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Abstract—A new dynamic clustering approach (DCPSO), based 

on Particle Swarm Optimization, is proposed. This approach is 

applied to unsupervised image classification. The proposed approach 

automatically determines the "optimum" number of clusters and 

simultaneously clusters the data set with minimal user interference. 

The algorithm starts by partitioning the data set into a relatively large 

number of clusters to reduce the effects of initial conditions. Using 

binary particle swarm optimization the "best" number of clusters is 

selected. The centers of the chosen clusters is then refined via the K-

means clustering algorithm. The experiments conducted show that 

the proposed approach generally found the "optimum" number of 

clusters on the tested images. 

Keywords—Clustering Validation, Particle Swarm Optimization, 

Unsupervised Clustering, Unsupervised Image Classification. 

I. INTRODUCTION

ATA clustering is the process of identifying natural 

groupings or clusters, within multidimensional data, 

based on some similarity measure (e.g. Euclidean distance) 

[1],[2]. Clustering algorithms are used in many applications, 

such as data mining [3], compression [4], image segmentation 

[5]-[7], machine learning [8], etc. A cluster is usually 

identified by a cluster center (or centroid) [9]. Data clustering 

is a difficult problem as the clusters in data may have different 

shapes and sizes [2]. Furthermore, it is usually not known how 

many clusters should be formed [10]. 

Most clustering algorithms are based on two popular 

techniques known as hierarchical and partitional clustering 

[11],[12]. In hierarchical clustering, the output is "a tree 

showing a sequence of clustering with each clustering being a 

partition of the data set" [12]. Such algorithms have the 

following advantages [11]: 

The number of clusters need not be specified a priori, and 

they are independent of the initial conditions.  

Manuscript received July 12, 2005.  

Mahamed Omran is with the Faculty of Computing & IT, Arab Open 

University, Kuwait (email: mjomran@engineer.com). 

Andries Engelbrecht is with the Computer Science Department, University 

of Pretoria, South Africa (phone:+27-12-420-3578; fax: +27-12-362-5188; 

email:engel@cs.up.ac.za).  

Ayed Salman is with the Computer Engineering, Department, Kuwait 

University, Kuwait (email:ayed@eng.kuniv.edu.kw).

However, hierarchical clustering techniques suffer from the 

following drawbacks:  

They are static, i.e. data points assigned to a cluster 
cannot move to another cluster. 

They may fail to separate overlapping clusters due to a 
lack of information about the global shape or size of the 
clusters.  

On the other hand, partitional clustering algorithms 

partition the data set into a specified number of clusters. These 

algorithms try to minimize certain criteria (e.g. a square error 

function) and can therefore be treated as optimization 

problems. The advantages of hierarchical algorithms are the 

disadvantages of the partitional algorithms and vice versa.

Partitional clustering techniques are more popular than 

hierarchical techniques in pattern recognition [2], hence, this 

paper will concentrate on partitional techniques. 

Partitional clustering aims to optimize cluster centers, as 

well as the number of clusters [10]. Most clustering 

algorithms require the number of clusters to be specified in 

advance [9],[10]. Finding the "optimum" number of clusters in 

a data set is usually a challenge since it requires a priori

knowledge, and/or ground truth about the data, which is not 

always available. The problem of finding the optimum number 

of clusters in a data set has been the subject of several 

research efforts [13],[14], however, despite the amount of 

research in this area, the outcome is still unsatisfactory [15].  

This paper proposes a new approach called Dynamic 

Clustering using a Particle Swarm Optimization algorithm 

(DCPSO). The approach uses some of the ideas presented by 

Kuncheva and Bezdek [16]. DCPSO automatically determines 

the "optimum" number of clusters and simultaneously clusters 

the data set with minimal user interference. The algorithm 

starts off by partitioning the data set into a relatively large 

number of clusters in order to reduce the effects of initial 

conditions. Using binary Particle Swarm Optimization (PSO), 

the "optimal" number of clusters is selected. The centers of the 

chosen clusters are then refined using the K-means clustering 

algorithm. The binary PSO is applied again on the cluster 

centers to find a new "optimal" number of clusters in the data 

set. This process is repeated until convergence is reached. 

The remainder of the paper is organized as follows: Section 

II surveys related work. The DCPSO algorithm is presented in 

Section III, while an experimental evaluation of DCPSO in the 

area of unsupervised image classification is provided in 
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Section IV, using natural images. Furthermore, DCPSO is 

compared to other clustering algorithms. Finally, Section V 

concludes the paper.  

