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     Abstract⎯ In this paper, a novel approach for robust 
trajectory tracking of induction motor drive is presented. By 
combining variable structure systems theory with fuzzy logic 
concept and neural network techniques, a new algorithm is 
developed. Fuzzy logic was used for the adaptation of the 
learning algorithm to improve the robustness of learning and 
operating of the neural network. The developed control 
algorithm is robust to parameter variations and external 
influences.  It also assures precise trajectory tracking with the 
prescribed dynamics. The algorithm was verified by 
simulation and the results obtained demonstrate the 
effectiveness of the designed controller of induction motor 
drives which considered as highly non linear dynamic 
complex systems and variable characteristics over the 
operating conditions. 
 
     Keywords⎯ Induction motor, fuzzy-logic control, neural 
network control, indirect field oriented control. 
 

I. INTRODUCTION 
 

n lieu of the advances in power electronics and 
microprocessors, digitally controlled induction motor 
drives have become increasingly popular. In many 

industrial drives advanced digital control strategies for the 
control of field-oriented induction motor drives with a 
conventional speed PID controller, have gained the widest 
acceptance in high performance AC servo systems, if the load 
changes are small and the operating conditions do not force 
the system too far away from the linear equilibrium point.  
However, in certain applications, such as steel wills, paper 
wills, robotics, machine tools, the drive operates under a wide 
range of lead change characteristics and the system parameters 
vary substantially. To overcome this drawback, the control 
algorithm should include a complicated computation process 
to eliminate the variations in the load disturbance  
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and systems parameters and also obtain high performance AC 
system. However, the control algorithms applicable to these 
systems have become increasingly more complicated, 
requiring extensive computations for real-time 
implementation. In recent years, Artificial Neural Network 
intelligent (ANN) and Fuzzy Logic Controllers (FLC) have 
gained great important and proved their dexterity of many 
respects [2,3]. In this field several works have been presented 
[7,8,9,12,13].  It has great potential using to    neural topology 
does not need the mathematical model of the system to be 
controlled. In modelling and control of dynamical systems, 
many different versions of neural network structures are used.  
Since the late 1990s, several applications using neural 
networks for the compensation of the non linearity caused by 
the influence of disturbances, i.e. load or parameter variations 
were described [1,2,3]. Combination of different artificial 
intelligent technologies in the control field found interesting 
and efficient applications [4,6]. In fact, neural network have 
several attributes that make them an interesting new 
alternative to control an induction motor: one attribute is their 
highly parallel structure if networks with a higher number of 
hidden layers are used. All the neurons in a layer can compute 
simultaneously to enhance the speed. Another attribute is the 
simplicity of the required computations performed by each 
neuron of the network.  In this study, Multi-Layer Perceptron 
(MLP) neural networks using the back-propagation learning 
rule were used to identify  the process model. The control 
signal is then calculated iteratively according to the responses 
of a reference model and the identified neural model of the 
process. A fuzzy logic block is added to improve the overall 
loop properties. The paper is structured as follows. Section 2 
describes a mathematical of induction motor drive; Section 3 
gives the structure of the proposed control scheme. The 
recurrent NN identifier and fuzzy PD control design are 
discussed in sections 4,5 and 6. Section 7 and 8 provide the 
simulation results and conclusions, respectively 
 

II. INDUCTION MOTOR MODEL 
 
Using the Park transformation ( e.g. Vas., 1990), the three-
phase stator windings (sA,sB,sC) can be transformed into 
equivalent quadratic-phase windings ( Sd,Sq).  The AC motor 
dynamic models are described by a set electrical and 
mechanical non-linear differential equations ( Marino, Peseda 
and Valigi, 1993). 

