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Abstract— Considering the theory of attribute grammars, we use 

logical formulas instead of traditional functional semantic rules. 
Following the decoration of a derivation tree, a suitable algorithm 
should maintain the consistency of the formulas together with the 
evaluation of the attributes. This may be a Prolog-like resolution, but 
this paper examines a somewhat different strategy, based on 
production specialization, local consistency and propagation: given a 
derivation tree, it is interactively decorated, i.e. incrementally 
checked and evaluated. The non-directed dependencies are 
dynamically directed during attribute evaluation. 
 

Keywords—Input/Output attribute grammars, local consistency, 
logical programming, propagation, relational attribute grammars.  

I. INTRODUCTION 
TTRIBUTE grammars (abbreviated AGs) were first 
introduced by Knuth to describe syntactic-based 

translations [1]. This approach is a purely declarative 
programming paradigm syntax directed. They have been 
widely studied and used, especially as a compilation technique 
in the field of programming languages [2], or as formal 
specifications for more general tree transductions and 
semantics [3]–[6].  

An AG is a context-free grammar (CFG) which non-
terminal symbols are decorated with inherited and synthesized 
attributes, and productions are enriched with semantic rules 
defining assignments for the attributes. The goal is to give 
some “meaning” to the terms obtained from the grammar. The 
semantic rules show dependencies between attributes, 
revealing the order to compute their values. In short, some 
attributes should be computed before other ones because the 
formers are parameters of the latters. 

When using AG, one common task is to avoid circular 
dependencies for any derivation tree of the grammar. Knuth 
presented an exponential-space algorithm for the circularity 
problem [1]. The intrinsically exponential complexity of this 
problem was first proved by Jazayeri, Ogden, and Rounds [7], 
who reduced the acceptance problem of writing pushdown 
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acceptors to the circularity problem. Jazayeri [8] (and the 
correction by Dill [9]) tried to provide a simpler construction 
of AGs by reducing the acceptance problem of space-bounded 
alternating Turing machines.  

Another task is to determine efficient methods to compute 
all the attributes in a given derivation tree. In the classical way, 
the AG is statically analyzed to anticipate the whole 
dependencies of any derivation tree. The attributes in the 
semantic rules are defined as input (or output) only in order to 
find convenient properties of the dependencies [10]. Yet, these 
restrictions reduce the expressiveness of AGs. 

Classical AGs lack of expressiveness has resulted in limited 
use outside the domain of static language processing. This 
leads to extend the classical formalism into the notion of 
Dynamic Attribute Grammars (DAG) [11] to enhance the 
expressiveness and to allow describing computations on 
structures that are not just trees. This results in a language that 
is comparable in power to most functional languages, with a 
distinctive declarative character. Kikuchi and Katayama define 
the semantics of general AGs by using semantic functions 
whose inputs are structures derived from the underlying 
grammar and whose outputs are attributed structures [12]. 
Then they provide classifications of general AGs based on the 
abstract properties of semantic functions. In [13], Neven 
introduces extension of AGs that work over extended CFG, 
allowing arbitrary regular expressions on the right-hand side of 
productions. Viewed as a query language, extended AGs are 
particularly relevant as they can take into account the inherent 
order of the children of a node in a structured document. 

In this paper we will rather emphasize the fact that using 
non-directed semantic rules (i.e. relations or constraints) 
greatly enhances the declarative power of AGs, because it is 
no more presumed which attribute should be evaluated first. At 
“execution time” dependencies are dynamically built when 
some attribute is declared as input attribute. 

In section3, we recall basic formal definitions of concepts 
like CFG and productions. In Section4, we adapt the definition 
of relational AGs [14] to fit our needs. Section5 reveals 
input/output productions as our main tool to describe static and 
dynamic evaluation. Such productions are connected together 
in Section6 to build partially evaluated derivation trees. They 
are compared together in Section7 to show possible 
transformations from one into another. Then, in Section8 we 
incrementally evaluate the attributes of a derivation tree using 
step by step transformations of the production occurrences. 
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II. RELATED WORKS 
A Relational AG is a formal tool to define such non-directed 

relational semantic rules separately from an abstract CFG [14]. 
It does not give any operational clue to satisfy the relations in 
a decorated tree. Yet, if an attribute in a production occurrence 
is declared being an input attribute, some other attributes that 
depend on may be evaluated. As any attribute can become an 
input attribute in a production occurrence, the search for 
dependencies is parameterized with the set of current input 
attributes. 