II. RELATED WORK

A. Unsupervised Clustering Algorithms 

ISODATA, proposed by Ball and Hall [17], is an 

enhancement of the K-means algorithm, with addition of the 

possibility of merging classes and splitting elongated classes. 

An alternative approach to ISODATA is SYNERACT [18]. 

SYNERACT combines K-means with hierarchical descending 

approaches. According to Huang [18], SYNERACT is faster 

than and almost as accurate as ISODATA. Furthermore, it 

does not require the number of clusters and initial location of 

centroids to be specified in advance. Another improvement to 

the K-means algorithm is proposed by Rosenberger and 

Chehdi [15], which automatically finds the number of clusters 

in an image set by using intermediate results. Furthermore, 

Pelleg and Moore [19] proposed a K-means based algorithm, 

called X-means, that uses model selection. X-means searches 

over a range of values of K and selects the value with the best 

Bayesian Information Criterion (BIC) [20] score. Recently, 

Hamerly and Elkan [10] proposed another wrapper around K-

means called G-means. G-means starts with a small value for 

K, and with each iteration splits up the clusters whose data do 

not fit a Gaussian distribution. Between each round of 

splitting, K-means is applied to the entire data set in order to 

refine the current solution. According to [10],[21], G-means 

works better than X-means, however, it works only for data 

having spherical and/or elliptical clusters. G-means is not 

designed to work for arbitrary-shaped clusters [21]. A 

program called snob [22],[23] uses various methods to assign 

objects to classes in an intelligent manner [24]. After each 

assignment, the Wallace Information Measure [25],[26] is 

calculated and based on this calculation the assignment is 

accepted or rejected. Hence, snob can split/merge and move 

points between classes. Bischof et al. [27] proposed another 

algorithm based on K-means which uses a minimum 

description length (MDL) framework. The algorithm starts 

with a large value for K and proceeds to remove centroids 

when this results in a reduction of the description length. K-

means is used between the steps that reduce K.

Gath and Geva proposed an unsupervised clustering 

algorithm based on the combination of FCM and fuzzy 

maximum likelihood estimation [28]. Lorette et al. [29]

proposed an algorithm based on fuzzy clustering to 

dynamically determine the number of clusters in a data set. 

This approach, however, requires a parameter to be specified, 

which has a profound effect on the number of clusters 

generated (i.e. not fully unsupervised). Similarly, Boujemaa 

[30] proposed an algorithm, based on a generalization of the 

competitive agglomeration clustering algorithm introduced by 

Frigui and Krishnapuram [31]. 

The algorithms found within the above paragraph try to 

modify the objective functions of FCM. These approaches are 

still sensitive to initialization and other parameters [32]. Frigui 

and Krishnapuram proposed a robust competitive clustering 

algorithm, based on the process of competitive agglomeration. 

Initialization does, however, have a significant effect on the 

result of this algorithm [32]. 

Kohonen's Self Organizing Maps (SOM) [33]-[35] can be 

used to automatically find the number of clusters in a data set. 

SOM combines competitive learning (in which different nodes 

in the Kohonen network compete to be the winners when an 

input pattern is presented) with a topological structuring of 

nodes, such that adjacent nodes tend to have similar weight 

vectors (this is done via lateral feedback) [34],[35]. SOM 

suffers from being dependent on the order in which the data 

points are presented. To overcome this problem, the choice of 

data points can be randomized during each epoch [35]. 

Lee and Antonsson [9] used an evolution strategy (ES) to 

dynamically cluster a data set. The proposed ES implemented 

variable length genomes to search for both the centroids and 

K.

B. Clustering Validation Techniques 

The main subject of cluster validation is "the evaluation of 

clustering results to find the partitioning that best fits the 

underlying data" [13]. Hence, cluster validity approaches are 

approaches used to quantitatively evaluate the result of a 

clustering algorithm [13].  These approaches have 

representative indices, called validity indices. The traditional 

approach to determine the "optimum" number of clusters is to 

run the algorithm repetitively using different input values and 

select the partitioning of data resulting in the best validity 

measure [36]. 

Two criteria that have been widely considered sufficient in 

measuring the quality of partitioning a data set into a number 

of clusters, are [13] 

Compactness: samples in one cluster should be similar to 
each other and different from samples in other clusters. 
An example of this would be the variance of a cluster. 

Separation: clusters should be well-separated from each 
other. An example of this criterion is the Euclidean 
distance between the centroids of clusters. 

