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Abstract—This paper gives an intuition regarding glowworm
swarm optimization (GSO) technique to solve dynamic economic
dispatch (DED) problems of thermal generating units. The objective
of the problem is to schedule optimal power generation of dedicated
thermal units over a specific time band. In this study, Glowworm
swarm optimization technique enables a swarm of agents to split into
subgroup, exhibit simultaneous taxis towards each other and
rendezvous at multiple optima (not necessarily equal) of a given
multimodal function. The feasibility of the GSO method has been
tested on ten-unit-test systems where the power balance constraints,
operating limits, valve point effects, and ramp rate limits are taken
into account. The results obtained by the proposed technique are
compared with other heuristic techniques. The results show that GSO
technique is capable of producing better results.

Keywords—Dynamic economic dispatch, Glowworm swarm
optimization, Luciferin, Valve—point loading effect, Ramp rate limits.

1. INTRODUCTION

ED plays a significant role in power system operation

and control. This is considered as dynamic problem
owing to dynamic property of power system and the large
variation of load demand. This absolute problem is normally
solved by splitting the entire dispatch period into a number of
small time intervals. The load is assumed to be constant and
the system is considered to be in accurate steady state dynamic
model which finds the optimum generation schedule for the
generating units in real power system framework. The main
objective of the dynamic economic dispatch (DED) is to
minimizing the generation cost, subject to satisfy the physical
and operational constraints. In traditional economic dispatch,
the cost function is quadratic in nature. In practice, a
generating unit cannot exhibit a convex fuel cost function, so a
non-convex characteristic will observe owing to valve point
effect. Mathematically, DED problem with valve point effect
can be recognized as a nonlinear, non-convex and large scale
optimization problem with various complicated constraints,
which finds the optimal result dispatch a new challenge. DED
has been recognized as a more accurate problem than the
traditional economic dispatch problem. Many traditional
optimization techniques have been utilized to solve the DED
problems. The standard GSO is an efficient global search
technique because of its features of easy implementation,
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robustness to control parameter and computational efficiency.
It is easy to implement in most programming languages and
has been proved to be quite effective and reasonably quick
when applied to a diverse set of optimization problems. In this
paper, the GSO based DED algorithm has presented for the
determination of global or near global optimum dispatch
solution. mathematical techniques include linear programming
[1], decomposition approach (DA) [2], mixed integer
quadratic programming (MIQP) [3], Lagrange relaxation (LR)
[4], [5] and dynamic programming (DP) [6]. However, most
of the traditional techniques cannot lead to optimal solution on
the ground of their shortcomings in terms of problem
formulation, computation efficiency, and solution accuracy.
Wood and Wallenberg suggested dynamic programming, [7]
which does not impose any restriction on the nature of cost
curves. However, DP suffers from the “curse of the
dimensionality” and high computational time is required when
the power system is large. More interests have been
concentrated on the application of artificial Intelligence [Al]
technique for DED problems. Many methods such as genetic
algorithm (GA) [8], [9], simulated annealing (SA) [10],
evolutionary programming (EP) [11], Combining evolutionary
programming (EP) with sequential quadratic programming
(SQP) [12]-[14] have been used to solve DED problems
because they can give global or near global optimal solution.
Particle swarm optimization (PSO) [15]-[17], differential
algorithm (DE) [18], [19] and Clonal selection algorithm
(CSA) [20] may prove to be very effective in solving non-
linear economic dispatch problems without any restriction on
the shape of the cost curves. Although these heuristic methods
do not always guarantee discovering the global optimal
solution in finite time, they often provide fast, reasonable and
near global optimal solutions. All of these methods are
probabilistic rules to update their candidates’ positions in the
solution space. Social and cognitive factors are tuned using
nonlinear approach for obtaining optimal solution shown in
enhanced adaptive particle swarm optimization (EAPSO) [21].
Generally, heuristic methods are implemented for search
purpose in order to obtain global or near global optimal
solutions. More recently, another heuristic optimization
technique, GSO [22] have been developed by K.N.
Krishnanand and D. Ghose and the researchers have been
directed towards the application of GSO technique to solve the
complex optimization problems of power system engineering.

II. PROBLEM FORMULATION

The main objective of the DED is to determine the outputs
of all generating units to minimize the operating cost over a
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certain period of time under various physical and operational
constraints. The formulation of DED problem has expressed
as:

MinF= Y3 F(P,) M

t=1 i=l

The fuel cost function with valve point effect of the thermal
generating unit is expressed as the sum of a quadratics and
sinusoidal-function

Fil(Pit)zai +b|P| +Ci Pi2 +‘ei (Sin(fi(Pimin_Pi)j (2)

where, F total generating cost ($), N is number of generating
units, T is Numbers of hour in the time horizon, P, is power

output of iMunit at tinterval, F;, (P, )is the fuel cost i™ unit

in terms of its real power output P, at a time t,a;,b;,c; are

fuel cost coefficient of ithunit,ei and f, are valve point

coefficients of i unit, P, .
min
th

i unit. To minimize the aforesaid objective, the following
constraints should be satisfied.

is minimum real power output of

A. Real Power Balance

The vital constraint is related to real power balance ensuring
that at each time of scheduling, the total thermal power
generation is exactly equal to total demand plus total loss.

