
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

24

Abstract— Considering the theory of attribute grammars, we use

logical formulas instead of traditional functional semantic rules.
Following the decoration of a derivation tree, a suitable algorithm
should maintain the consistency of the formulas together with the
evaluation of the attributes. This may be a Prolog-like resolution, but
this paper examines a somewhat different strategy, based on
production specialization, local consistency and propagation: given a
derivation tree, it is interactively decorated, i.e. incrementally
checked and evaluated. The non-directed dependencies are
dynamically directed during attribute evaluation.

Keywords—Input/Output attribute grammars, local consistency,
logical programming, propagation, relational attribute grammars.

I. INTRODUCTION
TTRIBUTE grammars (abbreviated AGs) were first
introduced by Knuth to describe syntactic-based

translations [1]. This approach is a purely declarative
programming paradigm syntax directed. They have been
widely studied and used, especially as a compilation technique
in the field of programming languages [2], or as formal
specifications for more general tree transductions and
semantics [3]–[6].

An AG is a context-free grammar (CFG) which non-
terminal symbols are decorated with inherited and synthesized
attributes, and productions are enriched with semantic rules
defining assignments for the attributes. The goal is to give
some “meaning” to the terms obtained from the grammar. The
semantic rules show dependencies between attributes,
revealing the order to compute their values. In short, some
attributes should be computed before other ones because the
formers are parameters of the latters.

When using AG, one common task is to avoid circular
dependencies for any derivation tree of the grammar. Knuth
presented an exponential-space algorithm for the circularity
problem [1]. The intrinsically exponential complexity of this
problem was first proved by Jazayeri, Ogden, and Rounds [7],
who reduced the acceptance problem of writing pushdown

* K. Barbar is with the Faculty of Sciences (section 2), Lebanese
University, Fanar, Lebanon (e-mail: kbarbar@ul.edu.lb).

† M. Dehayni is with the Faculty of Sciences (section 1), Lebanese
University, Hadath, Lebanon (e-mail: maydehayni@ul.edu.lb).

‡ A. Awada is with the Faculty of Sciences (section 1), Lebanese
University, Hadath, Lebanon (phone: 961-3-660924; fax: 961-5-465562; e-
mail: al_awada@ul.edu.lb).

§ M. Smaili is with the Faculty of Sciences (section 1), Lebanese
University, Hadath, Lebanon (e-mail: mosmaili@ul.edu.lb).

acceptors to the circularity problem. Jazayeri [8] (and the
correction by Dill [9]) tried to provide a simpler construction
of AGs by reducing the acceptance problem of space-bounded
alternating Turing machines.

Another task is to determine efficient methods to compute
all the attributes in a given derivation tree. In the classical way,
the AG is statically analyzed to anticipate the whole
dependencies of any derivation tree. The attributes in the
semantic rules are defined as input (or output) only in order to
find convenient properties of the dependencies [10]. Yet, these
restrictions reduce the expressiveness of AGs.

Classical AGs lack of expressiveness has resulted in limited
use outside the domain of static language processing. This
leads to extend the classical formalism into the notion of
Dynamic Attribute Grammars (DAG) [11] to enhance the
expressiveness and to allow describing computations on
structures that are not just trees. This results in a language that
is comparable in power to most functional languages, with a
distinctive declarative character. Kikuchi and Katayama define
the semantics of general AGs by using semantic functions
whose inputs are structures derived from the underlying
grammar and whose outputs are attributed structures [12].
Then they provide classifications of general AGs based on the
abstract properties of semantic functions. In [13], Neven
introduces extension of AGs that work over extended CFG,
allowing arbitrary regular expressions on the right-hand side of
productions. Viewed as a query language, extended AGs are
particularly relevant as they can take into account the inherent
order of the children of a node in a structured document.

In this paper we will rather emphasize the fact that using
non-directed semantic rules (i.e. relations or constraints)
greatly enhances the declarative power of AGs, because it is
no more presumed which attribute should be evaluated first. At
“execution time” dependencies are dynamically built when
some attribute is declared as input attribute.

In section3, we recall basic formal definitions of concepts
like CFG and productions. In Section4, we adapt the definition
of relational AGs [14] to fit our needs. Section5 reveals
input/output productions as our main tool to describe static and
dynamic evaluation. Such productions are connected together
in Section6 to build partially evaluated derivation trees. They
are compared together in Section7 to show possible
transformations from one into another. Then, in Section8 we
incrementally evaluate the attributes of a derivation tree using
step by step transformations of the production occurrences.

K. Barbar*, M. Dehayni†, A. Awada‡, and M. Smaili§

Dynamic Attribute Dependencies in Relational
Attribute Grammars

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

25

II. RELATED WORKS
A Relational AG is a formal tool to define such non-directed

relational semantic rules separately from an abstract CFG [14].
It does not give any operational clue to satisfy the relations in
a decorated tree. Yet, if an attribute in a production occurrence
is declared being an input attribute, some other attributes that
depend on may be evaluated. As any attribute can become an
input attribute in a production occurrence, the search for
dependencies is parameterized with the set of current input
attributes.

This study is related to previous works that brings together
AGs and logic [15], [16] or constraint satisfaction [17]–[19].
In [20], a unified view of AGs and logic programs is
presented. The author compares both formalisms and shows
that AGs have some features that are not present in logic
programs. He proposes some extensions in the field of logic
programming in order to enrich logic programs with extra
features. Batory describes the interpretation of grammar
representations in terms of propositional logic formulae [21].
Isakowitz introduces Abstract Attribute Grammars (AAG) in
order to study the transformation from Logic Programs into
AAG and vice versa [22]. He provides a construction that
transforms any logic program into an equivalent AAG. The
motivation for much of this work comes from the need for
verifying the correctness of feature model selections that
represent individual products. Ruffolo and Manna define
semantic models in order to exploit domain knowledge for
managing both structured and unstructured information [23].
These semantic models are executable, flexible and agile
representation of domain knowledge. They are expressed by
means of the Codex Language obtained combining Disjunctive
Logic Programming and AGs.