There are several relative validity indices; for a thorough 

survey in this field refer to Halkidi et al. [13]. Recently, Turi 

[24] proposed an index incorporating a multiplier function (to 

penalize the selection of a small number of clusters) to the 

ratio between intra-cluster and inter-cluster distances, with 

some promising results.  

C. Particle Swarm Optimization 

Particle swarm optimizers (PSO) are population-based 

optimization algorithms modeled after the simulation of social 

behavior of bird flocks [37],[38]. PSO is generally considered 

to be an evolutionary computation (EC) paradigm. Other EC 

paradigms include genetic algorithms (GA), genetic 

programming (GP), evolutionary strategies (ES), and 

evolutionary programming (EP) [39]. These approaches 

simulate biological evolution and are population-based. In a 
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PSO system, a swarm of individuals (called particles) fly 

through the search space. Each particle represents a candidate 

solution to the optimization problem. The position of a 

particle is influenced by the best position visited by itself (i.e. 

its own experience) and the position of the best particle in its 

neighborhood (i.e. the experience of neighboring particles). 

When the neighborhood of a particle is the entire swarm, the 

best position in the neighborhood is referred to as the global 

best particle, and the resulting algorithm is referred to as a 

gbest PSO. When smaller neighborhoods are used, the 

algorithm is generally referred to as a lbest PSO [40]. The 

performance of each particle (i.e. how close the particle is 

from the global optimum) is measured using a fitness function 

that varies depending on the optimization problem. 

Each particle in the swarm is represented by the following 

characteristics: 

xi: The current position of the particle; 

vi: The current velocity of the particle; 

yi: The personal best position of the particle. 

The personal best position of particle i is the best position 

(i.e. one resulting in the best fitness value) visited by particle i

so far. Let f denote the objective function. Then the personal 

best of a particle at time step t is updated as 

))(())1((if)1(

))(())1((if)(
)1(

tftft

tftft
t

i

i

i

ii

ii

yxx

yxy
y    (1) 

Two main approaches to PSO exist, namely lbest and gbest,

the difference being the neighborhood topology used to 

exchange experience among particles. For gbest, the best 

particle is determined from the entire swarm. If the position of 

the global best particle is denoted by the vector ŷ , then 

))((,)),(()),((min,,,)(ˆ 1010 tftftft ss yyyyyyy               (2) 

where s denotes the size of the swarm. For the lbest model, a 

swarm is divided into overlapping neighborhoods of particles. 

For each neighborhood Nj, a best particle is determined with 

position jŷ . This particle is referred to as the neighborhood 

best particle, defined as 

},))((min))1(ˆ(|{)1(ˆ
jiijjj NtftfNt yyyy    (3) 

where 
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Neighborhoods are usually determined using particle 

indices [41], however, topological neighborhoods can also be 

used [41]. It is clear that gbest is a special case of lbest with l

= s; that is, the neighborhood is the entire swarm. While the 

lbest approach results in a larger diversity, it is still slower 

than the gbest approach. 

For each iteration of a PSO algorithm, The velocity vi

update step is specified for each dimension j  1..Nd, where 

Nd is the dimension of the problem. Hence, vij represents the jth

element of the velocity vector of the ith particle. Thus the 

velocity of particle i is updated as using the following 

equation: 

))()()(())()()(()(1)( 2,21,1 txtŷtrctxtytrctwvtv ji,jjji,ji,jji,ji,
 (5)

where w is the inertia weight [42], 1c  and 2c  are the 

acceleration constants and (0,1)~1, Ur j  and 

(0,1)~2, Ur j . Equation 5 consists of three components, 

namely 

The inertia weight term, w, which serves as a memory of 
previous velocities. The inertia weight controls the impact 
of the previous velocity: a large inertia weight favors 
exploration, while a small inertia weight favors 
exploitation [40]. 

The cognitive component, ii t xy )( , which represents 
the particle's own experience as to where the best solution 
is.

The social component, )()(ˆ tt ixy , which represents 
the belief of the entire swarm as to where the best 
solution is. Different social structures have been 
investigated [43],[44], with the star topology being used 
most. 

The position of particle i, xi, is then updated using the 

following equation: 

)1()()1( ttt iii vxx                  (6) 

The reader is referred to Van den Bergh [45] and Van den 

Bergh et al. [46] for a study of the relationship between the 

inertia weight and acceleration constants, in order to select 

values which will ensure convergent behavior. Velocity 

updates can also be clamped through a user defined maximum 

velocity, Vmax, which would prevent them from exploding, 

thereby causing premature convergence [45]. 

The PSO algorithm performs the update equations above, 

repeatedly, until a specified number of iterations have been 

exceeded, or velocity updates are close to zero. The quality of 

particles is measured using a fitness function which reflects 

the optimality of a particular solution. 

