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Abstract—Dynamic analysis of composite doubly curved panels
with variable thickness subjected to different pulse types using
Generalized Differential Quadrature method (GDQ) is presented in
this study. Panels with variable thickness are used in the construction
of aerospace and marine industry. Giving variable thickness to panels
can allow the designer to get optimum structural efficiency. For this
reason, estimating the response of variable thickness panels is very
important to design more reliable structures under dynamic loads.
Dynamic equations for composite panels with variable thickness are
obtained using virtual work principle. Partial derivatives in the
equation of motion are expressed with GDQ and Newmark average
acceleration scheme is used for temporal discretization. Several
examples are used to highlight the effectiveness of the proposed
method. Results are compared with finite element method. Effects of
taper ratios, boundary conditions and loading type on the response of
composite panel are investigated.

Keywords—Generalized differential quadrature method, doubly
curved panels, laminated composite materials, small displacement.

[. INTRODUCTION

HE usage of fiber reinforced composite shells is highly

demanded for structural applications especially in the field
of aircraft structures, space stations, automobiles, ships,
submarines. Composite materials have attracted significant
attentions due to their specific properties such as high strength-
to-weight and stiffness-to-weight ratios, corrosion resistance,
longer fatigue life, stealth characteristics and most importantly
tailoring of these structures for desired usage area. The
anisotropic behavior and bending-stretching coupling of
composite structures create difficulties for the analysis of
composite shells. Therefore, understanding the behavior of
these structures under different type of loading is very

important to enable safe and economical designs.

Most of the studies on the literature about tapered plate and
panels have been limited to static, free vibration and buckling
analysis. Ganesan and Rasul [1] studied buckling analysis of
tapered laminated shells considering uniaxial compression
using Ritz method based on different first order shell theories.
A comprehensive parametric study including boundary
conditions, stacking sequence, taper configurations, radius and
geometric parameters of the shells has been done in this
research. Ashaur [2] applied finite strip technique in
conjunction with the transition matrix to examine the vibration
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of orthotropic tapered plates for different taper ratio, aspect
ratio and different combinations of boundary conditions.
Turvey [3] examined large deflection static analysis of thin
tapered square plates with simply supported boundary
conditions by using dynamic relaxation method. Javed et al. [4]
carried out free vibration of anti-symmetric angle-ply
composite plates with variable thickness using spline function
approximation by taking parameter of material properties, ply
orientation, number of lay ups, aspect ratio and coefficients of
thickness variations. Bert and Malik [5] presented the free
vibration analysis of rectangular tapered plates having simply
supported conditions at two opposite edges and general
boundary conditions at the other two edges by DQM which is
firstly introduced by Bert as a tool for structural analysis. Babu
et al. [6] investigated dynamic analysis of various
configurations thickness tapered laminated composite plate by
experimental study and validation of the developed finite
element formulations. Kobayashi et al. [7] surveyed buckling
problem of uniaxially compressed rectangular tapered plates by
a power series method. The influences of thickness variation,
plate aspect ratios, and boundary conditions on the buckling
load have been taken as parameters in the survey. Civalek [8]
solved free vibration problems of isotropic and orthotropic
rectangular tapered plates by coupling discrete singular
convolution (DSC). Torbabene et al. [9] studied natural
frequencies of doubly curved shells with variable thickness
taking into account various higher order Equivalent Single
Layer theories using GDQ.

As it can be seen from the literature survey, there are many
studies about the static, free vibration and buckling analysis of
moderately thick laminated composite plates. However, there is
very limited study for the dynamic behavior of laminated
composite panel with variable thickness in the literature. The
purpose of this study is to examine the dynamic analysis of
composite doubly curved panels with variable thickness
subjected to different pulse types using GDQ. Numerical results
are presented to understand the behavior of the panels by
changing taper ratios, boundary conditions and loading type and
are compared with the commercial finite element program
ANSYS. Virtual work principle is used to derive the governing
differential equations. Partial derivatives in the equation of
motion are expressed with Lagrange polynomials and time
integration is carried out using Newmark average acceleration
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method for dynamic analysis. First-order shear deformation
theory in association with an extension of linear strain-
displacement relationships is used to consider the transverse
shear effect through thickness direction.

II. STATEMENT OF THE PROBLEM

A doubly curved composite panel composed of orthotropic
layers with varying thickness h(x), length a and width b is given
in Fig. 1. The x, y and z stated the orthogonal curvilinear
coordinate system attached to the middle surface of the shell
(z=0). Ry and Ry are denoted the principal radius of the middle
surface of the panel curvature. h(x) indicates thickness function
varying through the x direction and is linearly expressed as
shown in (1):

R = ho- (1+62) (1)

Fig. 1 Doubly curved panel with varying thickness

The displacement field at general point (X, y and z) of the
panel at t time based on first-order shear deformation theory
may be written as:

ulx,y,z,t) =uy(x,y,t) +z.0,(x,y,t)
v(x,y,2,t) = vo(x,y,t) + 2.6, (x,y,t) )
w(x,y,z,t) = wo(x,y,t)

where Uy, Vo, Wy are the displacement field of a point on the
middle surface of the shell along the X, y and z axes,
respectively. 6x and 6 are the rotations around the y and x axes,
respectively and come from the rotations of the shell.