I 
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where i, u,ψ denote current, voltage and flux linkage 
respectively. Subscripts r and s stand for rotor and stator. ωr is 
the rotor speed, d and q denote direct and quadratic 
components of the vectors with respect to the fixed stator 
reference frame , L and R are the auto-inductances and 
resistances, M is the mutual inductance and TL  is the load 
torque. In the following, we plan to design an fuzzy-neural 
controller which should stabilize the system and cause y(t) to 
track a bounded reference r(t) asymptotically. In order words, 
the aim is to determine the control input u(t) for all  t ≥ t0  , so 
that ε lim ≤−

∞→
ω(t) t)ω (r

t
    , for some specified constant  ε 

≥ 0 
 

III. THE PROPOSED CONTROL SCHEME 
 
Figure 1. depicts the bloc diagram of the proposed closed-loop 
control scheme. The reference input signal is ωr.  A Recurrent 
Neural Network Indentifier (RNNI) was used to determine on-
line an approximate current non linear model of the unknown 
motor dynamics. The  Recurrent Neural Network controller  
(RNNC) was used to produce an adaptive control so that the 
motor speed can accurately track the reference commnde wr. 
The control signal unet is combinated with the output signal 
ufuzzy of  the Fuzzy-Logic (FLC)  to produce the actual plant 
input signal  u. The widely used back-propagation learning 
algorithm, in order to automaytically the parameters of the 
RNNI and RNNC. The control goal is that the plant output w, 
follows as closely as possible the out signal ym of the reference 
model. The reference model of the plant is an ideal model that 
has the desired characteristics related to the rise time, 
overshoot, steady-state error, etc. 
 

                 IV. RECURRENT NEURAL NETWORK IDENTIFIER 
We constructed a neural network to estimate the unknown 

parameters to resolve the above difficulty. First, we assumed a 
plant expressed as: 
 
   ( )m)(k iqs1),...,(k iqs), 1nk ω( ,..., 1)(k ω f ω(k) −−+−−=             (4) 
 
where f is an unknown non linear function we  want to 
identify,  ω and iqs are the output and input of the plant 
respectively , n and  m are the order of the  ω and iqs. We now 
consider the identification of the unknown function f based on 
neural network. The network structure of the proposed RNNI 
is shown in fig.3. Such a neural network contains three layers: 
input layer; hidden layers and output layer. Each layer is 
composed of several neurons. The number of the neurons in 
the input and output layers depends on the number of the 
selected input and output variables. The numbers of hidden 

layers and the number of neurons in each depend on the 
system dynamics and the desired degree of accuracy. In 
Artificial neural network applications, selection of the number 
of neurons in the input layer is an important aspect. A trial-

Fig.1 Block diagram representation of the adaptation learning  
control scheme 

Fig. 3 Architecture of three-layer neural network 
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and-error basis [5], can be used to select a proper of the hidden 
neurons. All the neurons in adjacent layers are interconnected. 
The strength of the interconnected is determined by the 
weighting vector of the Neural Network (NN). The most 
common method of NN training is back error propagation 
algorithm [6]. The algorithm is based on the gradient search-
technique that minimizes a cost function of the Mean Squares 
Errors (MSE). The weights wij of the interconnections 
between two adjacent layers can be updated on the following 
formula [5,6].   

           )( w
E η )( w )( w

k
k1k

ij
ijij ∂

∂++ =                                (5) 

where η is a prescribed learning rate and k is the iteration 
number, subscripts i, j indicate the i-th node in the input layer 
and the j-th node in the hidden layer respectively.  The cost 
function E for training the neural network is defined as: 
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where O neuron output, d is desired or set-value, K  is number 
of the neurons in the output layer and P is the number of the 
training patterns. In all learning process bipolar sigmoidal 
activation function has been used. This activation function is 
non linear and very useful for continuous training scheme. It is 
defined as:   
 

            )λexp( 1
1 )g(jΟ

j
j Net  Net −==

+
                          (7) 

 
λ  is a  positive number called as steepness coefficient. This 
parameter is very important in learning procedure and lies 
down between one and infinity theoretically. 
 