This study is related to previous works that brings together 
AGs and logic [15], [16] or constraint satisfaction [17]–[19]. 
In [20], a unified view of AGs and logic programs is 
presented. The author compares both formalisms and shows 
that AGs have some features that are not present in logic 
programs. He proposes some extensions in the field of logic 
programming in order to enrich logic programs with extra 
features. Batory describes the interpretation of grammar 
representations in terms of propositional logic formulae [21]. 
Isakowitz introduces Abstract Attribute Grammars (AAG) in 
order to study the transformation from Logic Programs into 
AAG and vice versa [22]. He provides a construction that 
transforms any logic program into an equivalent AAG. The 
motivation for much of this work comes from the need for 
verifying the correctness of feature model selections that 
represent individual products. Ruffolo and Manna define 
semantic models in order to exploit domain knowledge for 
managing both structured and unstructured information [23]. 
These semantic models are executable, flexible and agile 
representation of domain knowledge. They are expressed by 
means of the Codex Language obtained combining Disjunctive 
Logic Programming and AGs. 

Dynamic and incremental use of AGs is also concerned 
[11], [24], [25]. Reps, Teitelbaum, and Demers develop the 
Cornell Synthesizer Generator that is an incremental evaluator 
generation tool. It offers the possibility of replacing a sub-tree 
of a syntactic tree by another sub-tree: the propagation of new 
attribute values on the whole tree is then automatically 
processed [26]. By combining dynamic and incremental 
aspects, attribute dependencies can be dynamically directed, 
and that waiting for the values of all the input attributes is not 
necessary in order to evaluate some parts of the decorated tree. 
Unlike Prolog, enumeration of all the solutions is not 
considered here because there is usually infinitely many, 
unless some extra information. On the contrary, partial 
solutions are managed. Thus, each time an attribute gets a 
value in a production occurrence, the current set of input 
attributes is enriched, potentially leading to new dependencies 
and incremental propagations in the derivation tree. 

III. ABSTRACT CONTEXT-FREE GRAMMARS 
In this section, we recall basic formal definitions of 

concepts that will be used further on, like CFG, productions 
and derivation trees. 
Definition1 (CFG) A context-free grammar is a tuple (N, T, 

Z, P) where: 
· N is the alphabet of non-terminal symbols; 
· T is the alphabet of terminal symbols; NÇT =Æ 
· Z is the axiom of the grammar, Z Î N; Z must be the root 

of any derivation tree of the grammar; 
· P is a set of context-free productions (see Definition2). 

Definition2 (CFP) A context-free production p in a CFG (N, 
T, Z, P) is a tuple X0 ® X1 ... Xn where: 

· X0 is an occurrence of an element of N; 
· X1 ... Xn are occurrences of elements of NÈT. 
In the production p: X0 is the left-hand side of p, while X1 ... 

Xn is the right-hand side. The elements in a production p, even 
if they are occurrences of identical terminal or non-terminal 
symbols, are characterized by their positions in p, in Dewey 
notation (the symbol 0 is the empty word e). Thus, there is a 
straightforward tree representation of a production, where the 
root is X0 and leaves are X1 ... Xn. 
Definition3 (ACFG) An abstract CFG is a tuple (N, P) where 
N and P appear in a CFG tuple (N, T, Z, P). If a production p 
in P contains some occurrences of terminals in T, they are 
ignored. Consequently a production p is essentially 
considered as a tuple of one or more non-terminals. 

ACFG are the essence of context free grammars. We can 
also note that the axiom Z disappears: any non-terminal in the 
left-hand side of a production can be the root of a derivation 
tree of the grammar. 

Example1 shows an ACFG that will be used with attributes 
in section3 to illustrate the factorial function. Example2 shows 
an ACFG for strictly binary trees. 
Example1 (FacACFG) An abstract CFG representing a free 
monoid:     

N = {Fac} 
P = {p1: Fac ® Fac , p2 : Fac ® e} 

Example2 (BinACFG) An abstract CFG for strictly binary 
trees: 

N = {Bin} 
P = (p1: Bin ® Bin Bin, p2: Bin ® e} 
Let G be an ACFG. A production X0 ® X1 ... Xn in G gives 

rise to a set of trees which roots represent occurrences of X0, 
and direct sub trees derived from productions with X1 ... Xn as 
left-hand sides. In a derivation tree, the occurrences of (the 
roots of) the productions and the occurrences of the non-
terminals are characterized by their positions in Dewey 
notation, obtained by concatenating their position in the 
production to the global position of their parent in the tree. 

 
 
 
 
 
 
 
 

Fig. 1 Abstract Derivation Trees 
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Fig.1 shows two derivation trees for FacACFG and BinACFG. 
The Fac occurrences of the production p1 appear at positions 
0, 1 and an occurrence of p2 is at position 1.1; while the Bin 
occurrences of the production p1 appear at positions 0, 1, 2 and 
2.1. 

