpeace@sjtu.edu.cn).

Guoqing Ding is an Associate Professor in Department of Instrument
Science and Engineering, School of Electronic Information and
Electrical Engineering, Shanghai Jiao Tong University, Shanghai, P.
R. China (corresponding author, phone: +86-21-34204624, e-mail:
gqding@sjtu.edu.cn).

Xin Chen is an Associate Professor in Department of Instrument
Science and Engineering, School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China (e-mail:
xchen.ie@sjtu.edu.cn).

transfer function [8]; the time domain optimization method

works well, but it is not practical due to the heavy calculation

[9]. As theoretically neural network is global function

approximator [10], it is used to approximate the inverse

compensation system function to correct errors [11]–[14].

And back-propagation (BP) [15] is applied to optimizing the

network model, which uses the gradients descent algorithm

to minimize the empirical risk [16]; Meanwhile, least square

support vector machine (LS-SVM) is also used to optimize

the dynamic model or inverse compensate system [5], [17].
We find out that the dynamic modeling of a system has

certain similarity with the dynamic compensation. Both can be

regarded as generating the output by a function approximator,

which has time delay characteristics, with certain input. In

the dynamic modeling process, the in-going signal of the

system is also the input of function approximator. However,

the out-going signal of the system is taken as the input of

function approximator during dynamic compensation process.

For different purposes, specific modeling methods differ. If one

needs to analyze the amplitude-frequency characteristics of the

system, firstly, the orders of the model should be calculated,

then parameters are solved after establishing the difference

equation. On the other hand, compensation is more prone to

result orientation, and there are no strict requirements for the

function approximator used.
Traditional optimization methods based on

back-propagation iterate with only one sample, which

leads to heavy bias of gradients approximation, and slows

down the learning process. Meanwhile, some researchers

validate the methods they proposed on the training set, and

the generalization ability of the learned model is rarely

discussed. In this paper, we introduce the mathematical

essence of methods based on FLANN for modeling, and

new way of optimization with normal equation. Finally, for

different learning strategies, we propose a generalized model

for dynamic modeling and compensation.

II. DYNAMIC MODELING AND OBJECTIVES

A. Dynamic Model Based on FLANN
Usually, the dynamic system and the corresponding

inverse compensation system of the sensor are single-input

single-output, and the relationship between input and output

can be represented with difference equation [6]. As for the

dynamic modeling process (shown in box 1 of Fig. 1), the

corresponding difference equation is:

yt + a1yt−1 + · · ·+ anyt−n =b0xt + b1xt−1 + · · · bmxt−m

+ c+ et (1)



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

640

Fig. 1 Principle of dynamic modeling and compensating for transducer

where m and n represent orders of the model, {ai} and {bi}
are the parameters, c is the bias and et means the random

noise. xt and yt are the in-going and out-going signal of the

system at time step t respectively.

Equation (1) can be vectorized as:

yt = wTxt + c; t = 1, 2, · · · , N (2)

where N is number of discrete samples at time step t, and

weight vector is w = [−a1, · · · , −an, b0, b1, · · · , bm]T ,

the input vector of step t is xt = [yt−1, · · · , yt−n, xt, · · · ,

xt−m]T .

Similarly, for the dynamic compensation process (shown in

box 2 of Fig. 1), the corresponding difference equation is:

ŷt + a1ŷt−1 + · · ·+ anŷt−n =b0yt + b1yt−1 + · · · bmyt−m

+ c+ et (3)

The vectorized version is:

ŷt = wTxt + c; t = 1, 2, · · · , N (4)

Comparing to dynamic modeling, the difference is that the

input of the model changes to xt = [ŷt−1, · · · , ŷt−n,yt, · · · ,

yt−m]T . And it concludes that the dynamic modeling and

compensation can be modeled with FLANN which can be

solved by optimizing the parameters.