N
Zpit*PDt*PLt =0 (3)

where, Pp, is the total power demand during i" period and

P,_t is the total transmission loss during i" dispatch period. In

this paper transmission loss is not considered.

B. Real power operating limits

The power generation of each generator should lie between
its lower limits and upper limits, so that

P

itmin

<P <Py, Wheret=12...T 4)

Pit min and Pyt 0 are  the minimum and maximum power

t min 't max

generation of i" unit at t time interval.

C. Generator Unit Ramp Rate Limit

The range of actual operation of online generating unit is
restricted by its ramp rate limits. These limits can impact the
operation of generating unit. The operational decision at the
present hour may affect the operational decision at the later

hour due to ramp rate limits.

(a) When generation increases

Pit - Pi(tfl) < URi (5)

(b) When generation decreases

Pi{t—]) - Pit < DRi (6)

where i =1, 2 ...N, yr and DR;are ramp up and ramp down

rate limits of 1" generator respectively and these are
expressed in MW/h.

II. OVERVIEW OF GSO

Reference [22] developed a GSO based on the behavior of
glowworm (insects). The biological behaviors of the
movement of individuals (e.g. ants, honey bee swarm, fish
schools) within a group are the main observation in this
algorithm. This algorithm consists of agents, which discover
the search space and transmit the information regarding fitness
with respect to their correct position. The GSO algorithm
searches the agents in a group of individuals similar to the
other heuristic based optimization methods. All individuals in
a swarm approaches to the optimum or quasi-optimum
through its randomly chosen direction of luciferin. In GSO
algorithm, the search space composed N-dimensional agents
called glowworm. Initialize the glowworm randomly in the
search space. The position of glowworm iat time t is

X, (1) = (X, (t), X, (1) X (1)) . The GSO algorithm has
described by the set of variables such as position vector X; (t)
luciferin level [, (t) and neighborhood range r,(t). The number

of luciferin level associated with glowworm i at time t. To
update the current position of glowworm | , the fitness value of
the luciferin is given as:

L =0-plE-D+yIx®) O

where p :Luciferin. In decay constant whose value lies
between pe(0,1);y: Luciferin enhancement constant; j.
Objective function.

The individual glowworm I encodes the objective function
J(x;(t) at current position X;(t)into a luciferin values I;(t) and
broadcast the same within its neighborhood. The set of
neighborhood N;(t)is chosen according to higher luciferin

value within dynamic search space domain. The chosen
numbers of glow in the local decision range is given by

N = O-x 0] <riLo<of @)

where N, (t) <r;, I’c; is the local updated decision range. The
decision range is bounded by a circular sensor range
i it
rO<ry<r). jeN,; X, (t):Glowworm i"position at t
iteration; () -Glowworm ith luciferin at t iteration.

Each glowworm i selects a neighborhood glowworm j with

a probability (- These movements enable the glowworm
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into a disjoint subgroup which finds the multiple optimal
solutions to the objective function. The selection of the
neighborhood glowworm by using probability distribution is
given by

M -1 )
P (1) =
i 2 (L () =1 t))

keN;(t)

The updated luciferin movement is given by

X () —x; (t
X (t+1) =X (t)+s XO=xO (10)
[x;® =%
where S is called moving step size.
In the last phase, the fitness of luciferin within a dynamic
decision domain is upgraded in order to limit the range of

communication and the updated local decision range is given
by

rj (t+1) = minq r,, max 0.15(1) + an
B =[N; ()

r+1) : is the glowworm I'S local decision range at the (t +1)

iteration; [I: The neighborhood

.: The sensor range; N;:

threshold value; /3 : Constant parameter.

IV. IMPLEMENTATION OF GSO TO DYNAMIC ED

This section describes the implementation of GSO
algorithm for solving DED problems. This section deals the
implementation of the equality and inequality constraints of
DED problems when modifying each individual’s search
space in the GSO algorithm. For T intervals in the generation
scheduling periods, there are T dispatched for the N generating
units. An array of decision variable vectors can be expressed
as

Pii Pz -+ Pin
Pn: Py Py - Py

Pri Pra Py

where Pit is the real power output of i" generator att interval.

