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 
Abstract—The vast majority of existing underground railway 

lines consist of twin tunnels. In this paper, the dynamic interaction 
between two neighboring tunnels in a layered half-space is 
investigated by an analytical model. The two tunnels are modelled as 
cylindrical thin shells, while the soil in the form of a layered half-
space with two cylindrical cavities is simulated by the elastic 
continuum theory. The transfer matrix method is first used to derive 
the relationship between the plane wave vectors in arbitrary layers 
and the source layer. Thereafter, the wave translation and 
transformation are introduced to determine the plane and cylindrical 
wave vectors in the source layer. The solution for the dynamic 
interaction between twin tunnels in a layered half-space is obtained 
by means of the compatibility of displacements and equilibrium of 
stresses on the two tunnel–soil interfaces. By coupling the proposed 
model with a fully track model, the train-induced vibrations from 
twin tunnels in a multi-layered half-space are investigated. The 
numerical results demonstrate that the existence of a neighboring 
tunnel has a significant effect on ground vibrations. 
 

Keywords—Underground railway, twin tunnels, wave translation 
and transformation, transfer matrix method.  

I. INTRODUCTION 

ANY underground railway lines have been constructed 
to alleviate the urban traffic congestion. Comparing to 

the road traffic, the underground railway has many 
advantages, such as efficiency, energy conservation, safety 
and comfort. However, ground-borne noise and vibrations 
induced by underground railway traffic have been recognized 
as an important environmental issue. Owing to wheel and 
track irregularities, vibrations generated at the wheel-rail 
interface propagate to adjacent buildings, which may annoy 
the surrounding residents. Therefore, it is necessary to develop 
an accurate and efficient model for designers to predict the 
vibration levels induced by underground railways. 

With the improvement of calculation ability, some 
numerical models have been established to compute train-
induced vibrations from underground tunnels, such as the 
periodic FE–BE method [1]-[3], two-and-a-half-dimensional 
(2.5D) coupled FE–BE method [4]-[8], 2.5D finite/infinite 
element method [8]-[10]. 

As an alternative to the numerical methods, the analytical 
methods have the advantage of high computational efficiency. 
For example, the pipe-in-pipe (PiP) model developed by [11], 

 
Chao He and Peijun Guo are with the Department of Civil Engineering, 

McMaster University, Hamilton, ON L8S 4L7, Canada, (e-mail: 
chaohe1990@gmail.com, guop@mcmaster.ca). 

Shunhua Zhou is with the Shanghai Key Laboratory of Rail Infrastructure 
Durability and System Safety, Tongji University, Shanghai, 201804, China, 
(e-mail: zhoushh@tongji.edu.cn). 

[12] is an analytical approach with high computational 
efficiency. Hussein et al. [13] extend this model to consider 
the influence of the ground surface and layer interfaces, while 
[14], [15] advanced their results to investigate the influence of 
pore water in soils. He et al. [16] recently proposed an 
analytical model to predict vibrations from a tunnel in layered 
half-space by using the wave transformation and transfer 
matrix method. 

It should be noted that only one tunnel was considered in 
the above studies. However, most underground railway lines 
around the world consist of twin tunnels, used for the 
outbound and inbound directions, respectively. Based on the 
PiP mode, [17] proposed a superposition model to calculate 
ground vibrations from twin tunnels in a homogeneous full-
space. Based on the BE method, [18] established the 
superposition and fully coupled models to compute ground 
vibrations from twin tunnels in a homogeneous half-space. 
However, the discretization of the tunnel-soil interfaces is 
required in those models, which increases computational 
efforts. He et al. [19] recently proposed an analytical model to 
analyze the effect of the dynamic interaction between twin 
tunnels in a full-space. A virtual interface along with the 
transformation between plane and cylindrical waves was 
introduced to address the dynamic interaction between twin 
tunnels. However, this model cannot be applied to the layered 
half-space because the infinitely long virtual interface will be 
cut off by the ground surface and layer interfaces. 