Kennedy and Eberhart have adapted PSO to search in 

binary space [47]. In binary PSO, the component values of xi

and yi are restricted to the set {0, 1}. The velocity, vi is 

interpreted as a probability to change a bit from 0 to 1, or from 

1 to 0 when updating the position of particles. This can be 

done using a sigmoid function, defined as 
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Hence, the equation for updating positions (Eq. 6) is 

replaced by the probabilistic update equation, namely [45]: 

))1(()(if1

))1(()(if0
)1(

tvsigtr

tvsigtr
tx

ji,j

ji,j

ji,    (8) 

Where (0,1))( U~tr j . This paper makes use of a binary 

PSO to optimize the number of clusters.  

III. THE DCPSO ALGORITHM

This section presents the DCPSO algorithm. For this 

purpose define the following symbols: 

Nc is the maximum number of clusters. 

Nd is the dimension of the data set. 

Np is the number of data vectors to be clustered. 

Z = {zj,p | j = 1,…, Nd and p = 1,…, Np } is the set 
of data points. 

M = {mj,k | j = 1,…, Nd and k = 1,…, Nc } is the set 
of Nc cluster centroids.

S = {x1,…, xi,…, xs} is the swarm of s particles such that 
xi indicates particle i, with xi,k  {0,1} for k = 1,…, Nc

such that if xi,k = 1 then the corresponding mk in M has 
been chosen to be part of the solution proposed by xi.
Otherwise, if xi,k = 0 then the corresponding mk in M is 
not part of the solution proposed by xi.

ni is the number of clusters used by the clustering solution 
represented by particle xi such that 

cN

k

ji,i xn
1

, with ni Nc.

Mi is the clustering solution represented by particle xi

such that Mi = (mk) k: xi,k = 1 with Mi M.

n  is the number of clusters used by the clustering 
solution represented by the global best particle ŷ such 
that 

cN

k 1

kŷn , with n Nc.

M is the clustering solution represented by ŷ such that
M  = (mk) k: kŷ = 0 with M M.

Mr is the set of centroids in M which have not been 
chosen by ŷ  such that Mr = (mk) k: kŷ = 0 with Mr

M (i.e. Mr M  =  and Mr M  = M).

pini is a user-specified probability defined in [16], which 
is used to initialize a particle position, xi, as follows: 
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where (0,1))( U~trk . Obviously a large value for pini

results in selecting most of the centroids in M.

The algorithm works as follows: A pool of cluster 

centroids, M, is randomly chosen from Z. The swarm of 

particles, S, is then randomly initialized. Binary PSO is then 

applied to find the "best" set of cluster centroids, M , from M.

K-means is applied to M  in order to refine the chosen 

centroids. M is then set to M  plus Mr which a randomly 

chosen set of centroids from Z (to add diversity to M). The 

algorithm is then repeated using the new M. When the 

termination criteria are met, M  will be the resulting 

"optimum" set of cluster centroids and n  will be the 

"optimum" number of clusters in Z.

The DCPSO algorithm is summarized below: 

1. Select mk M k = 1,…, Nc where 1 < Nc < Np,

randomly from Z

2. Initialize the swarm S, with xi,k ~ U{0,1} i = 1,…, s 

and k = 1,…, Nc using Eq. 9. 

3. Randomly initialize the velocity vi of each particle i in S

such that  vi,k  [-5,5] i = 1,…, s and k = 1,…, Nc. The 

range of [-5,5] was set empirically. 

4. For each particle xi in S

a. Partition Z according to the centroids in Mi by 

assigning each data point zp to the closest (in terms of 

the Euclidean distance) cluster in Mi.

b. Calculate the clustering validity index, VI, using 

one of the clustering validity indices as defined in 

Section III.A to measure the quality of the resulting 

partitioning of Z.

c. f(xi) = VI

5. Apply the binary PSO velocity and position update 

equations (Eqs. 5 and 8) on all particles in S.

6. Repeat steps 4) and 5) until the termination criteria are 

met. 

7. Adjust M  by applying the K-means clustering 

algorithm. 

8. Randomly re-initialize Mr from Z.

9. Set M = Mr M .

10. Repeat steps 2) through 9) until termination criteria are  

met.  

The termination criteria can be a user-defined maximum 

number of iterations or a lack of progress in improving the 

best solution found so far for a user-specified consecutive 

number of iterations, TC. In this paper, the latter approach is 

used with TC = 50 for Step 6 and TC = 2 for step 10. These 

values for TC were set empirically. 