B. Objectives

To solve the parameters of (1), the intuitive method is

taking the square of the bias between the estimated value

and the ground truth as loss function. However, the reason

behind the intuition is rarely analyzed. The mathematical

essence of that is maximum likelihood estimation of output

with noise under Independently, Identically Distributed (IID)

Gaussian distribution [18]. For convenience, we define the

weight parameter as θ = [θ0, θ1,· · · , θm+n+1]
T , where θ0

is the bias c in (1), and the generalized formula is:

y(i) = θTx(i) + ε(i) (5)

where x(i), y(i) represent the input and output of the i-th
training sample respectively, and ε(i) is the noise component of

the model, which is under IID Gaussian distribution with mean

as 0, and variance as σ2. The Probability Density Function

(PDF) of ε(i) is:

p(ε(i)) =
1√
2πσ

exp

(
− (ε(i))2

2σ2

)
(6)

Along with (5), the conditional probability of output y(i)

provided with weight θ and input x(i) is:

p(y(i)|x(i);θ) =
1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)
(7)

As ε(i) satisfies IID condition, for totally M training

examples, the likelihood function of the probability is:

L(θ) =
M∏
i=1

p(y(i)|x(i);θ) (8)

According to principle of Maximum Likelihood, the weight

should be chosen to maximize the probability over all training

examples:

θ = argmax
θ

L(θ) (9)

The likelihood function L(θ) in (8) is the product over

probabilities, which is difficult to analysis. Usually, we take

the log function, which is strictly monotony, as proxy for

optimization. Along with (7) and (8), the log likelihood of

L(θ) is:

logL(θ) = log
M∏
i=1

1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)

=

M∑
i=1

log
1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)

= M log
1√
2πσ

− 1

σ2
· 1
2

M∑
i=1

(y(i) − θTx(i))2

(10)

Due to the irrelevance between M , σ and θ, maximizing

the likelihood is the same as maximizing the accumulation of

square of bias between the estimation and ground truth for

each example:

max
θ

logL(θ) = min
θ

1

2

M∑
i=1

(y(i) − θTx(i))2 (11)

From the view of machine learning, the process of dynamic

modeling and compensation is the typical linear regression

[18] problem set, and the common loss function for such

problem is the same as (11), which is also referred as L2

loss function, as the output is the 2 norm of the biases.

III. OPTIMIZING METHODS

A. Gradient Descent Optimization

The directional derivation in direction u, which is a unit

vector, is the slope of function f(x) at that direction, and the

slope can be represented as:

∂

∂α
f(x+ αu) = uT∇xf(x) (12)

And it is found that the direction in which f(x) decreases

the fastest is the direction of the negative gradient of f(x) with

respect to variable x. The optimizing method decreasing f(x)
in the direction of negative gradient is referred as Gradient

Descent [18]. For now, most of the methods of dynamic

modeling and compensating with neural networks use gradient

descent as the optimizing algorithm, where the square of bias

of estimation ỹ and ground truth y is the objective. Finally,

optimization is conducted in the direction of negative gradient

of objective with respect to weight vector θ.



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

641

During optimization, we refer weight θ(i−1), bias b(i−1) as

the result after i− 1 times iteration. For the ith iteration, the

corresponding estimation is:

ỹ(i) = θT
(i−1)x

(i) + b(i−1) (13)

According to (11), the objective function F is:

F =
1

2
(y(i) − ỹ(i))2 (14)

Along with (13) and (14), the process of ith iteration is:

θ(i) = θ(i−1) − α
∂F

∂θ
= θ(i−1) + α(y(i) − ỹ(i))x(i)

b(i) = b(i−1) + α(y(i) − ỹ(i)) (15)

where the α is a hyper-parameter and is usually referred as

learning rate, which is used to control the stride of each

iteration. If α is too small, it would slow down convergence,

and large α would result in oscillation or even divergence of

objective.

The primary of gradient descent is estimation of gradient,

which requires the objective should be continuous and

differentiable under certain circumstances. Meanwhile the

correctness of the gradient estimation is vital for the ability of

the learned model.

B. Improved Gradient Descent

Inferred from the work of Dehui et al. [6] that conventional

training of FLANN took use of only one sample to do gradient

estimation and updated weights. With (15), we learned that

the bias of input vector x would influence the correctness

of gradient estimation, which is inevitable due to the noisy

input signal. But we would alleviate the influence by averaging

the gradients over several samples, as the noise is usually

distributed under Gaussian distribution.