The strain-displacement relations for the doubly curved
panels using the displacement fields in (2) from the theory of
elasticity in curvilinear coordinates are given below [10]:

du a6 w
220 + 72+ _0’
ox dox Ry

a6 w,

Y 0
=424 0
y dy ady Ry'

= U 00 00 ii_i(%_%)
Yoy = 5ot ootz +z>+ & )\ oy ) 3

Virtual work principle to obtain the dynamic equilibrium

equations of tapered panel in curvilinear coordinate system is
written as:

SU + 6T — W =0 (4)

68U, 6T and W specify respectively the virtual potential
work of internal forces caused by internal stress, the virtual
work done by the inertia forces caused by accelerations and the
work done by the distributed load. The governing equilibrium
equations are obtained as:

AN, | ONyy | Qu O 11 1 du,
ONe o ONoy 4 Qez O gy 1(LT 1)) _ ; Ot
ax T ay + Re ay\ *Y'2\R, Ry 05zt

920,
1927
aN. IN. Q a 11 1 3%y,
2y xy 4 Yyz O (L _1)) = o
ay ot Ry tox <M"3"2(Ry Rx)> L5z +
2
1a oy (5)
at?
CNe Ny 0Qy; | 9Qu _ ; 9wo
Rx Ry ay + ax 0 g¢2 + aw,
My | OMyy _ o 9%y, 920x
ax T ay Qez=h at? +1 a2’
oM, aMxy_Q _ 62v0+1 220y
dy dx vz T gz T2 g2

where, Ny, Ny, Ny are the in-plane force resultants, My, My, My,
are the in-plane moment resultants and Qy, Q,., are the
transverse shear resultants, I, ;, I, are the mass moments of
inertia and can be calculated as:

(Ne Ny, Noy) = Sy 2570 (02,0, 02y)
n Zg(x)
(Mx,My, Mxy) = Z (crx,oy,oxy)zdz
k=1 ?;Z;gx) (6)

—_ yn
: - = . y
(Q Zr sz) k=1 ks (Tyz sz) dz

Zj—1 ()

n %k
Iy, 11, 1) = Z f p*.(1,2,2%) d,.

k=1 Zp—q

The governing differential equations in (5) are written in
terms of displacement and rotations. Equation of motion for
doubly curved panel can be shortly written in matrix form as

MU+ KU =F (7)

where M and K denote mass and stiffness matrix respectively.
U and U denote the acceleration and displacement vectors,
respectively. Transient response can be calculated by using

implicit Newmark constant average acceleration time
integration scheme:
Ups1 = coUnsr — Up) — c1Up — Uy, (8)

Un+1 = Un +(1- Y)AtUn + yAtUn+1

Expressing (6) in terms of displacement, velocity and
acceleration and substituting (8) into (6) leads to the following
algebraic equation
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[coM + K]Ups1 = Foyq + MlcoUy + ¢, U, + U] )

where co=4/A.%, c1=4/A;, y=0.5 is chosen for constant average
acceleration method. To employ the GDQ technique, the panel

is divided into ny x Ny grid points. The total number of unknown

coefficients in terms of unknown displacement values is
5(nx+1)(ny+1). The number of equations written for governing
equilibrium equations at internal grid points is 5(n-1)(ny-1).
The number of equations written for boundary conditions is
10(ng+1)+10(ny-1) equations. It can be seen that the total
number of equations is equal to the total number of unknown
coefficients. Eq. (9) is solved successively to find unknown
displacement values at other time steps until final time is
reached.

[II. NUMERICAL RESULTS AND DISCUSSIONS

Equilibrium equations of composite doubly curved panels
(R« = Ry = R) of square plan-form are obtained using virtual
work principle. A MATLAB code is written to solve derived
equations by using GDQ. Firstly, the written code accuracy is
validated with finite element and different transient numerical
examples are studied to analyze the effect of boundary
conditions, thickness variation ratios and loading type. For all
the transient examples, each lamina has the same thickness and
composite panel dimensions are: a=b=0.24, h¢=0.006 m,
R/a=10. The stacking sequence is [0°/90°/0°]. Composite
material properties are: E;=204 GPa, E,=18.5 GPa, G12=G3=
G23=5.59 GPa, p=2100 kg/m*, v12=0.23. Boundary condition
types are prescribed as below:

a. For simply supported type:

x=0,a ug = vy =wy =6, =M,
y=0,b ug = vy =w, =6, = M,

b. For clamped type:

x=0,a ug =vyp=wo=6,=6,=0
y=0,b up=vy=wy=0,=6,=0

The numerical results presented for dynamic response of
composite panel subjected to following different dynamic
loading:

a. Uniform step load: q(t) = @
Qsin (zt—’;t) fort <t
0fort > tr
t
Q(l—;) fort <ty
Ofort =t