This paper develops an efficient analytical model for 
predicting the ground vibrations from twin tunnels in a layered 
half-space. To solve the problem of multiple scattering of 
waves induced by the two cylindrical cavities, layer interfaces 
and ground surface, the transfer matrix method is first used to 
deal with wave propagation in layered medium. By using the 
translation between two different cylindrical waves and 
transformation between plane and cylindrical waves, the 
solution for the dynamic interaction between two neighboring 
tunnels in a layered half-space is obtained by means of the 
continuous conditions at the tunnel–soil interfaces. 

II. GOVERNING EQUATIONS AND GENERAL SOLUTIONS 

As illustrated in Fig. 1, the Q + 1 soil layers with an infinite 
domain are simulated as a 3D isotropic elastic solid. The two 
parallel tunnels are embedded in the S-th layer (source layer). 
The subscripts R and L represent the tunnels on the right-hand 
side (Tunnel 1) and left-hand side (Tunnel 2), respectively. 
The twin tunnels are separated by a distance dt, with Tunnel 2 
located at an angle θt from Tunnel 1. Two cylindrical 
coordinate systems, (rR, θR, z) and (rL, θL, z), are centered on 
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Tunnels 1 and 2, respectively, and oriented clockwise. Two 
corresponding Cartesian coordinate systems, (xR, yR, z) and 
(xL, yL, z), are also defined at the same origins. Moreover, x(q) 
denotes the local vertical coordinate of the soil layer Lq. The 
origin of x(q) for the layer above the source layer (q < S) begins 
from its lower interface, while it begins from its upper 
interface for the layer under the source layer (q > S). 

 

 

Fig. 1 3D geometry of twin tunnels embedded in a multi-layered half-
space 

 
The basic assumption underlying in this modelling process 

is that the geometries of the twin tunnels and soil are 
longitudinally invariant. Therefore, the proposed model can be 
derived in the frequency and wavenumber domains via the 
following Fourier transforms [20]: 

 

     (1) 

 
The transfer matrix method developed by [21] and [22] is 

introduced to derive the solution for wave propagation in the 
multi-layered soil. Since the main derivation process is similar 
to that in [16], only a brief introduction is presented here. If 
the tunnel is not situated at the q-th layer (i.e. q ≠ S), the 
displacement and stress components can be expressed in the 
frequency–double wavenumber domain as: 

 

     (2) 

 

where the expressions of the sub-matrixes , , , 

, , and  are provided in Appendix A. 

 and 

represent the unknown coefficient vectors associated with the 
down- and up-going plane waves, respectively, in the layer Lq. 

According to the transfer matrix method [16], the unknown 
coefficient vectors  and  in LS–1 are related via: 

 

      (3) 

 
with 

          (4) 

 

Similarly, the unknown coefficient vectors  and 

 in LS+1 are related via: 
 

     (5) 

 

where the expressions of the sub-matrixes  and  are 

provided in [16]. 

A. Solution for the Source Layer 

The total wave field in the source layer LS consists of the 
down- and up-going plane waves and two types of outgoing 
cylindrical waves. Therefore, the displacement and stress 
components in LS are expressed in the frequency–wavenumber 
domain as: 

 

  (6a) 

 

   (6b) 

 

where the expressions of the wave functions , , , 

, , and  are provided in [19]. Furthermore,  

represents the unknown coefficients corresponding to those 
outgoing cylindrical waves. 

In order to handle the continuity conditions on the upper 
and lower interfaces of the source layer LS, the outgoing 
cylindrical wave functions need to be expressed in the 
Cartesian coordinate system. By introducing the integral 
representations of the Hankel function of the first kind [23], 
those cylindrical waves in LS can be transformed into the 
down- and up-going plane waves, as follows: 

 

  (7) 

 

where  for j = 1, 2 and  for j = 3, with 

i( + )ˆ ( , ) ( , )e d dzk z t
zf k f z t z t

 

 

  

T
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , )

( , , ) ( , , ) ( )

( , , ) ( , , ) ( )

q q q q q q q
q y z x y z xx xy xz

q q q q
d y z u y z d q d
q q q q

d y z u y z u q u

x k k u u u

k k k k x

k k k k x

   

 
 

    
     

      
        