The way a derivation tree is constructed is an important 
point for us, as it partly determines why and how the attributes 
are computed. Look again at the trees in Fig.1, and imagine 
that they are interactively built. Each time, we have to choose 
which non-terminal to develop, using the productions of the 
grammar as construction rules. Clearly, different strategies 
exist, whether bottom-up, top-down, or in either direction, to 
finally obtain a derivation tree. In the next sections, we show 
how these strategies determine orientations between attributes. 
But in most cases, we will consider a tree that already exists 
before any orientations or evaluations. 

IV. RELATIONAL ATTRIBUTE GRAMMARS 
In this section, we recall the definition of relational attribute 

grammars (RAG). Definitions of “classical” AGs can be found 
in [4], [10], but we do not use them here. It is probably 
possible to transform AGs into RAGs, e.g. by considering 
directed semantic rules as non-directed, thus breaking the 
distinction between inherited (evaluated during a top-down 
tree traversal) and synthesized attributes (evaluated during a 
bottom-up traversal) in the specification of the grammar. 

RAGs were introduced to prove the validity of a “classical” 
AG with respect to a specification [14], [27]. A specification 
consists in a collection of logical formulas, each formula being 
associated to a production and establishing the relationships 
between the attributes of this production. 

 From a different point of view, logical formulas can replace 
the semantic rules to directly specify which relations the 
attributes of a production should respect. In the sequel, we 
adopt this point of view. Such formulas enhance the 
declarative power of classical AGs, while it becomes more 
difficult to prove their correctness and to compute attributes, 
because of the use of a possibly too general logical language. 

 We use slightly different notations than [14], [27]. We 
don’t define the sorts of the attributes, nor give precise 
definition for the logical parts of the grammars. These 
restrictions are not significant for the purpose of this paper 
because we just want to outline a specification level 
independent from the underlying logical language. 
Definition4 (RAG) A Relational Attribute Grammar is a 
tuple (N, P, A, j, I) where: 

· (N,P) is an ACFG; 
· A is the alphabet of attribute names; 
· j is a finite set of formulas from a logical language L; 
· I is the interpretation of L. 
Each element X in N is decorated with a subset of A, 

denoted Ax. An attribute symbol a appearing in Ax is called 
the occurrence of the attribute a in X, or the attribute a of X, 
and is denoted a(X) or X.a. For a production p in P, the 
attributes a, b… of a non-terminal X appearing at position i 

are denoted ai, bi, ... so they form a set denoted Ap, Xi. The set 
Ap of the attributes appearing in p is equal to U

pXi

ip XA
Î

, . 

Each production in P is associated to a unique formula in j 
as explained in Definition5. N and P form the grammatical 
part (syntax) of the relational attribute grammar, while A,j, 
and I form the labeling formalism part (semantics). 
Definition5 (RAP) A relational Attribute Production in a 
relational attribute grammar (N, P, A, j, I) is a tuple (p, jp) 
where: 

· p is a context-free production from P; 
· jp is the formula of j associated to p. 
The set of variables in jp should be a subset of Ap. If not 

specified, these variables are existentially quantified. For 
each context-free production p in P, there is a unique 
relational attribute production (p, jp) (thus, we may 
ambiguously use p to denote the context-free production p or 
the relational attribute production (p, jp)). 

Example3 shows a RAG for the factorial function. The 
attributes n and r of the non-terminal Fac respectively denote 
the argument of the recursive call and the corresponding result 
n!. 
Example3 (FacRAG) A RAG for the factorial function: 

N = {Fac} 
P = {p1: Fac ® Fac, p2: Fac ®e} 
AFac = {n,r} 
Ap1 = { n0, r0, n1,r1} 
Ap2 = { n0, r0} 
jp1 = ( n0 = n1 + 1 Ù r0 = r1 × n0) 
jp2 = ( n0 = 0 Ù r0 = 1) 
I : L ® Bool È Nat; Nat denotes natural numbers with the 
usual operations. 
A more general function is shown in Example4. The 

formulas associated to the productions specify the relations 
between the occurrences of the attributes. In these formulas, 
the symbol ‘=’ denotes an equivalence predicate, not an 
assignment function, so it is not explicitly specified how the 
attributes should be computed. It strongly depends on the way 
a derivation tree is constructed, and on extra information like 
the values of some unknown attributes.  
Example4 (ParamFacRAG) A RAG for a kind of factorial 
function with unspecified start conditions: 

N = {ParamFac} 
P = {p1: ParamFac ® ParamFac, p2: ParamFac ®e} 

 AParamFac = {n, r} 
Ap1 = { n0, r0, n1, r1} 
Ap2 = { n0, r0} 
jp1 = ( n0 = n1 + 1 Ù r0 = r1 × n0) 
jp2 = true, the formula is always true 
I = L ® Bool È Nat≥0; Nat≥0 is the domain of positive 

natural numbers with the usual operations. 
Let G be a RAG. The set of relational derivation trees 

determined by G is the same as the set of derivation trees 
determined by the ACFG in G, the occurrences of the non-
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terminals being decorated with additional vertices representing 
their attributes. An attribute in the tree has the same position as 
its related non-terminal occurrence. The relations between the 
attributes are represented by edges or hyper edges. 
Consequently, for a derivation tree t, the attributes (vertices) 
together with the relations (edges) form a graph called the 
attribute graph of t and denoted Graph(t). 