For a training set with totally M training samples, we

randomly choose s samples as a mini-batch to estimate the

gradient:

θ(i) = θ(i−1) + α
1

s

s∑
i=1

(y(i) − ỹ(i))x(i)

b(i) = b(i−1) + α
1

s

s∑
i=1

(y(i) − ỹ(i)) (16)

where s is referred as batch size, which is also a

hyper-parameter. When s = 1, the iteration process is the

same as traditional one, and when s = M , all the samples

are used to do estimation which is impractical for tasks

like where the input is image. So for specific task, one

could choose a proper batch size to do gradient estimation

and accelerates convergence of learning process. In Machine

Learning field, such learning strategy is referred as Stochastic

Gradient Descent (SGD) [18].

As the popularity of SGD grows in Machine Learning

field, Ning [19] proposed SGD with momentum based on

naive gradient descent. What Ning was trying to improve

was that the iteration process will oscillate and convergence

slowed down as the difference of gradients for each direction

grew. To solve that, SGD with momentum accumulates

the gradients of each direction to accelerate the learning

process. If one component gradient follows the same direction,

the accumulated gradient will result in a larger stride and

contributes to convergence.

We use momentum to accumulate the gradients in (16), and

update weights with the momentum:

v(i) = μ · v(i−1) + α
1

s

s∑
i=1

(y(i) − ỹ(i))x(i)

θ(i) = θ(i−1) + v(i) (17)

where μ is momentum, which is another hyper-parameter

and is set as 0.9 usually, and when μ = 0, it degrades to

common gradient descent. The interval variable v is initialized

0. Likewise, the iteration for bias b can be inferred. However,

for the first order gradient descent to work properly, one has to

do several experiments to choose the proper learning rate and

other hyper-parameters, which has the uncertainty to achieve

a good result.

C. Second Order Gradient Descent

With (14), we learned that the learning objective is to

achieve the minimum of the objective function F . And for

the minimum of F , the derivative should satisfy ∂F/∂θ = 0.

Then we could solve the equation where the partial derivative

is 0 to find out the proper weights. for finding successively

better approximations of zeros of a function, we could apply

Newton’s method [18].

For function f(x) and variable x(0), we Taylor expand

function f(x) as:

f(x) ≈ f(x(0)) + (x− x(0))Tg

+
1

2
(x− x(0))TH(x− x(0)) (18)

where the g is the first order gradient of f with respect to x,

and H is Hessian matrix, which represents the second order

gradient.

Then take the derivative of x and set to 0.

0 =
∂f(x)

∂x
= g +H(x− x(0)) (19)

Solving (19) to obtain the iteration process for x:

x = x(0) −H−1g (20)

For applying to dynamic model represented with (2) and (4),

we combine the weight and bias as θ = [θ0, θ1,· · · , θm+n,

b]T , and add constant 1 to the end of input as x = [x0, x1,

· · · , xm+n, 1]T . Together with (14), we obtain the first and

second order gradient as:

g =
∂F

∂θ
= −(y(i) − ỹ(i)) · x(i)

H =
∂2F

∂θ2 = x(i)x(i)T (21)

In (21), if the input x(i) is a vector, then the corresponding

H is singular matrix which is not invertible. For optimizing



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

642

FLANN models, one needs to use mini-batch strategy as

discussed in III-B. For batch size s, the input matrix and output

vectors are:

X(i) =

⎡
⎢⎢⎢⎣
(x(1))T

(x(2))T

...

(x(s))T

⎤
⎥⎥⎥⎦ y(i) =

⎡
⎢⎢⎢⎣
y(1)

y(2)

...

y(s)

⎤
⎥⎥⎥⎦ (22)

And the estimated output is:

ỹ(i) = X(i)θ (23)

The gradients of the mini-batch data are:

g = −(X(i))T (y(i) − ỹ(i))

H = (X(i))TX(i) (24)

Along with (24) and (20), the iteration process is:

θ(i) = θ(i−1) −H−1g (25)

From (25) we learn that we have no need to tune the learning

rate, and the second order gradient includes the trending of

first order gradient which accelerates convergence. However,

this method is not widely used in modern deep learning due

to the modern neural network models have great amount

of parameters which results in a huge Hessian matrix, and

computing the inverse of that matrix is impractical. For the

dynamic modeling scenario, the order of the model is relatively

small which makes the algorithm applicable.