Ω

D D E 0 A

S S 0 E A

      

( )q
dD ( )q

uD ( )q
dS ( )q

uS
( )q
dE ( )q

uE
T( ) ( ) ( ) ( )

1 2 3
q q q q

d d d dA A A   A
T( ) ( ) ( ) ( )

1 2 3=q q q q
u u u uA A A  A

( 1)S
d

A ( 1)S
u

A

( 1) (1) (1) 1
21 11

(1) (1) ( 1) ( 1)
22 12

= ( )

×( )

S
d d d d

S S
d d d u d u

 

 

 

 

A R T T

R T T A Q A

1(1) (1) (1) (1)
1 1= ( ) ( )d d d u uh h


   R S E S E

( 1)S
d

A
( 1)S
u

A

1( 1) ( 1) ( 1) ( 1) ( 1)
21 22=S Q S S

d u u u u
Q

u

       A T T A Q A

( )q
dijT ( )q

uijT

3
( ) ( ) ( ) ( ) ( )

1

3

1

ˆ ˆ1ˆ ( , , , )+ ( , , , ) d
2π

ˆ ˆ( , , , ) ( , , , )

S S S S S
dj dj R y z uj uj R y z y

j

N
R R L L
nj nj R R z nj nj L L z

n N j

A x k k A x k k k

B r k B r k

 

   





 

    

   



 

u

χ χ

 

 

 

3
( ) ( ) ( ) ( ) ( )

1

3

1

1 ˆ ˆˆ ( , , , )+ ( , , , ) d
2π

ˆ ˆ( , , , ) ( , , , )

S S S S S
dj dj R y z uj uj R y z y

j

N
R R L L
nj nj R R z nj nj L L z

n N j

A x k k A x k k k

B r k B r k

 

   





 

    

   



 

σ ψ ψ

η η

 

 

( )ˆ S
dj
 ( )ˆ S

u j
 ( )ˆ S

djψ

( )ˆ S
ujψ ,ˆ R L

njχ ,ˆ R L
njη ,R L

njB

, , ( ) ( )
, ,

, , ( ) ( )
, ,

ˆ1
( , ) 2 ( , ) / d , 0

2π

ˆ1
( , ) 2 ( , ) / d , 0

2π

R L R L S S
nj R L R L unj uj R y xj y R

R L R L S S
nj R L R L dnj dj R y xj y R

r T x k k k x

r T x k k k x













 

 





χ

χ









( ) ( )S S
xj xsk k ( ) ( )S S

xj xpk k



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:14, No:7, 2020

241

 

 

 (8) 

 
By substituting (7) into (6), the displacement and stress 

components in LS can be expressed in the Cartesian coordinate 
system (xR, yR, z). Thereafter, by applying the continuity 
conditions on the upper (xR = ht1) and lower (xR = – ht2) 

interfaces of LS, the unknown coefficients  and  can be 

expressed in terms of : 
 

            (9) 

 
with 
 

     (10) 

 

where the expressions of the 3 × 3(2M + 1) sub-matrices 

, , , and  are provided in Appendix A. 

To impose the boundary conditions on the twin tunnel–soil 
interfaces, two problems need to be solved. Firstly, the down- 
and up-going plane wave functions should be expressed in the 
cylindrical coordinate system, which can be achieved by the 
following wave transformation [23]: 

 

          (11) 

 

where the regular cylindrical wave functions  can easily 

be obtained by replacing the Hankel function  with a 

Bessel function  in the corresponding outgoing cylindrical 
wave functions. 