In Section2, some strategies to generate derivation trees 
were outlined. The attribute graph of a derivation tree t is 
generated while t is, using the same strategy. 

Fig.2 shows two derivation trees, one from FacRAG, and one 
from ParamFacRAG. In the tree from FacRAG, the edges 
representing relations could be directed, as it is possible to 
evaluate all the attributes starting at the values 0 and 1 in the 
occurrence of production p2. This is not the case in the tree 
from ParamFacRAG. These points are investigated in the next 
section. 

V. INPUT/OUTPUT PRODUCTIONS  
The logical formulas associated with relational attribute 

productions specify the relationships between the attributes, 
but they are not supposed to be straight operational. The 
attributes in a production are not characterized as input or 
output. This constitutes the (declarative) strength and the 
(operational) weakness of RAG. 

The way the attributes of a derivation tree should be 
computed depends strongly on the strategy to generate the tree 
together with its attribute graph and on the values of some 
input attributes from which to start. In the left tree Fig.2, a top-
down strategy would wait an occurrence of p2 before 
evaluating, while a bottom-up strategy, starting at the 
occurrence of p2, could evaluate the attributes during the 
construction of the tree. Each strategy would consider the 
values 0 and 1 in jp2 as input. In the tree at the right on Fig.2, 
the situation is clearly different: some extra information is 
needed to compute even a part of the attributes; else there are 
infinitely many solutions. 

 

 

 

 

 

 

 

 

 
Fig.  2 Abstract Derivation Trees 

 
In this section, input and output attributes are distinguished 

in a production, but some attributes may be neither input nor 
output. Moreover, different values for each input attribute are 
considered. A relational attribute production p gives rise to 

several productions of a new type, each production 
syntactically identical to p but with different input attributes 
and different values for these attributes. For each of these 
productions, (the values of) output attributes result in 
functional applications of (the values of) input attributes. We 
call such productions input/output relational attribute 
productions, or I/O productions in short. 
Definition6 (I/O RAP) An Input/Output Relational Attribute 
Production is a tuple (p, In, v, Out, v’): 

· p is a relational production from a relational grammar 
(N, P, A, j, I); 

· In is a subset of Ap, called the input set, which elements 
are called the input assignment attributes; 

· v is a mapping from In to the domain of interpretation, 
called the input assignment; 

· Out is a subset of Ap - In, called the output set, which 
elements are called the output attributes; 

· v‘ is a mapping from Out to a domain of functional terms 
which variables are the attributes of In. These terms 
have to be interpreted with I and v. v¢ is called the 
output assignment. 

Let a be an output attribute. We have v’(a)= f(a1,...,ak), with 
f a functional term and a1,...,ak some input attributes (the 
indexes do not correspond to positions in p). The output 
assignment v’ should be a “logical consequence” of jp with the 
assignment v in the interpretation I, so we write: 
( ) ( )[ ]kp aafavI ,...,, 1| =Ù= j .  

The most important problem, not addressed here, is to 
automatically determine proper functional terms f in v¢, just by 
considering jp and v, i.e. information relative to the 
production, and not from a global knowledge about the 
grammar. These terms should precisely reflect functional 
properties of jp. 

The set Ap – In - Out is the set of attributes which are 
neither input nor output attributes. They are called the 
unknown attributes. It is possible to tell properties of these 
attributes just by looking at jp and v. One of these properties is 
that the set of their possible values is not reduced to a 
singleton, so they don’t appear in Out. 

Because we give no restrictions on the formulas in j, we 
have to distinguish the values of the input attributes: in 
general, different input values for the same attribute may 
induce different output sets, e.g. the formula ((a=0 Ù b=1) Ú 
(a≥1 Ù c=a-1)) gives different output sets for different values 
of a. 

Eventually, jp can be invalidated by v. This situation is 
called a conflict. Depending on the logical language and its 
interpretation, verifying the validity of a formula under a 
particular assignment may be “hard” or, worse, undecidable, 
but it is not the subject of this paper. An assignment v is said 
valid if it does not invalidate jp. In the sequel, we will only 
consider productions for which there is no conflict, i.e. we 
consider only valid assignments. This restriction will be 
relaxed in future papers. 
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Example5 Two I/0 productions obtained from a production p1: 
p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 × n0> 

A relational attribute production p gives rise to a set of I/O 
productions, denoted IOp. Given a valid assignment v for a 
subset of Ap, there exists at least one I/O production 
<p,In,v,Out,v’> in IOp.. Hence, IOp is infinite if the set of valid 
assignments is infinite, limiting the practical use of I/O 
productions. It would be preferable to partition IOp into finitely 
many classes of I/O productions, as it will be shown in 
Section6. 