Dynamic and incremental use of AGs is also concerned
[11], [24], [25]. Reps, Teitelbaum, and Demers develop the
Cornell Synthesizer Generator that is an incremental evaluator
generation tool. It offers the possibility of replacing a sub-tree
of a syntactic tree by another sub-tree: the propagation of new
attribute values on the whole tree is then automatically
processed [26]. By combining dynamic and incremental
aspects, attribute dependencies can be dynamically directed,
and that waiting for the values of all the input attributes is not
necessary in order to evaluate some parts of the decorated tree.
Unlike Prolog, enumeration of all the solutions is not
considered here because there is usually infinitely many,
unless some extra information. On the contrary, partial
solutions are managed. Thus, each time an attribute gets a
value in a production occurrence, the current set of input
attributes is enriched, potentially leading to new dependencies
and incremental propagations in the derivation tree.

III. ABSTRACT CONTEXT-FREE GRAMMARS
In this section, we recall basic formal definitions of

concepts that will be used further on, like CFG, productions
and derivation trees.
Definition1 (CFG) A context-free grammar is a tuple (N, T,

Z, P) where:
· N is the alphabet of non-terminal symbols;
· T is the alphabet of terminal symbols; NÇT =Æ
· Z is the axiom of the grammar, Z Î N; Z must be the root

of any derivation tree of the grammar;
· P is a set of context-free productions (see Definition2).

Definition2 (CFP) A context-free production p in a CFG (N,
T, Z, P) is a tuple X0 ® X1 ... Xn where:

· X0 is an occurrence of an element of N;
· X1 ... Xn are occurrences of elements of NÈT.
In the production p: X0 is the left-hand side of p, while X1 ...

Xn is the right-hand side. The elements in a production p, even
if they are occurrences of identical terminal or non-terminal
symbols, are characterized by their positions in p, in Dewey
notation (the symbol 0 is the empty word e). Thus, there is a
straightforward tree representation of a production, where the
root is X0 and leaves are X1 ... Xn.
Definition3 (ACFG) An abstract CFG is a tuple (N, P) where
N and P appear in a CFG tuple (N, T, Z, P). If a production p
in P contains some occurrences of terminals in T, they are
ignored. Consequently a production p is essentially
considered as a tuple of one or more non-terminals.

ACFG are the essence of context free grammars. We can
also note that the axiom Z disappears: any non-terminal in the
left-hand side of a production can be the root of a derivation
tree of the grammar.

Example1 shows an ACFG that will be used with attributes
in section3 to illustrate the factorial function. Example2 shows
an ACFG for strictly binary trees.
Example1 (FacACFG) An abstract CFG representing a free
monoid:

N = {Fac}
P = {p1: Fac ® Fac , p2 : Fac ® e}

Example2 (BinACFG) An abstract CFG for strictly binary
trees:

N = {Bin}
P = (p1: Bin ® Bin Bin, p2: Bin ® e}
Let G be an ACFG. A production X0 ® X1 ... Xn in G gives

rise to a set of trees which roots represent occurrences of X0,
and direct sub trees derived from productions with X1 ... Xn as
left-hand sides. In a derivation tree, the occurrences of (the
roots of) the productions and the occurrences of the non-
terminals are characterized by their positions in Dewey
notation, obtained by concatenating their position in the
production to the global position of their parent in the tree.

Fig. 1 Abstract Derivation Trees

Bin

Bin Bin

Bin Bin

e

Bin

e

Bin

e
Bin

e

Bin

e

Fac

Fac

Fac

e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

26

Fig.1 shows two derivation trees for FacACFG and BinACFG.
The Fac occurrences of the production p1 appear at positions
0, 1 and an occurrence of p2 is at position 1.1; while the Bin
occurrences of the production p1 appear at positions 0, 1, 2 and
2.1.

The way a derivation tree is constructed is an important
point for us, as it partly determines why and how the attributes
are computed. Look again at the trees in Fig.1, and imagine
that they are interactively built. Each time, we have to choose
which non-terminal to develop, using the productions of the
grammar as construction rules. Clearly, different strategies
exist, whether bottom-up, top-down, or in either direction, to
finally obtain a derivation tree. In the next sections, we show
how these strategies determine orientations between attributes.
But in most cases, we will consider a tree that already exists
before any orientations or evaluations.

IV. RELATIONAL ATTRIBUTE GRAMMARS
In this section, we recall the definition of relational attribute

grammars (RAG). Definitions of “classical” AGs can be found
in [4], [10], but we do not use them here. It is probably
possible to transform AGs into RAGs, e.g. by considering
directed semantic rules as non-directed, thus breaking the
distinction between inherited (evaluated during a top-down
tree traversal) and synthesized attributes (evaluated during a
bottom-up traversal) in the specification of the grammar.

RAGs were introduced to prove the validity of a “classical”
AG with respect to a specification [14], [27]. A specification
consists in a collection of logical formulas, each formula being
associated to a production and establishing the relationships
between the attributes of this production.

 From a different point of view, logical formulas can replace
the semantic rules to directly specify which relations the
attributes of a production should respect. In the sequel, we
adopt this point of view. Such formulas enhance the
declarative power of classical AGs, while it becomes more
difficult to prove their correctness and to compute attributes,
because of the use of a possibly too general logical language.