Secondly, the cylindrical wave functions induced by the 
two different cavities should be expressed in the same 
cylindrical coordinate system. This requirement can be 
satisfied the addition theorem [24], [25], by which, the 
translation between two different cylindrical waves is given by 

       (12a) 

 

       (12b) 

 

where  for j = 1, 2 and  for j = 3, with 

 

         (13) 

 
By substituting (11) and (12a) into (6), the displacement 

and stress components in the source layer LS are expressed in 
the cylindrical coordinate system (rR, θR, z) as: 
 

  (14) 

 
Similarly, the combination of (6), (11), and (12b) gives the 

expressions of the displacement and stress components in the 
cylindrical coordinate system (rL, θL, z): 
 

  (15) 

 
where the regular cylindrical wave functions for stresses 

 are also obtained by replacing the Hankel function 

 with a Bessel function  in the corresponding 

outgoing cylindrical wave functions.  
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circumferential mode m. , with I3 being the 

identity matrix of size 3 × 3. 
The twin tunnels, which are considered as cylindrical thin 

shells with mean radii aR,L and thicknesses hR,L, are simulated 
by Flügge shell equations [26] The solution for the cylindrical 
shell can be obtained following the derivation of the method 
proposed by [19], which is expressed as 

 

       (16) 

 

where  is a 3 × 3 coefficient matrix, and the expressions 

of its components were given by [19]. ER,L and νR,L are 
Young’s modulus and Poisson’s ratio of the twin tunnels, 

respectively.  and 

 represent the displacement and stress 

components for each m, respectively, while 

 represent the load components applied to 

the inside surface of shell. For a unit point load with a 
frequency f0 and velocity v0 is radially applied to the shell at 
the tunnel invert, the expression of the load is as follow: 
 

  (17) 

 
On the inside surfaces of the twin tunnels, the stresses are 

equal to the applied loads, while on the two tunnel–soil 
interfaces, the displacements and stresses of the soil and 
tunnels are continuous. Therefore, for the shell model, the 
combination of (16) and (17) yields the following system 
equation for each m: 

 

    (18) 

 

The unknown coefficients  can be calculated by (18) 
and (17) along with (14) and (15) for each m. The unknown 
coefficients  and  in the source layer LS are then 

determined from (9), while the unknown coefficients  and 

 for the other layers can be calculated by the transfer 

matrix method [16]. Once these unknown coefficients have 
been determined, the dynamic response at an arbitrary 
observation point due to the unit moving harmonic load 
applied to the tunnels can easily be calculated using (2) or (6) 
in the frequency–wavenumber domain. The results in the time-
space domain can be obtained by applying the inverse Fourier 
transform to the solution in the frequency–wavenumber 

domain. 

III. NUMERICAL RESULTS AND DISCUSSION 

A. Numerical Validation 

In this section, the accuracy of the proposed model is 
verified by means of a numerical case. Two side-by-side 
tunnels embedded in a three-layered half-space are considered 
in this case. As illustrated in Fig. 2, the two tunnels with a 
mean radius of 2.875 m and thickness of 0.25 m are located at 
a depth of 20 m in the second layer. The distance between the 
twin tunnels is equal to 10 m. The thicknesses of the first and 
second layers are 5 and 20 m, respectively. By setting the 
material parameters of each layer to have identical values, the 
three-layered half-space degenerates into a homogeneous half-
space. The parameter values used to model the soil and tunnels 
are the same as those provided in [18]. 

 

 

Fig. 2 Two side-by-side tunnels embedded in a three-layered half-
space 
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Fig. 3 Vertical displacements ux at points (a) (xR = 20 m, yR = 0 m, z = 
0 m), (b) (xR = 20 m, yR = 0 m, z = 10 m), (c) (xR = 20 m, yR = – 10 m, 

z = 0 m), and (d) (xR = 20 m, yR = – 10 m, z = 10 m) induced by a 
harmonic load applied to the base of the right-hand tunnel 

 
Fig. 3 compares the vertical and horizontal displacements 

calculated by the existing fully coupled model and present 
analytical model at four points on the ground surface. In 
general, good agreements are obtained, indicating the reliable 
accuracy of the proposed model. 

B. Effect of a Neighboring Tunnel on Ground Vibrations 

In this section, the proposed model is applied to investigate 
effect of a neighboring tunnel on ground vibrations. As 
illustrated in Fig. 2, two side-by-side tunnels embedded in a 
three-layered half-space are considered. The twin tunnels are 
situated at a depth of 20 m in the second layer and separated 
by a distance of 10 m. The parameter values defining the 
properties of the tunnels and soil are presented in Tables I and 
II. 