Now, we have the basic elements to specify static and 
dynamic properties of attribute dependencies in derivation 
trees. In Section5, occurrences of I/O productions are 
connected together to give a derivation tree t and to produce 
directed dependencies between the attributes in the attribute 
graph of t. In Section6, we modify input sets to show dynamic 
transformations of I/O productions. In Section7, these 
transformations are used in derivation trees to locally 
propagate the evaluation of the attributes. 

VI. INPUT/OUTPUT ATTRIBUTE GRAMMARS 
As explained in section2, given two productions p1 and p2 of 

an ACFG, an occurrence of p1 can be connected to an 
occurrence of p2 if the left-hand side of p1 appears in the right-
hand side of p2, or inversely, if the left-hand side of p2 appears 
in the right-hand side of p1. The same principle applies for 
RAPs and their attribute graphs. 

Yet, considering I/O productions, we need to define more 
precisely how they can be connected together in terms of 
assignments of attributes. Doing this we straight define the 
derivation trees of a grammar containing I/O productions. 
Definition7 (IOAG) An Input/Output Attribute Grammar is a 
tuple (G, P¢) where: 

· G is a RAG (N, P, A, j, I) 
· P¢ is the set of I/O productions obtained from p and j; 

U
Pp

pIOP
Î

='  

Each production in a RAG implies several I/O productions. 
If the occurrences of two RAPs p1, p2 can be connected 
together, so can the occurrences of two I/O productions 
derived from p1 and p2, with additional constraints on the input 
and output sets and on the assignments. 

Let p1, p2 be two RAPs, and p’
1, p’

2 two I/O productions 
respectively derived from p1 and p2. Suppose that the left-hand 
side of p2 appears in the right-hand side of p1 at position k. 

p1 = < X0 ® X1 ... Xk ... Xn1, jp1>  
p2 = < Y0 ® Y1 ... Yn2, jp2>  

p’
1 = <p1,In1,v1,Out1,v’

1>   
p’

2 = <p1,In2,v2,Out2,v’
2> 

Y0 and Xk are the same non-terminal symbol. When an 
occurrence of p2 is connected at position k to an occurrence of 
p1, the attributes of Y0 and Xk become the same vertices in the 
attribute graph of the resulting tree. In notations, it is 
important that the indexes of the attributes in both occurrences 
correspond to their positions in the tree, such that further on, 
there is no ambiguity in the input and output sets and in the 
assignments. 

When we connect occurrences of p’1 and p’2 the same way 
as occurrences of p1 and p2, the following constraints apply on 
input and output sets: 

021 ,22,1 )( YpXp AOutInAIn
k

ÇÈÌÇ  (1) 

kXpYp AOutInAIn ,11,2 102
)( ÇÈÌÇ  (2) 

021 ,2,1 YpXp AInAOut
k

ÇÌÇ  (3) 

kXpYp AInAOut ,1,2 102
ÇÌÇ  (4) 

Formula (1) (resp. (2)) indicates that an input attribute of Xk 

(resp. Y0) should be an input or output attribute of Y0 (resp. 
Xk). Formula (3) (resp. (4)) indicates that an output attribute of 
Xk (resp. Yo) should be an input attribute of Y0 (resp Xk). 
Moreover, still considering the same connection between 
occurrences of p’

1 and p’
2, the following constraints apply on 

the assignments: 
( )( )[ ] ( )[ ]avavInaavIavOutaAIna

kXp 212212,1 )(')(,
1

=ÙÎÚ=ÙÎÇÎ"  (5) 

( )( )[ ] ( )[ ]avavInaavIavOutaAIna Yp 121121, )(')(,
022 =ÙÎÚ=ÙÎÇÎ"  (6) 

( )( ) ( )[ ]avavIInaAOuta
kXp 212, ',

1
1 =ÙÎÇÎ"  (7) 

( )( ) ( )[ ]avavIInaAOuta Yp 121,2 ',
02

=ÙÎÇÎ"  (8) 

Formula (5) (resp. (6)) indicates that the value of an input 
attribute of Xk (resp. Y0) should be equal to the interpretation 
of the value of the same attribute considered as an output 
attribute of Y0 (resp. Xk), or to the value of the same attribute 
considered as an input attribute of Y0 (resp. Xk). Formula (7) 
(resp. (8)) indicates that the interpretation of the value of an 
output attribute of Xk (resp. Y0) should be equal to the value of 
the same attribute considered as an input attribute of Y0 (resp. 
Xk). In short, a common attribute of both occurrences is either 
an input attribute for each, or an output attribute for one 
occurrence and an input attribute for the other, or finally an 
unknown attribute for each. 
Example 6 Connecting occurrences of I/O productions: p1 is a 
RAP; p’