 We use slightly different notations than [14], [27]. We
don’t define the sorts of the attributes, nor give precise
definition for the logical parts of the grammars. These
restrictions are not significant for the purpose of this paper
because we just want to outline a specification level
independent from the underlying logical language.
Definition4 (RAG) A Relational Attribute Grammar is a
tuple (N, P, A, j, I) where:

· (N,P) is an ACFG;
· A is the alphabet of attribute names;
· j is a finite set of formulas from a logical language L;
· I is the interpretation of L.
Each element X in N is decorated with a subset of A,

denoted Ax. An attribute symbol a appearing in Ax is called
the occurrence of the attribute a in X, or the attribute a of X,
and is denoted a(X) or X.a. For a production p in P, the
attributes a, b… of a non-terminal X appearing at position i

are denoted ai, bi, ... so they form a set denoted Ap, Xi. The set
Ap of the attributes appearing in p is equal to U

pXi

ip XA
Î

, .

Each production in P is associated to a unique formula in j
as explained in Definition5. N and P form the grammatical
part (syntax) of the relational attribute grammar, while A,j,
and I form the labeling formalism part (semantics).
Definition5 (RAP) A relational Attribute Production in a
relational attribute grammar (N, P, A, j, I) is a tuple (p, jp)
where:

· p is a context-free production from P;
· jp is the formula of j associated to p.
The set of variables in jp should be a subset of Ap. If not

specified, these variables are existentially quantified. For
each context-free production p in P, there is a unique
relational attribute production (p, jp) (thus, we may
ambiguously use p to denote the context-free production p or
the relational attribute production (p, jp)).

Example3 shows a RAG for the factorial function. The
attributes n and r of the non-terminal Fac respectively denote
the argument of the recursive call and the corresponding result
n!.
Example3 (FacRAG) A RAG for the factorial function:

N = {Fac}
P = {p1: Fac ® Fac, p2: Fac ®e}
AFac = {n,r}
Ap1 = { n0, r0, n1,r1}
Ap2 = { n0, r0}
jp1 = (n0 = n1 + 1 Ù r0 = r1 × n0)
jp2 = (n0 = 0 Ù r0 = 1)
I : L ® Bool È Nat; Nat denotes natural numbers with the
usual operations.
A more general function is shown in Example4. The

formulas associated to the productions specify the relations
between the occurrences of the attributes. In these formulas,
the symbol ‘=’ denotes an equivalence predicate, not an
assignment function, so it is not explicitly specified how the
attributes should be computed. It strongly depends on the way
a derivation tree is constructed, and on extra information like
the values of some unknown attributes.
Example4 (ParamFacRAG) A RAG for a kind of factorial
function with unspecified start conditions:

N = {ParamFac}
P = {p1: ParamFac ® ParamFac, p2: ParamFac ®e}

 AParamFac = {n, r}
Ap1 = { n0, r0, n1, r1}
Ap2 = { n0, r0}
jp1 = (n0 = n1 + 1 Ù r0 = r1 × n0)
jp2 = true, the formula is always true
I = L ® Bool È Nat≥0; Nat≥0 is the domain of positive

natural numbers with the usual operations.
Let G be a RAG. The set of relational derivation trees

determined by G is the same as the set of derivation trees
determined by the ACFG in G, the occurrences of the non-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

27

terminals being decorated with additional vertices representing
their attributes. An attribute in the tree has the same position as
its related non-terminal occurrence. The relations between the
attributes are represented by edges or hyper edges.
Consequently, for a derivation tree t, the attributes (vertices)
together with the relations (edges) form a graph called the
attribute graph of t and denoted Graph(t).

In Section2, some strategies to generate derivation trees
were outlined. The attribute graph of a derivation tree t is
generated while t is, using the same strategy.

Fig.2 shows two derivation trees, one from FacRAG, and one
from ParamFacRAG. In the tree from FacRAG, the edges
representing relations could be directed, as it is possible to
evaluate all the attributes starting at the values 0 and 1 in the
occurrence of production p2. This is not the case in the tree
from ParamFacRAG. These points are investigated in the next
section.

V. INPUT/OUTPUT PRODUCTIONS
The logical formulas associated with relational attribute

productions specify the relationships between the attributes,
but they are not supposed to be straight operational. The
attributes in a production are not characterized as input or
output. This constitutes the (declarative) strength and the
(operational) weakness of RAG.

The way the attributes of a derivation tree should be
computed depends strongly on the strategy to generate the tree
together with its attribute graph and on the values of some
input attributes from which to start. In the left tree Fig.2, a top-
down strategy would wait an occurrence of p2 before
evaluating, while a bottom-up strategy, starting at the
occurrence of p2, could evaluate the attributes during the
construction of the tree. Each strategy would consider the
values 0 and 1 in jp2 as input. In the tree at the right on Fig.2,
the situation is clearly different: some extra information is
needed to compute even a part of the attributes; else there are
infinitely many solutions.

Fig. 2 Abstract Derivation Trees

In this section, input and output attributes are distinguished

in a production, but some attributes may be neither input nor
output. Moreover, different values for each input attribute are
considered. A relational attribute production p gives rise to

several productions of a new type, each production
syntactically identical to p but with different input attributes
and different values for these attributes. For each of these
productions, (the values of) output attributes result in
functional applications of (the values of) input attributes. We
call such productions input/output relational attribute
productions, or I/O productions in short.
Definition6 (I/O RAP) An Input/Output Relational Attribute
Production is a tuple (p, In, v, Out, v’):

· p is a relational production from a relational grammar
(N, P, A, j, I);

· In is a subset of Ap, called the input set, which elements
are called the input assignment attributes;

· v is a mapping from In to the domain of interpretation,
called the input assignment;

· Out is a subset of Ap - In, called the output set, which
elements are called the output attributes;

· v‘ is a mapping from Out to a domain of functional terms
which variables are the attributes of In. These terms
have to be interpreted with I and v. v¢ is called the
output assignment.