TABLE I 
PARAMETER VALUES DEFINING THE PROPERTIES OF THE TWO TUNNELS 

Young’s modulus, ER,L 5×1010 N/m2 

Poisson’s ratio, νR,L 0.3 

Density, ρR,L 2500 kg/m3 

Radius, aR,L 3 m 

Thickness, hR,L 0.25 m 

Material damping ratio, βt 0.015 

Distance between two tunnels, dt 10 m 
Angle between the vector from Tunnel 1 to Tunnel 2 and x-

axis, θt 
π/2 

 
TABLE II 

PARAMETER VALUES DEFINING THE PROPERTIES OF THE SOIL 
Layer 

thickness, 
hq (m) 

S-wave 
velocity, 
Cs (m/s) 

P-wave 
velocity, 
Cp (m/s) 

Density, 
ρ 

(kg/m3) 

Material 
damping 
ratio, βs 

5 100 200 1800 0.02 

20 200 400 1800 0.02 

∞ 300 600 1800 0.02 

 
A fully track model is coupled with the proposed twin–

tunnel model to account for the dynamics of the track 
structure. As illustrated in Fig. 4, the two rails and slab are 
simplified as a single Euler–Bernoulli beam of infinite length. 
The rail pads and slab bearings are modelled as a series of 
springs with continuous supports. The detailed derivation 
process for the full track model can be found in [12]. The 
parameter values used to simulate the track structures that 
consist of a directly-fixed slab and two UIC 50 rails are 
summarized in Table III. 

 
TABLE III 

PARAMETER VALUES DEFINING THE PROPERTIES OF THE FULL TRACK 

Bending stiffness of two rails, ErIr 10 × 106 Pa·m4 

Loss factor of rails in bending, ηr 0.03 

Mass of two rails per unit length, mr 100 kg/m 

Normal stiffness of rail pads, krp 40 × 106 N/m2 

Loss factor of rail pads, ηrp 0.1 

Bending stiffness of slab, EsIs 1.43×109 Pa·m4 

Mass of the slab per unit length, ms 3500 kg/m 

 

Fig. 4 Geometry of a fully track system in a circular tunnel 
 

Fig. 5 compares the vertical displacement fields on the 
ground surface calculated by the single– and twin–tunnel 
models. The excitation is a unit, harmonic, vertical point load 

with a frequency of f0 = 50 Hz. The waves generated at the 
rails propagate through the tunnel and soil, resulting in 
Rayleigh waves on the ground surface of the layered half-
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space. The wave fronts on the ground surface are not 
cylindrical, which is a result of the dynamic interaction 
between the soil and tunnels. In the single–tunnel model, the 
vertical displacement field is symmetric about the yR-axis. 
Therefore, the vertical displacement is equal in terms of both 
magnitude and direction. It can be observed from Fig. 5 (b) 
that the existence of the second tunnel disrupts this symmetry 
and alters the displacement field distribution, resulting in an 
IG of ± 20 dB. 

 

 

Fig. 5 Vertical displacement fields on the ground surface induced by 
the harmonic load with a frequency of f0 = 50 Hz on the rails, as 

calculated by (a) a single–tunnel model and (b) a twin–tunnel model. 
The corresponding IG is shown in (c) 

 

Fig. 6 presents the vertical displacements at four 
observation points on the ground surface as a function of the 
load frequency. It can be observed from Fig. 6 that the 
influence of the dynamic interaction between twin tunnels 
highly depends on the frequency. In the low–frequency range, 
the wavelength is larger than the diameter of the second 
tunnel, resulting in less energy being reflected by this tunnel. 
Therefore, the vibration levels of the single– and twin–tunnel 
models are similar. As the frequency increases, more energy is 
reflected by the second tunnel, resulting in an IG of ± 20 dB. 