1, p’
2, and p’

3 are I/O productions obtained from p1. An 
occurrence of p’

2 can be connected at the position 1 in an 
occurrence of p’

1, because v1(n1) = v2(n0). This is not the case 
for any occurrence of p’

3, because v1(n1) ¹ v3(no). However, an 
occurrence of p’

3 can be connected at position 1 in an 
occurrence of p’

2, because I(v¢
2(n1)) = v3(no ). 

p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 × n0> 
p‘1 = 
<p1,{n1},v1,{n0},v‘1> 
v1(n1) = 3 
v‘1(n0) = n1 + 1 

p‘2 = 
<p1,{n0},v2,{n1},v‘2> 
v2(n0) = 3 
v‘2(n1) = n0 - 1 

p‘3= 
<p1,{n0},v3,{n1},v‘3> 
v3(n0) = 2 
v‘3(n1) = n0 - 1 

 

p’
1 = <p1, In1, v1, Out1, v’

1> 
In1 = {n0, r1} 
v1(n0) = 3 
v1(r1) = 8 
Out1 = {n1,  r0} 
v’

1(n1) = n0 - 1 
v’

1(r0) = r1 × n0 

p’
2 = <p1, In2, v2, Out2, v’

2> 
In2 = {n1} 
v2(n1) = 3 
Out2 = {n0} 
v’

2(n0) = n1 + 1 

 
Y

Y0 = Xk 
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Fig. 3 Input/Output Derivation Trees for Example6 
 
Let G be an IOAG. The set of input/output derivation trees 

determined by G is the set of trees in which the occurrences of 
the I/O productions are correctly connected together. The 
attribute graph associated with a derivation tree contains 
directed edges between input and output attributes. An edge 
links an input attribute a to an output attribute b if a is a 
parameter of b in the output assignment. 

 
 
 
 

 
 
 
 
 
 

Fig. 4 Input/Output Derivation Trees 
 

Fig.4 shows two such derivation trees and trees and their 
attribute graphs. Some attributes are spotted out (dashed lines 
with arrows) because they are global (or external) input 
attributes, i.e. attributes that are input in every production 
occurrence they appear in. The other attributes are input in one 
production occurrence and output in another, if not just output. 
The directed edges give the direction of the evaluation, i.e. the 
interpretation of the functional expressions from input to 
output attributes.  

VII. COMPARING INPUT/OUTPUT PRODUCTIONS 
In this section, we study the growth of the input set of a 

single production and the induced consequences on its output. 
In an I/O production, turning some unknown attributes into 
input attributes accrues to change this production into another, 
potentially with new output. It gives a means to compare I/O 
productions in terms of input attributes and assignments.  

Let p be a RAP. An I/O production p’
1 derived from p can 

be transformed into another I/O production p’
2 also derived 

from p, by extending the input set of p’
1. The input set of p’

2 
should be the union of the input set of p’1 together with this 
extension. Informally, as the input set grows from p’

1 to p’
2, the 

output set grows and the set of unknown attributes diminishes. 
When the set of unknown attributes is empty, the I/O 
production is said to be saturated, and cannot be more 
transformed. 

Definition8 (Specialization) Let p be a RAP, and p’
1 = 

<p1,In1,v1,Out1,v’
1>, p’

2 = <p1,In2,v2,Out2,v’
2> two I/O 

productions derived from p. p’
2 is said to be a specialization 

of p’
1, which is denoted p’

2 p  p’
1, if: 

In1 Í In2 Ù"aÎ In1, v1(a) = v2(a) 
We also say that p’

2 is more saturated than p’
1. The 

consequences of these constraints are the followings: Out1 Í 
Out2 and"aÎ Out1, v’

1(a) = v’
2(a) 

The relation p  is a partial and well-founded order for IOp. 
A unique upper bound, called the empty I/O production, 
exists; it corresponds to p with an empty input set. Every I/O 
production in IOp is a specialization of this one. On the 
contrary, and in non trivial cases, there are infinitely many 
incomparable lower bounds which are the saturated I/O 
productions of IOp (productions without unknown attributes). 