Let a be an output attribute. We have v’(a)= f(a1,...,ak), with
f a functional term and a1,...,ak some input attributes (the
indexes do not correspond to positions in p). The output
assignment v’ should be a “logical consequence” of jp with the
assignment v in the interpretation I, so we write:
() ()[]kp aafavI ,...,, 1| =Ù= j .

The most important problem, not addressed here, is to
automatically determine proper functional terms f in v¢, just by
considering jp and v, i.e. information relative to the
production, and not from a global knowledge about the
grammar. These terms should precisely reflect functional
properties of jp.

The set Ap – In - Out is the set of attributes which are
neither input nor output attributes. They are called the
unknown attributes. It is possible to tell properties of these
attributes just by looking at jp and v. One of these properties is
that the set of their possible values is not reduced to a
singleton, so they don’t appear in Out.

Because we give no restrictions on the formulas in j, we
have to distinguish the values of the input attributes: in
general, different input values for the same attribute may
induce different output sets, e.g. the formula ((a=0 Ù b=1) Ú
(a≥1 Ù c=a-1)) gives different output sets for different values
of a.

Eventually, jp can be invalidated by v. This situation is
called a conflict. Depending on the logical language and its
interpretation, verifying the validity of a formula under a
particular assignment may be “hard” or, worse, undecidable,
but it is not the subject of this paper. An assignment v is said
valid if it does not invalidate jp. In the sequel, we will only
consider productions for which there is no conflict, i.e. we
consider only valid assignments. This restriction will be
relaxed in future papers.

Fac

Fac

Fac

e

n

n

n

r

r

r
0 1

´

´

+1

+1

ParamFac

ParamFac

ParamFac

e

n

n

n

r

r

r

´

´

+1

+1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

28

Example5 Two I/0 productions obtained from a production p1:
p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 × n0>

A relational attribute production p gives rise to a set of I/O
productions, denoted IOp. Given a valid assignment v for a
subset of Ap, there exists at least one I/O production
<p,In,v,Out,v’> in IOp.. Hence, IOp is infinite if the set of valid
assignments is infinite, limiting the practical use of I/O
productions. It would be preferable to partition IOp into finitely
many classes of I/O productions, as it will be shown in
Section6.

Now, we have the basic elements to specify static and
dynamic properties of attribute dependencies in derivation
trees. In Section5, occurrences of I/O productions are
connected together to give a derivation tree t and to produce
directed dependencies between the attributes in the attribute
graph of t. In Section6, we modify input sets to show dynamic
transformations of I/O productions. In Section7, these
transformations are used in derivation trees to locally
propagate the evaluation of the attributes.

VI. INPUT/OUTPUT ATTRIBUTE GRAMMARS
As explained in section2, given two productions p1 and p2 of

an ACFG, an occurrence of p1 can be connected to an
occurrence of p2 if the left-hand side of p1 appears in the right-
hand side of p2, or inversely, if the left-hand side of p2 appears
in the right-hand side of p1. The same principle applies for
RAPs and their attribute graphs.

Yet, considering I/O productions, we need to define more
precisely how they can be connected together in terms of
assignments of attributes. Doing this we straight define the
derivation trees of a grammar containing I/O productions.
Definition7 (IOAG) An Input/Output Attribute Grammar is a
tuple (G, P¢) where:

· G is a RAG (N, P, A, j, I)
· P¢ is the set of I/O productions obtained from p and j;

U
Pp

pIOP
Î

='

Each production in a RAG implies several I/O productions.
If the occurrences of two RAPs p1, p2 can be connected
together, so can the occurrences of two I/O productions
derived from p1 and p2, with additional constraints on the input
and output sets and on the assignments.

Let p1, p2 be two RAPs, and p’
1, p’

2 two I/O productions
respectively derived from p1 and p2. Suppose that the left-hand
side of p2 appears in the right-hand side of p1 at position k.

p1 = < X0 ® X1 ... Xk ... Xn1, jp1>
p2 = < Y0 ® Y1 ... Yn2, jp2>

p’
1 = <p1,In1,v1,Out1,v’

1>
p’

2 = <p1,In2,v2,Out2,v’
2>

Y0 and Xk are the same non-terminal symbol. When an
occurrence of p2 is connected at position k to an occurrence of
p1, the attributes of Y0 and Xk become the same vertices in the
attribute graph of the resulting tree. In notations, it is
important that the indexes of the attributes in both occurrences
correspond to their positions in the tree, such that further on,
there is no ambiguity in the input and output sets and in the
assignments.

When we connect occurrences of p’1 and p’2 the same way
as occurrences of p1 and p2, the following constraints apply on
input and output sets:

021 ,22,1)(YpXp AOutInAIn
k

ÇÈÌÇ (1)

kXpYp AOutInAIn ,11,2 102
)(ÇÈÌÇ (2)

021 ,2,1 YpXp AInAOut
k

ÇÌÇ (3)

kXpYp AInAOut ,1,2 102
ÇÌÇ (4)

Formula (1) (resp. (2)) indicates that an input attribute of Xk

(resp. Y0) should be an input or output attribute of Y0 (resp.
Xk). Formula (3) (resp. (4)) indicates that an output attribute of
Xk (resp. Yo) should be an input attribute of Y0 (resp Xk).
Moreover, still considering the same connection between
occurrences of p’

1 and p’
2, the following constraints apply on

the assignments:
()()[] ()[]avavInaavIavOutaAIna

kXp 212212,1)(')(,
1

=ÙÎÚ=ÙÎÇÎ" (5)

()()[] ()[]avavInaavIavOutaAIna Yp 121121,)(')(,
022 =ÙÎÚ=ÙÎÇÎ" (6)

()() ()[]avavIInaAOuta
kXp 212, ',

1
1 =ÙÎÇÎ" (7)

()() ()[]avavIInaAOuta Yp 121,2 ',
02

=ÙÎÇÎ" (8)