 

 

 

Fig. 6 Vertical displacements at points (a) (xR = 20, yR = 0 m, z = 0 
m), (b) (xR = 20, yR = –5 m, z = 0 m), (c) (xR = 20, yR = –10 m, z = 0 
m), and (d) (xR = 20, yR = –20 m, z = 0 m) induced by the harmonic 
load on the rails, as calculated by the single–tunnel model (–––) and 

twin–tunnel model (- - -) 
 
Next, the influence of the soil layering on the dynamic 

interaction between twin tunnels is investigated. Three 
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examples are considered by changing the shear wave velocity 
of one soil layer while maintaining this parameter constant for 
the other two layers. The shear wave velocity Cs = 200 m/s is 
selected as a reference. A 50% variation in the shear wave 
velocity is imposed to make the soil stiffer or softer. 

Figs. 7-9 present the vertical displacements of the twin–
tunnel model and corresponding IG values between the two 
tunnel models at the point (xR = 20, yR = –10 m, z = 0 m) for 
the three examples. In the low–frequency range, the vertical 
displacement amplitude decreases as the shear wave velocity 
of any soil layers increases. Since the soil response is mainly 
quasi–static in the low–frequency range, the soil with a higher 
shear wave velocity (i.e. higher stiffness) has a lower 
displacement amplitude. As the frequency increases, the 
vertical displacement curves become quite complex due to the 
dynamic tunnel–soil interaction. 

The effect of the soil layering on the dynamic interaction 
between twin tunnels can also be observed in Figs. 7-9. The 
IG values tend to decrease as the soil stiffness increases. 
However, the effects of the soil stiffness of different layers on 
the dynamic interaction between twin tunnels are different. 
The stiffness of the soil above the tunnels and in which the 
tunnels are embedded has a significant impact on the dynamic 
interaction between two neighboring tunnels, while the 
influence of the stiffness of the soil beneath the tunnels on the 
dynamic interaction between twin tunnels is small. 

 

 

Fig. 7 (a) Vertical displacements of the twin–tunnel model and (b) 
corresponding IG at the point (xR = 20, yR = –10 m, z = 0 m) with 

different stiffness of the first layer:  = 100 m/s (–––),  = 200 

m/s (- - -), and  = 300 m/s (—·—) 

 

 

Fig. 8 (a) Vertical displacements of the twin–tunnel model and (b) 
corresponding IG at the point (xR = 20, yR = –10 m, z = 0 m) with 

different stiffness of the second layer:  = 100 m/s (–––),  = 

200 m/s (- - -), and  = 300 m/s (—·—) 

 

 

Fig. 9 (a) Vertical displacements of the twin–tunnel model and (b) 
corresponding IG at the point (xR = 20, yR = –10 m, z = 0 m) with 
different stiffness of the third layer:  = 100 m/s (–––),  = 

200 m/s (- - -), and  = 300 m/s (—·—) 

IV. CONCLUSIONS 

This paper proposed a theoretical model to investigate the 
influence of the dynamic interaction between twin tunnels on 
ground vibrations. The transfer matrix method was first used 
to derive the relationship between the plane wave vectors in 
arbitrary layers and the source layer. The wave translation and 
transformation were then introduced to determine the plane 
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and cylindrical wave vectors in the source layer. By applying 
the compatibility of displacements and equilibrium of stresses 
on the two tunnel–soil interfaces, the solution for the dynamic 
interaction between twin tunnels in a multi-layered half-space 
was finally obtained.  

The accuracy of the proposed model was verified by means 
of comparison with existing models. The train-induced 
vibrations from two side-by-side tunnels in a three-layered 
half-space were investigated. The numerical results 
demonstrate that the effect of the dynamic interaction between 
twin tunnels on the ground vibration levels, which highly 
depends on frequency and observation point, is significant. 
The stiffness of the soil above the tunnels and in which the 
tunnels are embedded has a significant impact on the dynamic 
interaction between two neighboring tunnels, while the 
influence of the stiffness of the soil beneath the tunnels on the 
dynamic interaction between twin tunnels is small. 
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APPENDIX A 

1. The sub-matrixes , , , , , and  in 

Lq take the forms 
 

    (19) 

 

       (20) 

 

                          (21) 

 

                          (22) 

 

2. The 3 × 3(2M + 1) sub-matrixes , , , and 

 take the forms 
 

      (23) 

 
with 
 

         (24) 

 

(25) 
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