        V. RECURRENT NEURAL NETWORK CONTROLLER 
 
The structure of the Neural Network Controller (RNNC) is 
similar to one of the Neural Network Identifier (RNNI). The 
objective of RNNC is to develop a back-propagation 
algorithm such that the output ω(k) of the plant can track the 
reference command ωr(k). An Integral Proportional  (IP) 
controller is adapted in the speed control loop to calculate the 
next value of u using the current iterative value of u, as well as 
the current and previous iterative values of the error e(k+1). 
The iterative calculation of the control signal is given by: 
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Where kP and kI  are the integral–proportional parameters. We 
need to train ten neural network identifiers to model the Input-
Output behaviour of the plant and to iteratively calculate the 
control value, so as to get a small expected error e, during 
each sampling period tk. Hence, the tracking problem now, 
becomes that of adjusting the weights of the RNNC such that: 

           2) (k)ω(k)rω ( 2
1  (k)cE

Net
−=                                    (10) 

is minimised.  

Using the gradient method, the related weights for the RNNC 
are calculated. The update rule of weights becomes:   

         )(V 
E η )(V  )( 
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ccijij ∂
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Where ηc is the learning rate of the RNNC. 
 

  VI. FUZZY  PD  CONTROLLER DESIGN 
 
 The main preference of the fuzzy-logic is that is easy to 
implement and that it has the ability of generalization. The 
basic configuration of the fuzzy-logic system is shown in 
figure 4. 

Fuzzy controllers are based on four well known stages.  The 
fuzzification stage takes crisp numerical values and 
determines their degree of membership in each collection of 
sets which are given linguistic labels that are meaningful in 
terms of the problem to be solved. The second part is the fuzzy 
rule base which expresses relations between the input fuzzy 
sets A and B and the output fuzzy sets C in the form of:  ‘ IF A 
and B THEN C’. The fuzzified inputs are combined using 
these rules in the third part, the fuzzy inference engine. This 
produces a combined fuzzy output set. The final part, the 
defuzzifier produces a crisp output from the combined fuzzy 
output set. Inputs and the output are non-fuzzy values. In this 
work, a simple Proportional-Derivative (PD) speed control 
scheme was implemented and used to assess the basic 
performance of the system.  The output of the fuzzy controller 
uf(k) is given by: 
 
             ( )(k)(k)  ce  e  (k)u  ff F −=                                         (12) 
 
Where Ff is a non linear function determined by fuzzy 
parameters, e(k), ce(k) are the error and change-of-error 
respectively.  
A type of those controllers is fuzzy PD controller whose input 
is the error e(k). 
 
                    e(k) = ωr(k) - ω(k)                                                             (13) 
where ωr(k) is the output signal of the reference model and 
ω(k)  is the process output at time k. The control goal is that the 
plant output signal ω(k) follows as closely as possible the 
output signal ωr(k) of the reference model. The reference model 
of the plant is an ideal model that has the desired 
characteristics related to the rise-time, steady-state error. The 
input-output dynamics of the reference model were assumed 
to be given by the following second-order model 

Fig. 4 Basic configuration of the fuzzy logic system 
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        ωr(k+1)=a1 ωr(k) + a2 ωr(k-1)  + r(k)                                  (14) 
 
The constant coefficient in the equation (14) were chosen to 
guarantee bounded-input bounded-output stability and the 
steady-state reference track is dictated by the amplitude and 
functional form of the input r(k) to the reference model. For 
the proposed fuzzy controller, the universe of discourse is first 
partitioned into the five linguistic variables NB, NS, ZE, PS, 
PB, triangular membership functions are chosen to represent 
the linguistic variables. Fig. 5 and Fig. 6 show the membership 
functions and the output of the fuzzy controller is illustrated in 
Fig. 7 

 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
             TABLE I THE FUZZY CONTROL RULES 
 

e \ ce NB NS ZE PS PB 

NB NB NB NS PB PS 

NS ZE NS ZE PS ZE 

ZE PB PB ZE PS NB 

PS ZE PS PB NS NB 

PB PB PS NS NS NB 

                  
The labels NB, NS, PB, PS, and ZE denote ‘Negative Big’, 
‘Negative Small’, ‘Positive Big’, ‘Positive small’ and Zero, 
respectively. The max-min inference method was used and the 
defuzzification  was based on the centre of area method. 
 