Formula (5) (resp. (6)) indicates that the value of an input
attribute of Xk (resp. Y0) should be equal to the interpretation
of the value of the same attribute considered as an output
attribute of Y0 (resp. Xk), or to the value of the same attribute
considered as an input attribute of Y0 (resp. Xk). Formula (7)
(resp. (8)) indicates that the interpretation of the value of an
output attribute of Xk (resp. Y0) should be equal to the value of
the same attribute considered as an input attribute of Y0 (resp.
Xk). In short, a common attribute of both occurrences is either
an input attribute for each, or an output attribute for one
occurrence and an input attribute for the other, or finally an
unknown attribute for each.
Example 6 Connecting occurrences of I/O productions: p1 is a
RAP; p’

1, p’
2, and p’

3 are I/O productions obtained from p1. An
occurrence of p’

2 can be connected at the position 1 in an
occurrence of p’

1, because v1(n1) = v2(n0). This is not the case
for any occurrence of p’

3, because v1(n1) ¹ v3(no). However, an
occurrence of p’

3 can be connected at position 1 in an
occurrence of p’

2, because I(v¢
2(n1)) = v3(no).

p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 × n0>
p‘1 =
<p1,{n1},v1,{n0},v‘1>
v1(n1) = 3
v‘1(n0) = n1 + 1

p‘2 =
<p1,{n0},v2,{n1},v‘2>
v2(n0) = 3
v‘2(n1) = n0 - 1

p‘3=
<p1,{n0},v3,{n1},v‘3>
v3(n0) = 2
v‘3(n1) = n0 - 1

p’
1 = <p1, In1, v1, Out1, v’

1>
In1 = {n0, r1}
v1(n0) = 3
v1(r1) = 8
Out1 = {n1, r0}
v’

1(n1) = n0 - 1
v’

1(r0) = r1 × n0

p’
2 = <p1, In2, v2, Out2, v’

2>
In2 = {n1}
v2(n1) = 3
Out2 = {n0}
v’

2(n0) = n1 + 1

Y

Y0 = Xk

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

29

Fig. 3 Input/Output Derivation Trees for Example6

Let G be an IOAG. The set of input/output derivation trees

determined by G is the set of trees in which the occurrences of
the I/O productions are correctly connected together. The
attribute graph associated with a derivation tree contains
directed edges between input and output attributes. An edge
links an input attribute a to an output attribute b if a is a
parameter of b in the output assignment.

Fig. 4 Input/Output Derivation Trees

Fig.4 shows two such derivation trees and trees and their
attribute graphs. Some attributes are spotted out (dashed lines
with arrows) because they are global (or external) input
attributes, i.e. attributes that are input in every production
occurrence they appear in. The other attributes are input in one
production occurrence and output in another, if not just output.
The directed edges give the direction of the evaluation, i.e. the
interpretation of the functional expressions from input to
output attributes.

VII. COMPARING INPUT/OUTPUT PRODUCTIONS
In this section, we study the growth of the input set of a

single production and the induced consequences on its output.
In an I/O production, turning some unknown attributes into
input attributes accrues to change this production into another,
potentially with new output. It gives a means to compare I/O
productions in terms of input attributes and assignments.

Let p be a RAP. An I/O production p’
1 derived from p can

be transformed into another I/O production p’
2 also derived

from p, by extending the input set of p’
1. The input set of p’

2
should be the union of the input set of p’1 together with this
extension. Informally, as the input set grows from p’

1 to p’
2, the

output set grows and the set of unknown attributes diminishes.
When the set of unknown attributes is empty, the I/O
production is said to be saturated, and cannot be more
transformed.

Definition8 (Specialization) Let p be a RAP, and p’
1 =

<p1,In1,v1,Out1,v’
1>, p’

2 = <p1,In2,v2,Out2,v’
2> two I/O

productions derived from p. p’
2 is said to be a specialization

of p’
1, which is denoted p’

2 p p’
1, if:

In1 Í In2 Ù"aÎ In1, v1(a) = v2(a)
We also say that p’

2 is more saturated than p’
1. The

consequences of these constraints are the followings: Out1 Í
Out2 and"aÎ Out1, v’

1(a) = v’
2(a)

The relation p is a partial and well-founded order for IOp.
A unique upper bound, called the empty I/O production,
exists; it corresponds to p with an empty input set. Every I/O
production in IOp is a specialization of this one. On the
contrary, and in non trivial cases, there are infinitely many
incomparable lower bounds which are the saturated I/O
productions of IOp (productions without unknown attributes).

The set In2 - In1 is the set of input attributes that appear in
p’

2 but not in p’
1. Let n be the cardinal of In2 - In1. If n = 0,

then p’
2 = p’

1. If n = 1, p’
2 is said to be a one-attribute

specialization of p’
1, which is denoted p’

2 1p p’
1. If n ³ 1, there

exists at least one chain 111,1111 ''.........'' 1,12 pppp n pppp - of
n one-attribute specializations from p’

1 to p’
2 (each

specialization 1p adds one new input attribute from In2 - In1).
A specialization p¢2 p p¢1 reveals several parameters to

describe p’
2 using p’

1. As every I/O production is the result of
at least one chain of one-attribute specializations starting from
the empty I/O production, it is straightforward to use a chain to
define an I/O production. This would be a word in a language
SLp of specializations. Instead of fully specifying every I/O
production derived from p, SLp would describe how they share
specification parts together.