A. Initialization of Glowworm

In the initialization procedure, the candidate solution of
each individual (generating unit’s power output) is randomly
initialized within the feasible range in such a way that it
should satisfy the constraint given by (4). A component of a

candidate is initialized as Pit~U (P, . P ),where U is the

itmin, " it max
uniform distribution of the variables ranging in the interval of
(Pt min, Pitmax ) -

itmin, " it max

B. Fitness Function Evaluation

The fitness value of individual 1 is calculated the following
(2). The number of population is equal to the number of
fitness evaluation.

C. Calculation of Luciferin in Level

Each glowworm carries a luminescent quantity called
luciferin. The number of luciferin level associated with each
glowworm iat timest. Put the value of objective function

J(x(t)) into the [,(t) in (7). The number of luciferin level is

same as the number of glowworms.

D. Decision of Neighborhood

The better the fitness value, the better the level of luciferin.
Each glowworm finds all the glowworms which have the
brighter luciferin level within the local dynamic decision

range rd' . The decision range is bounded by a circular sensor

range. The number of brighter glowworm is calculated by
following (8).

E. Updated Local Decision Range

At each iteration, the dynamic decision range is upgraded
by (11). The suitable value of ﬂ is chosen such that how it
effects the rate of change over the neighborhood range.

F. Glowworm Velocity Updated

In this section, each glowworm carries their topical
information which enables the glowworm to make their
division into a number of subgroups. It gives the multiple local
optimal solution of the given objective function. In order to
select the proper neighbor, a probability distribution is chosen
by (9).

G. Position Updated of Glowworms

The position of each glowworm is usually updated by (10).
The resultant position of individuals is being violated their
operating limits and to keep the position as the individual
within the boundary.

V. SIMULATION RESULTS AND DISCUSSION

In this study, proposed GSO algorithm has been applied to
DED problems by considering ten unit test systems to
investigate the effectiveness and robustness. The results
obtained from proposed approach have been compared with
previously developed well known techniques; those are
reported in the literature. The software has been written in
MATLAB-7.5 language and executed on a 2.3-GHz Pentium
IV personal computer with 512-MB RAM. For implementing
the GSO technique in DED problems, the optimal parameters
setting of GSO algorithm have been applied to obtain better
optimal solutions. The following parameters are judiciously
chosen for obtaining optimal results. The initial value of

swarm NP=150, Initial luciferin value |0=150, The

neighborhood threshold value N;=6, Constant parameter 5

=0.05, Luciferin decay constantp = 0.3, Luciferin
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enhancement constant y=0.7, Moving step size S = 0.038,

the maximum number of generations (iterations) of 500 are
taken in this simulation study for the test systems only.

Description of the Test Systems

Initially, the proposed GSO technique is applied on a small
test system, consisting of ten generating units with a ramp rate
limits and valve point effects. The generator cost coefficients,
power generation limits and ramp rate limits are taken from
[21]. The load profile for a period of 24 hours has come from
same reference. In this study, transmission losses are
neglected. Table I indicates the generator data of ten units test
systems.

approaches which are reported in [13], [15], [17]-[19] as seen
in Table IV. The optimal fuel cost of the given approach in 30
independent runs is found to be 1021210 ($). It is clearly visible
from Table IV that the proposed method yields the best among
all the techniques considered. Moreover, it is obtained from
Table IV that the CPU time consumption of the given
approach is less than the other techniques and it can avoid
premature convergence and possess good convergence speed.
Fig. 1 shows the convergence behavior of GSO algorithm.
From the convergence behavior, it is quite evident that the
proposed method has the good convergence characteristics as
compared to other approaches. Fig. 2 shows hourly load
demand variations while Fig. 3 shows the cost curve of
thermal generations by different heuristic methods.