D. Optimize with Normal Equation

Apart from the conventional ways of optimizing objective

with gradient descent algorithms, researchers have proposed

numerical solution with Support Vector Machine (SVM),

where the Lagrangian equations are established to solve the

parameters directly [5], [17]. With numerical solution, the

computing time could be reduced and it is less prone to

get stuck in sub-optimal or oscillating. However, optimizing

with SVM needs to solve multi-variable linear equations,

which is complicated. Instead, we propose optimizing with

normal equation, where the global optimal is achieved by

matrix manipulation. Similar to second order gradient descent

algorithm, we find the minimum of a function by solving the

zeros of first order gradient with only matrix manipulations.

For totally M training samples, the input of ith sample

is x(i) ∈ R
m+n+2 (where the constant 1 was added to the

end), the output is y(i) ∈ R, and weight is θ ∈ R
m+n+2. For

convenience, we represent the whole training set with matrix

and vector as:

X =

⎡
⎢⎢⎢⎣

(x(1))T

(x(2))T

...

(x(M))T

⎤
⎥⎥⎥⎦ y =

⎡
⎢⎢⎢⎣

y(1)

y(2)

...

y(M)

⎤
⎥⎥⎥⎦ (26)

The bias of output is:

Xθ − y =

⎡
⎢⎣

(x(1))Tθ − y(1)

...

(x(M))Tθ − y(M)

⎤
⎥⎦ (27)

Fig. 2 Learning strategy A

For a vector z, we have equation zTz =
∑

i z
2
i , and we

substitute z with Xθ − y in (27):

1

2
(Xθ − y)T (Xθ − y) =

1

2

M∑
i=1

(y(i) − θTx(i))2

= J(θ) (28)

It is obvious that J(θ) is the same as the objective in (11).

And we can solve the zeros of J(θ) with respect to weight

parameter θ to find the optimal solution for (11).

Following the properties of trace of matrix and matrix

derivation, the ∇θJ(θ) can be derived as:

∇θJ(θ) =
1

2
∇θtr(θ

TXTXθ − θTXTy

− yTXθ + yTy)

=
1

2
∇θ(trθ

TXTXθ − 2tryTXθ)

=
1

2
(2XTXθ − 2XTy) (29)

Then, we set ∇θJ(θ) = 0, and obtain the final solution for

normal equation:

θ = (XTX)−1XTy (30)

With (30), we have no need to solve linear equations, and

the computing process is faster. Most of all, it is less prone to

stuck in local optimal.

IV. GENERAL SEQUENCE MODEL

During the process of optimizing FLANN model with

gradient descent algorithm, we have two kinds of learning

strategies depending on whether taking the i-th output as the

input for i + 1-th iteration and iterations after. As shown in

Figs. 2 and 3.

f(·) in Fig. 2 is linear operation f(x) = θTx, where the

input vector is x(t) = [y(t−1), y(t−2),· · · ,y(t−n),x(t), x(t−1),

· · · , x(t−m), 1]T , and the corresponding output is ỹ(t). One

should note that the outputs {y(t−i)} before time step t are

the ground truth of each time step, and it is used in the

conventional learning strategy. Meanwhile, when using the

ground truth as the input, there is no strict order between each

iteration, which makes it possible to randomly select one or

more samples to do updating. We will discuss the effect of

randomness during sampling in the following experiments.

The learning strategy B in Fig. 3 has an extra step of

input updating represented by symbol ”+”. When t = 1,

do initialization as y(−1) = y(−2) = · · · = y(−n) = 0,

x(−1) = x(−2) = · · · = x(−m) = 0 and after the linear

operation f(·), the output is ỹ(1). when t = 2, provided

the estimated output of previous step ỹ(1) and the input of

current time step, we update the input vector as x(2) =
[ỹ(1), y(−1),· · · ,y(−n−1),x(2), x(1),x(−1), · · · , x(−m−1), 1]T .