The language SLp can be represented with an automaton Ap
which states represent I/O productions, and transitions
represent extensions for input and output sets and assignments.
The initial state is the empty production, and the final states
are the saturated productions. Yet, Ap is infinite since IOp is.
Example7 Specializing I/O productions: p’

T, p’
1, p’

2, p’
^1, p’

^2,
are I/O productions derived from a RAP p1. p’

T is the empty
I/O production. p’

^1 and p’
^2 are incomparable saturated I/O

productions.
p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 ´ n0>

Tpp '' 11p 211 '' pp p^

Tpp '' 12 p 212 '' pp p^
111 '' pp p^

r

r

-1

-1

n
10

n
9

n
8

r ParamFac

ParamFac

e

ParamFac

r
3

r
1

+1

+1

n
4

n
3

n
2

r
12

ParamFac

ParamFac

e

ParamFac

r

r

p'3 -1

-1

n
3

p'2
n
2

n
1

r

r

r

p'2 -1

+1

n
4

p'1
n
3

n
2

r ParamFac

ParamFac

ParamFac

ParamFac

ParamFac

ParamFac

p’^1=<p1,{n0,r1},v^1,{n1,r0},v’
^1

>
v^1(n0)=3
v^1(r1)=8
v’

^1(n1)= n0-1
’ ´

p’^2=<p1,{r0,r1},v^2,{n0,n1},v’
^2

>
v^2(r0)=24
v^2(r1)=8
v’

^2(n0)= r0/ r1
’

p’T=<p1,Æ,vT,Æ,v’
T

>

p’1=<p1,{n0},v1,{n1},v’
1

>
v1(n0)=3
v’ (n)= n -1

p’2=<p1,{r1},v2,Æ,v’
2>

v2(r1)=8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

30

Fig. 5 Part of the automaton Ap1

The fact that Ap is infinite is not a good point in practice, so
we propose now having a finite automaton. The objective is to
partition IOp into finitely many classes. Each class should
verify the equivalence of the input and output sets of the I/O
productions, and the equivalence of the output assignments in
terms of functional expressions. The abstraction relies in
grouping together I/O productions with the same “behavior”
but different input assignments.

There exist algorithms that compute an abstract
interpretation of Horn clauses by using an abstract domain
{ground, nonground} for the values of the variables [28]–[30].
In the case of I/O productions, we will respectively use known
instead of ground and unknown instead of nonground, and
produce finite automata with abstract interpretations of the
logical formulas in the productions.

Considering a relational production p, we present an
algorithm that starts at the (singleton) class containing the
empty I/O production derived from p. Finding a new class is
considering a one-attribute specialization concerning a
previously unknown attribute a. The abstract interpretation of
(jp Ù a = known) gives the set of (output) attributes which
values are known, indicating the set of I/O productions
contained in the new class. The algorithm terminates when no
new class can be produced from the classes already found. A
class is represented by a pair (In, Out) where In is the set of
input attributes which values are known and out is the set of
output attributes which values are known. The procedure
abstract-interpretation is like the one developed in [28] for
the computation of abstract interpretation of Prolog programs.

S= {(Æ,Æ)}
S’=Æ
While S’¹S
 For each (In,Out) Î S - S’

 {
 S’=S’ È {(In, Out)}
 For each a Ï In È Out
 {
 Out’=abstract-interpretation(jp,In È {a})
 S=S È {(In È {a}, Out’))
 }
 }

This algorithm gives an idea of the construction of the

(abstract) automaton: the initial state represents the class
(Æ,Æ), and each time a pair [(In, Out), (In È {a}, Out’)] is
found, a transition labeled a links the state representing the
class (In, Out) to the state representing the class (In È {a},
Out’).
Example8 A finite automaton corresponding to the
classification of I/O productions derived from a production p1.
p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 ´ n0>

Fig. 6 Finite automaton of I/O productions from p1

VIII. INCREMENTAL PROPAGATION IN DERIVATION TREES
In this section, we show how to obtain a specialization

series of partially evaluated derivation trees. The goal is to
define transformations of the attribute graph of a tree, by
means of local specializations of the production occurrences.
Thus, attributes in the tree become progressively evaluated,
until all attributes are.

The relation p extends naturally from productions to trees.
Consider two I/O derivation trees t1 and t2 determined by an
IOAG and representing the same abstract tree but with
different attribute graphs. The tree t2 is a specialization of t1,
which is (ambiguously) denoted t2 p t1, if p2 p p1 for all pairs
p1, p2 of production occurrences at the same position
respectively in t1 and t2.

This general definition does not show to dynamically obtain
t2 from t1, so we may introduce an incremental strategy for tree
specializations.

Consider an I/O derivation tree tT which is only built with
occurrences of empty I/O productions. First, we choose an
unevaluated attribute in Tt. Generally, any attribute belongs to
two production occurrences; otherwise it is an attribute of a
leaf or of the root of tT. Giving a value for this attribute is
specializing the two production occurrences.

Consequently, new output values are locally produced in
each occurrence (see Section6). At this point, the tree is no

({n1,r0},{n0,r1}) ({r0},Æ)

({n1,r1},{n0,r0})

({n1},{n0})

({n0,r0},{n1,r1}) n0 n1

({r1},Æ) ({n0,r1},{n1,r0}) n0 n1

(Æ,Æ) ({n0},{n1}) n0 n1

r0 r0 r0

r1 r1 r1

1p
 r1=8

1p

n
2

n r

r

ParamFac

ParamFac

3

2 8

24

n

n r

r

ParamFac

ParamFac

3

-1

p’
1

n0=3
1p

r1=8

1p
 r0=24

n0=8
1p

n r

r

ParamFac

ParamFac

n

p’
2

8

n

n

r

r

ParamFac

ParamFac

p’
T

n

n

r

r

ParamFac

ParamFac

3

2

-1

8

24 p’
T1 p’

T2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

31

more a valid I/O derivation tree, but now the connected
production occurrences receive the output values as input, so
they are specialized in their turn.

Such local specializations propagate in the tree from
occurrences to occurrences, and stop where it gives no output.
The tree is globally specialized through that propagation of
local specializations, and the result is an I/O derivation tree t’
verifying t’ p tT. In fact, we can write t’ p 1 tT because we did
choose only one new input attribute in the whole tree.