Nc and s are user defined parameters. Large values for Nc

and s are recommended to find a good solution. 

A. Validity Index 

One of the advantages of the DCPSO is that it can use any 

validity index. Therefore, the user can choose the validity 

index suitable for his/her data set. In addition, any new index 
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can easily be integrated with DCPSO. The validity indix 

proposed by Turi [24] is briefly described below. In the 

following, K is the number of clusters and Ck is the kth cluster. 

inter

intra
)1)1,2(N(cV                (10) 

where c is a user specified parameter and N(2,1) is a 

Gaussian distribution with mean 2 and standard deviation of 1. 

The intra term is the average of all the distances between each 

data point and its cluster centroid which is defined as 
K

k

k

p k

||||
N 1

21
intra

Cu

mu

This term is used to measure the compactness of the 

clusters. The inter term is the minimum distance between the 

cluster centroids which is defined as 

K,...,kkkK,...,,k||||min kkk 1and121inter 2
mm

This term is used to measure the separation of the clusters. 

IV. EXPERIMENTAL RESULTS

Experiments were conducted using natural images. The 

following well known images were used as examples of 

natural images: Lenna, mandrill, jet and peppers.

Furthermore, one MRI and one satellite image of Lake Tahoe 

(shown in Table I) have been used to show the wide 

applicability of the proposed approach. 

The results reported in this section are averages and 

standard deviations over 20 simulations. In addition, we start 

with a lbest implementation of the PSO (with zero-radius 

neighborhood) and linearly increase the neighborhood radius 

until a gbest implementation of the PSO is reached. In this 

paper, this approach is referred to as lbest-to-gbest-PSO. This 

hybrid approach is used in order to initially avoid being 

trapped in local optima, by using a lbest approach [41]. The 

algorithm then attempts to converge into the best solution 

found by the initial phase by using a gbest approach. 

Furthermore, if the best solution has not been improved after a 

user-specified number of iterations (50 iterations was used for 

all the experiments conducted) then the algorithm will 

terminate (Step 6 of the algorithm, Section 3). For the index 

proposed by Turi [24], the parameter, c, was set to 25 in all 

experiments as recommended by [24]. The DCPSO 

parameters were empirically set as follows: Nc = 20, pini = 0.75 

and s = 100 for all experiments conducted. In addition, the 

PSO parameters were set as follows: w =0.72, 1c = 2c = 1.49 

and Vmax= 255. For the SOM, all implementation issues where 

set as in [35], using a Kohonen network of 5×4 nodes. 

Table II shows the results of DCPSO using the the validity 

index described in Section III. These results are compared 

with the results of SOM. In addition, the results of snob for 

the images of Lenna, mandrill, jet and peppers are copied 

from [24]. The optimal range for the number of clusters for 

the images of Lenna, mandrill, jet and peppers are also taken 

from [24] which was based on a visual analysis survey 

conducted by a group of ten people. Similarly, the optimal 

range for the MRI and Lake Tahoe images were estimated by 

the authors using a group of three people. It appears from the 

table that results of SOM and snob were poor. DCPSO using 

V always found a solution within the optimal range. These 

results clearly show the efficiency of DCPSO. 

V. CONCLUSION

This paper presented DCPSO, a new dynamic clustering 

algorithm based on PSO with application to unsupervised 

image classification. DCPSO clusters a data set without 

requiring the user to specify the number of clusters in 

advance. This is an important feature since knowing the 

number of clusters in advance is often not easy. DCPSO uses 

a validity index to measure the quality of the resultant 

clustering. DCPSO has been applied on natural images 

(including MRI and satellite images), and has been compared 

with other unsupervised clustering techniques. From these 

experiments it can be concluded that DCPSO using the 

validity index proposed by Turi [24] has outperformed other 

approaches. In general, DCPSO successfully found the 

optimum number of clusters on the tested images.  
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TABLE I

MRI AND LAKE TAHOE IMAGES

Image name Image 

MRI 

Tahoe 

TABLE II 

EXPERIMENTS ON NATURAL IMAGES

Image 
Optimal 

range 
DCPSO using V SOM snob 

Lenna 5 to 10 6.85 ± 0.477 20 31 

Mandrill 5 to 10 6.25 ± 0.433 20 42 

Jet 5 to 7 5.3 ± 0.459 14 22 

peppers 6 to 10 6 ± 0 20 39 

MRI 4 to 8 5 ± 0 19 - 

Tahoe 3 to 7 6.1 ± 0.539 4 - 