VII. SIMULATION RESULTS 
 
The parameters of the induction motor considered in this study 
are summarized in appendix. The performances of the 
proposed controllers are evaluated under a variety of operating 
conditions. The use of both neural network functions with 
fuzzy compensation yielded satisfying results. The controller 
algorithm is housed inside the personal computer with 
Pentium-IV microprocessor and all numerical values of the 
simulation model are obtained either by measurements or 
identification from laboratory experiments. The software 
environment used for these simulation experiments is Matlab 
Ver. 6.5, with Simulink package and numerical integration is 
done by the Runge-Kunta 4 algorithm. The reference discrete 
model with good performance and realisation for a motor 
speed control system can be chosen as:     
 
                ωr(k+1) = 0.48 ωr(k) + 0.25 ωr(k-1) + r(k)               (15) 
 
For all simulations performed in this study, the initial values 
for the adjustable parameters (weights and biases) of both 
networks are randomized using the Nguyen-Widrow algorithm 
[10]. The proportional and derivative parameters of the 
proposed control scheme are kp=0.52 and kd=0.01. The 
simulation results are given in fig.8 to fig.12. The plots of 
these figures show the performances as the combining NN-
FLB controller for a variety of step changes in the desired set-
point.  In the simulations, the learning rate of the recurrent 
neural network identifier and recurrent neural network 
controller scheme were set to η=0.2 using trial and error to 
obtain a good speed response. The number of feedward neural 
network scheme node uses one hidden layer, and the 
respective number of neurons at the input, hidden, and output 
layer are NN2x8x1. Basically, it represents an input-output non 
linear pattern matching network where the non linearity is 
introduced by hyperbolic-tan-type transfer function ϕ(.) at the 
hidden and output layer neurons. An external force of 4 [Nm] 
is applied to the the induction motor and the speed response is 
shown in fig. 9. As shown in fig.10, at t=0.8s, the reference 
speed is changed from 48 rad/s to 150 rad/s. At  t=2 s,  the 
reference speed is changed from 150 rad/s to 100 rad/s. In the 
next simulation, the NN-FLB is evaluated under combining 
trajectory of a square – triangular reference track. One can see 
from the fig.11 that the results were very successful and the 
obtained results confirm the validity of the proposed control 
scheme. In fig.12, one can observe the superior properties of 
the loop controlled by the NN-FLB control mechanism and the 
conventional controller such as the proportional, integral and 
derivative PID. 

Fig. 5 Membership functions of error 

Fig. 7 Membership functions of output signal 

Fig. 6 Membership functions of change in error 
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Fig. 11 Speed response of a square -  triangular 
reference track 
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Fig. 8 Speed response under no-load torque 
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Fig. 13 Neural network model prediction error 
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Fig. 10 Speed response following a variable reference 
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Fig. 9 Speed response with two load torque changes 
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VIII. CONCLUSION 
 

This paper has presented a fuzzy-neural network scheme for 
controlling the speed of induction motor. The system was 
analysed and designed, and performances were studied 
extensively by simulation to validate the theoretical concepts. 
A dynamical neural network is used to identify the plant on-
line and the control signal is then calculated iteratively 
according to the responses of a reference model and the 
identified neural model of the process. Theoretical analysis 
and simulation results demonstrated that the proposed control 
scheme could accurately and rapidly predict the induction 
machine dynamics. The proposed control scheme had a good 
speed response, regardless of parameter variations or external 
force. The resulting are promising and further studies on 
similar schemes will be carried out. 
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