We may repeat the preceding steps, until all the production
occurrences in the tree are saturated, resulting in a saturated
tree.
Example 9 Tree Specialization: starting from an empty I/O
tree, the value of an attribute is given, leading to the
propagation (dotted arrows) of specializations.

Fig. 7 Tree specialization

We present an algorithm for the incremental propagation in

a derivation tree. This algorithm uses abstract values for the
attributes, as shown in Section6. It starts with a new input
attribute input-a for the tree. A pair (p, a) denotes a production
occurrence and a new input attribute for this production
occurrence. The algorithm uses such pairs to specify what
attributes remain to be propagated in some productions.

The procedure contains takes an attribute in the tree and
returns the set of production occurrences to which it belongs.
The procedure state takes a production occurrence in the tree
and returns the pair (In, Out) of current input and output
attributes of this occurrence. The procedure specialize takes a
production occurrence and a new input attribute and realizes
the specializations of the production occurrence, as described
in Section6. The symbol ´ denotes the Cartesian product of
sets.

P= contains(input-a)
S=P ´ {input-a}

While S¹Æ
{
 S=S-{(p,a)}
 (In, Out)= state(p)
 specialize(p, InÈ{a})
 (In', Out')= state(p)
 For each a' Î Out'- Out
 {
 P= contains(a')
 S=S È(p ´ {a'})
 }
}

IX. CONCLUSION
In this paper, we released the inherited and synthesized

natures of attributes in AGs, by considering them more like
variables in logical formulas, than variables in static functional
expressions. Yet, we used functional expressions to reflect
attribute evaluation, giving configurations in terms of input
and output attributes. For each formulae, we studied the whole
set of valid configurations, instead of considering just one
configuration.

Using RAGs seems a trivial task: one gives an abstract
context-free grammar, attributes for non-terminals and
relations that bind these attributes together. Then, one
supposes that the relations are satisfied all along the interactive
edition of a derivation tree, including tree growing and
attribute evaluation.

In fact, the operational point strongly depends on the logical
part of the grammar. What if we cannot construct functional
expressions from logical formulas? And even if these
expressions are constructed for productions, we are faced with
evaluation problems relating to non-local attribute
dependencies in derivation trees. This cannot be done just by
separately considering each production.

This problem is one of a wide class of evaluation problems
that all depend on one point: circular attribute dependencies.
In general, knowing to locally use some formulas is not
sufficient for conjunctions of these formulas, because of strong
connections between the variables. We hope to give some
results concerning these problems in future studies.

However, we believe that local specializations and
propagations can improve the expressiveness of semantic rules
and the comprehensibility of the mechanism of attributes
evaluation. In the case that one accepts the induced limitations,
RAGs together with specialized productions (denoted by p)
represent an interesting formal tool to specify dynamic
attribute dependencies. Incremental evaluation is a useful
consequence of dependency.

REFERENCES
[1] D.E. Knuth, “Semantics of context-free languages,” Math. Systems

Theory, vol. 2, no. 2, pp. 127-145, 1968. Correction in Math. Systems
Theory, vol. 5, no. 1, pp. 95-96, 1971.

[2] A. V. Aho, M. Lam, R. Sethi & J.D. Ullman, “Compilers: principles,
techniques, and tools,” Addison Wesley, 2007.

1p
ParamFac

ParamFac

ParamFac

e

ParamFac

n

n

n

n

r

r

r

r

ParamFac

ParamFac

ParamFac

e

ParamFac

n

n
7
n

n

r

r

r

r

ParamFac

ParamFac

ParamFac

e

ParamFac n
7

n
5

r

r

r

r

n
8

n
6

ParamFac

ParamFac

ParamFac

e

ParamFac n
7

n

r

r

r

r

n
8

n
6

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

32

[3] H. Alblas, and B. Melichar (eds), Attribute Grammars, Applications and
Systems. Lecture Notes in Computer Science 545, Prague, Springer-
Verlag, June 1991.

[4] P. Deransart, M. Jourdan, and B. Lorho, Attribute Grammars:
Definitions, Systems and Bibliography. Lecture Notes in Computer
Science, vol. 323, New York: Spinger-Verlag, 1988.

[5] P. Deransart, and M. Jourdan, Attribute Grammars and their
Applications. Lecture Notes in Computer Science, vol. 461, Paris:
Springer-Verlag, 1990.

[6] J. Engelfriet, Attribute grammars, Attribute evaluation methods.
Methods and Tools for Complier Construction, Ed. B. Lorho, New
York: Cambridge University Press, 1984, pp. 103-138.

[7] M. Jazayeri, W.F. Ogden, and W.C. Rounds, “The intrinsically
exponential complexity of the circularity problem for attribute
grammars,” Communications of the ACM, vol. 18, no. 12, pp. 697-706,
Dec. 1975.

[8] M. Jazayeri, “A Simpler Construction for Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute
Grammars,” Journal of the ACM, vol. 28, no. 4, pp. 715-720, Oct. 1981.

[9] J.M. Dill, “A Counterexample for A Simpler Construction for Showing
the Intrinsically Exponential Complexity of the Circularity Problem for
Attribute Grammars,” Journal of the ACM, vol. 36, no. 1, pp. 92-96,
Jan. 1989.

[10] B. Courcelle, Attribute grammars: Definitions, analysis of
dependencies, proof methods. Methods and Tools for Compiler
Construction, New York: Cambridge University Press, 1984, pp. 81-
102.

[11] D. Parigot, G. Roussel, M. Jourdan, and E. Duris, Dynamic attribute
grammars. Tech. Rep. 2881, INRIA, Rocquencourt, France, 1996.