The set In2 - In1 is the set of input attributes that appear in 
p’

2 but not in p’
1. Let n be the cardinal of In2 - In1. If n = 0, 

then p’
2 = p’

1. If n = 1, p’
2 is said to be a one-attribute 

specialization of p’
1, which is denoted p’

2 1p  p’
1. If n ³ 1, there 

exists at least one chain 111,1111 ''.........'' 1,12 pppp n pppp -  of 
n one-attribute specializations from p’

1 to p’
2 (each 

specialization 1p  adds one new input attribute from In2 - In1). 
A specialization p¢2 p  p¢1 reveals several parameters to 

describe p’
2 using p’

1. As every I/O production is the result of 
at least one chain of one-attribute specializations starting from 
the empty I/O production, it is straightforward to use a chain to 
define an I/O production. This would be a word in a language 
SLp of specializations. Instead of fully specifying every I/O 
production derived from p, SLp would describe how they share 
specification parts together. 

The language SLp can be represented with an automaton Ap 
which states represent I/O productions, and transitions 
represent extensions for input and output sets and assignments. 
The initial state is the empty production, and the final states 
are the saturated productions. Yet, Ap is infinite since IOp is. 
Example7 Specializing I/O productions: p’

T, p’
1, p’

2, p’
^1, p’

^2, 
are I/O productions derived from a RAP p1. p’

T is the empty 
I/O production. p’

^1 and p’
^2 are incomparable saturated I/O 

productions. 
p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 ´ n0> 

 
 
 
 
 
 
 
 
 
 

 
Tpp '' 11p  211 '' pp p^  

Tpp '' 12 p  212 '' pp p^  
111 '' pp p^  

r 
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n 
10 

n
9 

n
8 
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ParamFac 

e 
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r
3 

r
1 

+1 

+1 

n
4 

n 
3 

n 
2 

r 
12 

ParamFac 

ParamFac 

e 

ParamFac 

r 

r 

p'3 -1 

-1 

n
3 

p'2 
n
2 

n
1 

r 

r 

r 

p'2 -1 

+1 

n
4 

p'1 
n
3 

n
2 

r ParamFac 

ParamFac 
 

ParamFac 
 

ParamFac 

ParamFac 
 

ParamFac 
 

p’^1=<p1,{n0,r1},v^1,{n1,r0},v’
^1

> 
v^1(n0)=3 
v^1(r1)=8 
v’

^1(n1)= n0-1 
’ ´

p’^2=<p1,{r0,r1},v^2,{n0,n1},v’
^2

> 
v^2(r0)=24 
v^2(r1)=8 
v’

^2(n0)= r0/ r1 
’

p’T=<p1,Æ,vT,Æ,v’
T

> 

p’1=<p1,{n0},v1,{n1},v’
1

> 
v1(n0)=3 
v’ (n )= n -1 

p’2=<p1,{r1},v2,Æ,v’
2> 

v2(r1)=8 
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Fig. 5 Part of the automaton Ap1 
 

The fact that Ap is infinite is not a good point in practice, so 
we propose now having a finite automaton. The objective is to 
partition IOp into finitely many classes. Each class should 
verify the equivalence of the input and output sets of the I/O 
productions, and the equivalence of the output assignments in 
terms of functional expressions. The abstraction relies in 
grouping together I/O productions with the same “behavior” 
but different input assignments. 

There exist algorithms that compute an abstract 
interpretation of Horn clauses by using an abstract domain 
{ground, nonground} for the values of the variables [28]–[30]. 
In the case of I/O productions, we will respectively use known 
instead of ground and unknown instead of nonground, and 
produce finite automata with abstract interpretations of the 
logical formulas in the productions. 

Considering a relational production p, we present an 
algorithm that starts at the (singleton) class containing the 
empty I/O production derived from p. Finding a new class is 
considering a one-attribute specialization concerning a 
previously unknown attribute a. The abstract interpretation of 
(jp Ù a = known) gives the set of (output) attributes which 
values are known, indicating the set of I/O productions 
contained in the new class. The algorithm terminates when no 
new class can be produced from the classes already found. A 
class is represented by a pair (In, Out) where In is the set of 
input attributes which values are known and out is the set of 
output attributes which values are known. The procedure 
abstract-interpretation is like the one developed in [28] for 
the computation of abstract interpretation of Prolog programs. 

S= {(Æ,Æ)} 
S’=Æ 
While S’¹S 
 For each (In,Out) Î S - S’ 

 { 
  S’=S’ È {(In, Out)} 
  For each a Ï In È Out 
  { 
   Out’=abstract-interpretation(jp,In È {a}) 
   S=S È {(In È {a}, Out’)) 
  } 
 } 
 
This algorithm gives an idea of the construction of the 

(abstract) automaton: the initial state represents the class 
(Æ,Æ), and each time a pair [(In, Out), (In È {a}, Out’)] is 
found, a transition labeled a links the state representing the 
class (In, Out) to the state representing the class (In È {a}, 
Out’). 
Example8 A finite automaton corresponding to the 
classification of I/O productions derived from a production p1. 
p1 = <ParamFac ® ParamFac, n0 = n1 + 1 Ù r0 = r1 ´ n0> 

 
 
 
 
 
 
 
 
 

 
Fig. 6 Finite automaton of I/O productions from p1 

VIII. INCREMENTAL PROPAGATION IN DERIVATION TREES 
In this section, we show how to obtain a specialization 

series of partially evaluated derivation trees. The goal is to 
define transformations of the attribute graph of a tree, by 
means of local specializations of the production occurrences. 
Thus, attributes in the tree become progressively evaluated, 
until all attributes are. 