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

643

Fig. 3 Learning strategy B

Fig. 4 General sequence model

Generally, at time step t, the updated input vector is x(t) =
[ỹ(t−1), ỹ(t−2),· · · ,ỹ(t−n),x(t), x(t−1)]. It is obvious that this

strategy imposes restriction on the order of iteration, and when

deriving the gradient of output difference at time step t with

respect to θ, the gradient of previous timesteps should also be

considered as {ỹ(t−i)} is also a function of θ.

Wu et al. [6] proposed an improved algorithm based on the

learning strategy B, and obtained a more accurate gradient

estimation.

∂ỹ(i)

∂θ
= x(i) +

n−1∑
j=0

θ
(i−1)
j

∂ỹ(i−j−1)

∂θ
(31)

where the θ
(i−1)
j is j-th element of weight vector after i− 1

times iteration.

For (31), the improved algorithm only considered gradient

of current step and n steps before that. However, gradient

estimation of ỹ(i−j) is also relevant to ỹ(i−j−1)· · · ỹ(i−j−n).

Generally, all the gradients of the first step to the current step

should be considered, and it does not depend on the order of

model n. Then we proposed the General Sequence Model as

shown in Fig. 4.

Fig. 4 represents the situation where the input sequence has

length M . And {ỹ(i)}, {x(i)} is also initialized to 0. After

adding square of bias for each step we obtain the same loss

function as (28):

J(θ) =
1

2

T∑
i=1

(y(i) − ỹ(i))2 (32)

And the corresponding gradient estimation is:

∂J(θ)

∂θ
= −

M∑
i=1

(y(i) − ỹ(i))
∂ỹ(i)

∂θ
(33)

We could keep iterating with (31) to obtain the gradient

∂ỹ(k)/∂θ for any step k ∈ [1,M ]. Finally, the gradient of the

whole sequence could be obtained by substituting gradient of

each step into (33).

As for the optimizing process, we also use back-propagation

to estimate the gradients. To avoid the gradient vanishing or

exploding problem caused by long sequence data, one would

choose a proper length as the special case in the work of Wu et

al. [6], where the length is set to n. The process of optimizing

sequence data is referred as back-propagation through time

(BPTT) [18] in deep learning. Meanwhile, modeling nonlinear

model is possible by altering the updating strategy of inputs

and transform function f(·), and it could be extended further

to recurrent and recursive networks [18].

V. EXPERIMENTS AND ANALYSIS

Among some of the researches about this topic, the ability

of the learned model is evaluated on the training set and the

generalization on new data is neglected. Wang et al. [5] took

the training set without noise as the validation set, but these

two datasets are quiet similar to each other. However, the data

could be differ a lot in the real world scenario.

During the following experiments, the system is simulated

with the same linear system, whose differential equation is:

y(i) − 1.0y(i−1) − 0.4y(i−2) + 0.6y(i−3) = 0.3x(i)

+ 0.2x(i−1) − 0.1x(i−2) + 0.3x(i−3) + e(i) + 0.0 (34)

where e(i) is the Gaussian noise, the distribution is e(i) ∼
N (0, 0.01).

The excitation is step signal added with Gaussian noise,

which has mean 0, and standard variance 0.001, and the time

expanding is 500 ms, sampling interval is 1 ms. Meanwhile,

we use the learning strategy A to do iteration, and the

condition of convergence is the loss over the whole set with

(32) is less than a threshold, or the difference of loss between

adjacent iterations ΔJ(θ) is less than ε = 0.0001. Finally,

we evaluate the model with square signal and signal collected

from real sensor.

A. Influence of Batch Size

Firstly, the experiment compares the impact of batch size

on the training process under the same conditions. With

experimental setting mentioned above, the learning rate is set

to α = 0.01, and the batch size iterates over s ∈ [1, 5, 10, 50].
The learning curve on training set and validation set are shown

in Fig. 5 and Fig. 6, respectively.

From the result of the experiment, batch learning helps to

increase the accuracy of gradient estimation, and accelerates

the convergence. Most of all, it enhances the ability of the

model and achieves a smaller loss on the validation set.

However, with the batch size increasing, the acceleration

seems to saturate. The possible explanation is that the

parameter of the model is small, and the gradient is accurately

enough with small batch size.