x10*
1.032 T T T — TABLE I
_— GENERATOR DATA FOR TEN-UNIT TEST SYSTEMS
1.030 1 Unit a b; Ci & f,
$/h $/MWh $/IMW?h $/h rad/MW
1 958.2 21.6 0.00043 450 0.041
1.028¢ b 2 1313.6 21.05 0.00063 600 0.036
5 3 604.97 20.81 0.00039 320 0.028
-E 4 471.6 239 0.0007 260 0.052
3% 5 48029 2162 000079 280 0.063
6 601.75 17.87 0.00056 310 0.048
1,024 7 502.7 16.51 0.00211 300 0.086
8 639.4 23.23 0.0048 340 0.082
9 455.6 19.58 0.10908 270 0.0980
1.022{ 10 692.4 22.54 0.00951 380 0.094
Unit I:)I max I:>| min DRI U Ri
Lozoo 5‘0 lljlﬂ 1‘50 ZIJ:I! 2‘50 3:30 aSn 41150 IJSD S00 MW MW MW/h MW/h
lteration 1 470 150 80 80
2 460 135 80 80
Fig. 1 Convergence behavior of GSO method 3 340 73 30 30
4 300 60 50 50
The hourly load demand variations are shown in Table I, 5 243 73 50 50
while the optimal power dispatch results for this case study are 6 160 57 50 50
shown in Table III. It is seen from Table III that the power 7 130 20 30 30
output of the generating units in each time interval satisfies the 8 120 47 30 30
generation limits and the change of power generation from one 9 80 20 30 30
stage to other stage satisfies the ramp constraints. Hence, GSO 10 55 55 30 30
has better solution without violating any system operating
constraints. The best fuel cost in 30 independent runs for the
proposed system is compared with other evolutionary
TABLE I
LOAD PROFILE DURING 24 HOURS
LOAD DEMAND (MW)
Hour Load Hour Load Hour Load Hour Load
1 1036 7 1702 13 1776 19 1628
2 1110 8 1776 14 2072 20 1776
3 1258 9 1924 15 1924 21 2072
4 1406 10 2072 16 1628 22 1924
5 1480 11 2146 17 1332 23 1628
6 1628 12 2220 18 1184 24 1332
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TABLE III
BEST SOLUTION BY PROPOSED METHOD FOR TEN-UNIT SYSTEMS
Hour Unitl Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unitl0
(MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW)
1 150.1 222.63 84.656 122.18 73.968 129.65 130 47.227 20.581 55
2 150 223.38 161.14 76.728 119.12 127.73 129.12 47.15 20.627 55
3 153.44 302.42 185.27 117.93 122.37 122.48 130 48.794 20.303 55
4 2243 310.04 254.54 120.13 121.89 122.55 130 47.05 20.497 55
5 302.81 305.94 304.21 70.709 121.65 121.94 130 47.002 20.733 55
6 380.37 312.37 315.44 119.3 124.01 124.16 130 47 20.358 55
7 390.13 309.48 327.89 117.94 172.65 131.89 129.55 47 20.462 55
8 456.57 310.53 340 119.4 176.47 119.03 130 48.577 20.424 55
9 454.62 387.28 298.12 119.9 222.33 158.28 129.49 78.577 20.408 55
10 459.46 458.85 314.47 169.41 220.96 159.22 130 84.623 20.021 55
11 456.84 460 314.2 217.87 218.72 158.48 129.36 114.62 20.895 55
12 456.67 459.27 335.09 246.96 240.25 157.3 129.17 118.88 21.41 55
13 457.92 396.28 313.41 239.5 221.18 119.74 129.26 118.06 21.649 55
14 377.92 395.56 318.93 192.48 222.53 123.25 130 88.059 20.275 55
15 381.76 320.05 300.71 178.94 172.53 130.26 128.72 86.808 21.228 55
16 304.22 305.34 276.68 132.59 122.53 122.12 130 85.208 20.309 55
17 302.66 309.4 199.16 85.815 172.05 122.4 128.86 84.161 20.502 55
18 304.23 310.62 258.47 121.62 220.14 124.94 126.61 86.182 20.182 55
19 382.2 388.18 299.93 120.02 173.46 120.18 129.36 86.793 20.875 55
20 456.93 458.86 314.68 170.02 223.16 160 128.47 84.009 20.878 55
21 456.73 395.38 313.08 121.92 222 121.44 129.99 86.58 21.885 55
22 381.71 318.72 259.19 85.532 173.13 121.1 126.28 87.031 20.302 55
23 305.01 243 185.97 63.221 124.56 121.42 129.52 83.952 20.335 55
24 226.82 223.64 182.46 60 76.449 122.07 126.94 88.445 22.176 55
TABLE IV e

COMPARISON OF OPTIMAL COST FOR DIFFERENT METHODS

1032

1030

1028

1026

Total Demand W

104

Felinimum Cost{$)

1022

1020 ] 1 I 1 I I I

EP-SQP MIDE HDE DGPSO 1PSO G50
- Diferent Heuristic Methods

Fig. 3 Fuel costs of power generation by different heuristic methods.

VI. CONCLUSION

1 This article facilitates a novel GSO method to solve the
non-convex DED problem of thermal units with valve point

Methods Minimum Cost (§/h)  Simulation Time (sec)
EP-SQP [13] 1031746 20.51
MDE [18] 1031612 5.30
HDE [19] 1031077 -
DG-PSO [15] 1028835 15.39
IPSO [17] 1023807 -
GSO 1021210 5.28
0 T
ook P
1504
1000+
S0
§ 10 8 F %

Hour

Fig. 2 Hourly load demand profile

effect for determination of global or near global optimum
solution. The feasibility of GSO method has been verified on
ten-unit test systems. It is quite apparent from the comparison
results that the proposed method imparts better performance
with respect to solution quality, simulation time and effort as
compared to other well known evolutionary algorithms When
more complex fuel cost characteristics are considered, the
solution quality and computational efficiency are significantly
better than other methods. Because of these important
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features, GSO method seems to become powerful tool for
solving more complicated optimization problems.
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