The relation p  extends naturally from productions to trees. 
Consider two I/O derivation trees t1 and t2 determined by an 
IOAG and representing the same abstract tree but with 
different attribute graphs. The tree t2 is a specialization of t1, 
which is (ambiguously) denoted t2 p t1, if p2 p p1 for all pairs 
p1, p2 of production occurrences at the same position 
respectively in t1 and t2. 

This general definition does not show to dynamically obtain 
t2 from t1, so we may introduce an incremental strategy for tree 
specializations. 

Consider an I/O derivation tree tT which is only built with 
occurrences of empty I/O productions. First, we choose an 
unevaluated attribute in Tt. Generally, any attribute belongs to 
two production occurrences; otherwise it is an attribute of a 
leaf or of the root of tT. Giving a value for this attribute is 
specializing the two production occurrences. 

Consequently, new output values are locally produced in 
each occurrence (see Section6). At this point, the tree is no 
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more a valid I/O derivation tree, but now the connected 
production occurrences receive the output values as input, so 
they are specialized in their turn. 

Such local specializations propagate in the tree from 
occurrences to occurrences, and stop where it gives no output. 
The tree is globally specialized through that propagation of 
local specializations, and the result is an I/O derivation tree t’ 
verifying t’ p tT. In fact, we can write t’ p 1 tT because we did 
choose only one new input attribute in the whole tree. 

We may repeat the preceding steps, until all the production 
occurrences in the tree are saturated, resulting in a saturated 
tree. 
Example 9 Tree Specialization: starting from an empty I/O 
tree, the value of an attribute is given, leading to the 
propagation (dotted arrows) of specializations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Tree specialization 
 
We present an algorithm for the incremental propagation in 

a derivation tree. This algorithm uses abstract values for the 
attributes, as shown in Section6. It starts with a new input 
attribute input-a for the tree. A pair (p, a) denotes a production 
occurrence and a new input attribute for this production 
occurrence. The algorithm uses such pairs to specify what 
attributes remain to be propagated in some productions. 

The procedure contains takes an attribute in the tree and 
returns the set of production occurrences to which it belongs. 
The procedure state takes a production occurrence in the tree 
and returns the pair (In, Out) of current input and output 
attributes of this occurrence. The procedure specialize takes a 
production occurrence and a new input attribute and realizes 
the specializations of the production occurrence, as described 
in Section6. The symbol ´ denotes the Cartesian product of 
sets. 

P= contains(input-a) 
S=P ´ {input-a} 

While S¹Æ 
{ 
 S=S-{(p,a)} 
 (In, Out)= state(p) 
 specialize(p, InÈ{a}) 
 (In', Out')= state(p) 
 For each a' Î Out'- Out 
 { 
  P= contains(a') 
  S=S È(p ´ {a'}) 
 } 
} 

IX. CONCLUSION 
In this paper, we released the inherited and synthesized 

natures of attributes in AGs, by considering them more like 
variables in logical formulas, than variables in static functional 
expressions. Yet, we used functional expressions to reflect 
attribute evaluation, giving configurations in terms of input 
and output attributes. For each formulae, we studied the whole 
set of valid configurations, instead of considering just one 
configuration. 

Using RAGs seems a trivial task: one gives an abstract 
context-free grammar, attributes for non-terminals and 
relations that bind these attributes together. Then, one 
supposes that the relations are satisfied all along the interactive 
edition of a derivation tree, including tree growing and 
attribute evaluation. 

In fact, the operational point strongly depends on the logical 
part of the grammar. What if we cannot construct functional 
expressions from logical formulas? And even if these 
expressions are constructed for productions, we are faced with 
evaluation problems relating to non-local attribute 
dependencies in derivation trees. This cannot be done just by 
separately considering each production.  

This problem is one of a wide class of evaluation problems 
that all depend on one point: circular attribute dependencies. 
In general, knowing to locally use some formulas is not 
sufficient for conjunctions of these formulas, because of strong 
connections between the variables. We hope to give some 
results concerning these problems in future studies.  

However, we believe that local specializations and 
propagations can improve the expressiveness of semantic rules 
and the comprehensibility of the mechanism of attributes 
evaluation. In the case that one accepts the induced limitations, 
RAGs together with specialized productions (denoted by p ) 
represent an interesting formal tool to specify dynamic 
attribute dependencies. Incremental evaluation is a useful 
consequence of dependency. 
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