B. Influence of Random Sampling

As we choose the learning strategy A, it is possible to

sample randomly. Then we investigate the impact of shuffling



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

644

Fig. 5 Learning curve on training set

Fig. 6 Learning curve on validation set

Fig. 7 Impact of shuffling training data

training data, and the learning curve of random sample and

sampling in order is shown in Fig. 7, where ”RS” stands for

random sample and ”XRS” represents sampling following the

order.

The result indicates that, when iteration over one sample,

the data shuffling contributes to faster convergence and

enhancement of model ability, which is similar to batch

learning. Meanwhile, for the curve ”BS=1, RS” in partial

enlarged view, it has the phenomenon of bouncing up and

down, which proves that the inaccuracy of gradient estimation

with only one sample.

C. SGD with Momentum

To investigate the effectiveness of momentum learning, we

set the parameter momentum as μ = 0.85, and conduct

experiments with and without momentum. The result learning

curve in shown in Fig. 8.

Fig. 8 Comparison of SGD and SGD with momentum

Fig. 9 Modeling result of SGD with momentum algorithm

The result shows that optimization with SGD and

momentum greatly accelerates convergence process, which is

much faster than other methods. And the resulting parameters

are:

θ = [1.0518, 0.2985,−0.5453, 0.3034,

0.1766,−0.0665, 0.2678,−4.88× 10−4]

The loss of the excitation with square signal is J(θ) =
0.1072, and the comparison of original dynamic response and

that of the learned model is shown in Fig. 9.

D. Second Order Gradient Descent

To evaluate the effectiveness of second order gradient

descent, we need to choose the proper batch size to enable

the inverse of Hessian matrix in (24), and all the inputs

are randomly sampled. Meanwhile, we also compared the

different parameter initialization with initialized to 0 or normal

distribution of N (0, 0.01). The condition of convergence is

the loss of the whole training set satisfies J(θ) < 0.1.

The comparison with the naive gradient descent is shown

in Fig. 10, where ”RI” means random initialization, ”M”

means optimized with momentum and ”SOG” is second order

gradient descent.

The experiment indicates that the iteration of second order

gradient descent is much faster than that of naive gradient

descent. It achieves a reasonably small loss after the first

iteration. However, the further iteration process is not stable.

Along with the advantages of first and second order gradient

descent, we could try to use the result of second order

gradient descent after the first iteration to initialize the weights,

then following the naive gradient descent to optimize the



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

645

Fig. 10 Second order gradient descent algorithm

Fig. 11 Modeling result of second order gradient descent algorithm

objective. The experiment shows that combining those two

algorithm leads to a faster convergence than conventional

gradient descent. The modeling result of second order gradient

descent on the output signal of a dynamic weighting system

is shown in Fig. 11.

E. Optimization with Normal Equation

Optimization algorithm based on gradient descent need to

tune hyper-parameters like learning rate to achieve a better

result, and it takes time to convergence. However, for dynamic

model based on FLANN, we can utilize (30) to directly

solve the optimal parameter. The experiment shows that the

process is extremely fast with small dataset, and the result

is comparably good as that of gradient descent. With the

same dataset as previous experiment, the modeling result of

optimization with normal equation is shown in Fig. 12, and

the weight parameters are:

θ = [1.0491, 0.2967,−0.5419, 0.3029,

0.1781,−0.0660, 0.2722,−5.75× 10−4]

The loss on the excitation of square signal is J(θ) =
0.1644, which is close to the best of gradient based algorithms.

For different training size, the loss on validation set and

computing time is shown in Fig. 13, where the experiments

are conducted on computer with i5 CPU.

The experiment indicates that the ability of model and size

of training set has positive correlation. While the size of

dataset is small, the computing time is relatively close to each

other. The comprehensive analysis reveals that optimization

with normal equation is the best choice of solving models

with differential equation.