[12] Y. Kikuchi, and T. Katayama, “On generalization of attribute
grammars,” Systems and computers in Japan, vol. 27, no 9, pp. 33-42,
1996.

[13] F. Neven, “Attribute grammars for unranked trees as a query language
for structured documents,” Journal of Computer and System Sciences,
vol. 70, no. 2, pp. 221-257, March 2005.

[14] B. Courcelle, and P. Deransart, “Proofs of partial correctness for
attribute grammars with application to recursive procedures and logic
programming,” Information and computation, vol. 78, no. 1, pp. 1-55,
July 1988.

[15] P. Deransart, and J.A. Maluszynski, A grammatical View of Logic
Programming. MIT Press, Nov. 1993.

[16] J. Paakki, “Attribute grammar paradigms-a high-level methodology in
language implementation,” ACM Computing Surveys (CSUR), vol.
27, no. 2, pp. 196-255, June 1995.

[17] L. Barford, and B.T. Vander Zanden, Attribute grammars in constraint-
based graphics systems. Tech. Rep. TR87- 838: Department of
Computer Science, Cornell University, Ithaca, New York, 1987.

[18] J. Steele, The Definition and Implementation of a programming
Language Based on Constraint. PhD thesis: MIT Artificial Intelligence
Laboratory, 1980.

[19] B.T. Vander Zanden, Incremental Constraint Satisfaction and its
Application to Graphical Interfaces, Tech. Rep. TR88-941: Department
of Computer Science, Cornell University, Ithaca, New York, October
1988.

[20] J. Maluszynski, Attribute Grammars and Logic Programs: A
Comparison of Concepts. Eds. H. Albas and B. Melichar, Attribute
Grammars, Applications and Systems, Lecture Notes in Computer
Science 545, Springer-Verlag, 1991, pp. 330-357.

[21] D. Batory, “Feature Models, Grammars and Propositional Formulae,” in
Proc. of the 9th Software Product line Conference (SPLC 2005),
Springer LNCS 3714, 2005, pp. 7-20.

[22] T. Isakowitz, Can we transform logic programs into attribute
grammars? Stern School of Business, New York University, 1991,
http://archive.nyu.edu/bitstream/2451/14362/1/IS-91-06.pdf.

[23] M. Ruffolo, and M. Manna, “A Logic-Based Approach to Semantic
Information Extraction,” in Proc. of the 8th International Conference on
Enterprise Information Systems (ICEIS’06), 2007, pp. 70-84.

[24] R. Hoover, Incremental Graph Evaluation. PhD thesis: Department of
Computer Science, Cornell University, Ithaca, New York, 1987.

[25] S.E. Hudson, “Incremental attribute evaluation: A flexible algorithm for
lazy update,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 13, no. 3, pp. 315-341, July 1991.

[26] T. Reps, T. Teitelbaum, and A. Demers, “Incremental context-dependent
analysis for language based editors,” ACM Transactions on
Programming Languages and Systems, vol. 5, no.3, pp. 449-477, July
1983.

[27] P. Deransart, Validation des grammaires d’attributs. PhD thesis:
Université de Bordeaux I, 1984.

[28] K. Barbar, and K. Musumbu, “Implementation of interpretation
algorithm by means of attribute grammars,” in Proc. of the 26th South-
eastern Symposium on system Theory, IEEE Computer Society, 1994,
pp. 87-93.

[29] M.M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier, Efficient
bottom-up abstract interpretation of logic programs by means of
constraint solving over symbolic finite domains. Tech. Rep: Institute of
Computer Science, University of Namur, Belgium, 1993.

[30] K. Marriott, H. Sondergaard, and N.D. Jones, “Denotational abstract
interpretation of logic programs,” ACM Transactions on Programming
Languages and Systems, vol. 16, no. 3, pp. 607-648, May 1994.

Kablan Barbar was born in Chettaha, Lebanon on February 22nd, 1955.
He received a Master degree in computer science from the University of
Bordeaux I in 1979. He holds Ph.D in Computer Sciences from the University
of Bordeaux I since 1980.

He taught at the University of Bordeaux I between 1980 and 1996. He is
currently a full professor at the Faculty of Sciences of the Lebanese University
and director of the Lebanese University’s law center. His current research
interests include attributed grammars, compiling of markup languages and
automatic generation of web applications.

May Dehayni was born in Gebaa, Lebanon on March 25th, 1977. She
received a Master degree in computer science from the Lebanese University
in 2000. She received a Ph.D in computer science from the University of
Toulouse III (UPS), France in 2004.

She is an Assistant Professor in computer science at the Faculty of
Sciences of the Lebanese University, Hadath, Lebanon. Her previous research
and publications have been in the field of meta-modeling (MOF). Her Ph.D.
thesis proposes an approach of model transformation based on attribute
grammars. She is currently working in the domains of Information Research
Systems, and combining Attribute Grammars with logic.

Ali Awada was born in Baalbeck, Lebanon on October 30th , 1964. He
received a Master degree in computer science from the University of
Toulouse III (UPS), France in 1988. He received a Ph.D in computer science
from the “Institut National Polytechnique” of Toulouse, France in 1993.

He is a Professor in computer science at the Faculty of Sciences of the
Lebanese University, Hadath, Lebanon. He previously worked on
human/machine communication in natural language. His current research
interests include semantic distance, using ontology in the process of request
expansion in Information Research Systems, and combining Attribute
Grammars with logic.

Mohamad Smaili was born in Aïta-Fakhar, Lebanon on December 2nd,
1961. He received a Master degree in computer science from the University
of Montpellier II (USTL), France in 1990. He received a Ph.D in computer
science from the University of Montpellier II in 1993.

He is a Professor in computer science at the Faculty of Sciences of the
Lebanese University, Hadath, Lebanon. His research interests are fuzzy logic,
digital circuits, and simulation.