Fig. 12 Modeling result with normal equation

Fig. 13 Impact on modeling result and computing time with training set size
increasing

VI. CONCLUSION

For linear system with single-input and single-output, it can

be modeled with FLANN, and different order of the model is

chosen to satisfy accuracy requirements. Experiments reveal

that FLANN model is suitable for both dynamic modeling

and compensation with different source as the input. Based

on the existing model research, an optimized gradient descent

algorithm is proposed. Meanwhile, with batch learning and

momentum optimization methods, the convergence would be

greatly accelerated and the generalization ability of the learned

model is enhanced. And the convergence is even faster with

second order gradient algorithm. On the other hand, the model

optimization can be transformed into solving the minimum

value, and normal equation is used to directly solve the

weight parameter, which is faster and more stable comparing

to gradient based algorithms. Experimental simulations

indicate that the algorithms we discussed all achieved model

identification with reasonable precision. Considering both

computing speed and performance, optimization with normal

equation is the optimal solution. Finally, we also propose the

generalized model for sequence data based on the different

learning strategy.

REFERENCES

[1] J. P. Xiang, “Dynamic properties of force transducer,” Process
Automation instrumentation, no. 6, pp. 12–21+102, 1981.

[2] A. Simpkins, “System identification: Theory for the user, 2nd edition,”
IEEE Robotics Automation Magazine, vol. 19, no. 2, pp. 95–96, June
2012.

[3] K. J. Xu and M. Yin, “A dynamic modeling method based on flann for
wrist force sensor,” Chinese Journal of Scientific Instrument, vol. 21,
no. 1, pp. 92–94, 2000.

[4] S. P. Tian, P. P. Jiang, and G. Z. Yan, “Application o-f recurrent neural
network to dynamic modeling of sensors,” Chinese Journal of Scientific
Instrument, vol. 25, no. 5, pp. 574–576, 2004.



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:11, 2018

646

[5] X. D. Wang, C. J. Zhang, and H. R. Zhang, “Sensor dynamic
modeling using least square support vector machines,” Chinese Journal
of Scientific Instrument, vol. 27, no. 7, pp. 730–733, 2006.

[6] D. H. Wu, W. Zhao, S. L. Huang, and S. K. He, “Research on improved
flann for sensor dynamic modeling,” Chinese Journal of Scientific
Instrument, no. 2, pp. 362–367, 2009.

[7] W. J. Yang, “Research on dynamic characteristics and compensation
technology of pressure sensors,” Master’s thesis, North University of
China, Shanxi, 2017.

[8] T. Dabóczi, “Uncertainty of signal reconstruction in the case of jittery
and noisy measurements,” IEEE Transactions on Instrumentation and
Measurement, vol. 47, no. 5, pp. 1062–1066, 1998.

[9] J. Brignell, “Software techniques for sensor compensation,” Sensors and
Actuators A: Physical, vol. 25, no. 1-3, pp. 29–35, 1990.

[10] M. A. Nielsen, Neural Networks and Deep Learning. Determination
Press, 2015.

[11] S. P. Tian, Y. Zhao, W. H. Yu, and Z. W. Wang, “Nonlinear
compensation of sensors based on bp neural network,” Journal of Test
and Measurement Technology, vol. 21, no. 1, pp. 84–89, 2007.

[12] She Ping Tian, “Nonlinear dynamic compensation of sensors based
on recurrent neural network model,” Journal of Shanghai Jiao Tong
University, vol. 37, no. 1, pp. 13–16, 2003.

[13] H. M. Huang, “Dynamical compensation method for weighting sensor
based on flann,” Transducer and Microsystem Technologies, vol. 25,
no. 8, pp. 25–28, 2006.

[14] L. Q. Hou, W. G. Tong, and T. X. He, “Nonlinear errors correcting
method of sensors based on rbf neural network,” Journal of Transducer
Technology, vol. 17, no. 4, pp. 643–646, 2004.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[16] H. Li, Statistical learning method. Beijing: Tsing Hua University Press,
2012.

[17] D. H. Wu, “Dynamic compensating method for transducer based on flann
inverse system constructed by ls-svm,” Journal of Data Acquisition and
Processing, vol. 22, no. 3, pp. 378–383, 2007.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[19] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, 1 1999.

Changqiao Wu received his B.Sc. degree in 2016 from Huazhong University
of Science and Technology. Now he is a Master in Shanghai Jiao Tong
University. His main research interests include intelligent measurement and
control.