b. Sine pulse: q(¢t) = {

c. Blast pulse: q(t) = {

In all cases, maximum pressure value Q=10° Pa, time
duration t=0.004 s and time step At=0.0004 s are taken. For all
the numerical results presented here, the displacement w, are
computed at the middle of the panel and stress oy, are computed
at the top of the composite panel (x=0, y=b/2). Nondimensional
transverse displacement (W/h) and stress response of composite
panel for thickness variation =0, 0.7, 1.2 for both clamped
and simply supported boundary conditions subjected to blast

pulse are shown in Figs. 2-5. The results for simply supported
boundary conditions under blast load with GDQ are compared
with the finite element results in Figs. 2 and 3 and similar results
are achieved with the proposed method using 9x9 grid points.
It is observed that amplitude of displacements in Figs. 2 and 4
and stresses in Figs. 3 and 5 decreases and frequency of motion
increases with the increasing taper ratios for simply support and
clamped boundary conditions. The displacement values of the
composite panel are much higher for simply supported
boundary conditions than those for clamped boundary
conditions under blast load. However, stress values occurred in
composite panel structures are much higher for clamped
boundary conditions than those for simply supported boundary
conditions under blast load due to the constraints of clamped
edges. Nondimensional transverse displacements and stress
responses of composite panel subjected to sinus pulse and step
pulse are shown in Figs. 6-9 and Figs. 10-13, respectively for
thickness variation =0, 0.7, 1.2 with clamped and simply
supported boundary conditions. It is observed that amplitude of
displacements and stresses decreases and frequency of motion,
as shown in Figs. 6-13, increases with the increasing taper ratios
for simply support and clamped boundary conditions under
sinus and step pulses. The displacement values of the composite
panel are much higher for simply supported boundary
conditions than those for clamped boundary conditions under
sinus and step pulses like blast load. However, stress values
occurred in composite panel structures are much higher for
clamped boundary conditions than those for simply supported
boundary conditions under sinus and step pulses due to the
constraints of clamped edges as occurred under blast load.
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Fig. 2 Non-dimensional transverse displacement comparison of linear
increasing taper ratios (8 = 0, 0.7, 1.2) of simply supported
composite panel under blast load with finite element method (a/h=40,
R/a=10)

IV. CONCLUSIONS

In this study, dynamic analysis of composite doubly curved
panels with variable thickness subjected to different pulse types
is investigated using GDQ.
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Fig. 3 Stress distribution comparison of linear increasing taper ratios
(B =0,0.7,1.2) of simply supported composite panel under blast
load (a/h=40, R/a=10)
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Fig. 4 Non-dimensional transverse displacement comparison of linear
increasing taper ratios (8 = 0, 0.7, 1.2) of clamped composite panel
under blast load (a/h=40, R/a=10)
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Fig. 5 Stress distribution comparison of linear increasing taper ratios
(B =0,0.7,1.2) of clamped composite panel under blast load
(a/h=40, R/a=10)
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Fig. 6 Non-dimensional transverse displacement comparison of linear
increasing taper ratios (8 = 0, 0.7, 1.2) of simply supported
composite panel under sinus load (a/h=40, R/a=10)
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Fig. 7 Stress distribution comparison of linear increasing taper ratios
(f =0,0.7,1.2) of simply supported composite panel under sinus
load (a/h=40, R/a=10)
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Fig. 8 Non-dimensional transverse displacement comparison of linear
increasing taper ratios (f = 0,0.7,1.2) of clamped composite panel
under sinus load (a/h=40, R/a=10)
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Fig. 9 Stress distribution comparison of linear increasing taper ratios Fig. 12 Non-dimensional transverse displacement comparison of
(B =0,0.7,1.2) of clamped composite panel under sinus load linear increasing taper ratios (8 = 0, 0.7, 1.2) of clamped composite
(a/h=40, R/a=10) panel under step load (a/h=40, R/a=10)
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Fig. 10 Non-dimensional transverse displacement comparison of Fig. 13 Stress distribution comparison of linear increasing taper ratios
linear increasing taper ratios (8 = 0, 0.7, 1.2) of simply supported (B =0,0.7,1.2) of clamped composite panel under step load
composite panel under step load (a/h=40, R/a=10) (a/h=40, R/a=10)
2.0x10° y . T . - T T The numerical results are obtained to understand the
displacement and stress characters of the doubly curved panels
- for different boundary conditions, loading types and taper ratios
and compared with ANSYS. It is seen that the numerical results
with GDQ are good agreement with ANSYS. 9x9 grid points
-2.0x10" give accurate results with proposed method. The method can be
- applied to the efficient solution of other engineering problems
=] N
. and can serve as a bench work for forthcoming surveys.
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Fig. 11 Stress distribution comparison of linear increasing taper ratios ~ [1OWEVeT, stress values occurred in composite panel structures

(B = 0,0.7,1.2) of simply supported composite panel under step load ~ are much higher for clamped boundary conditions than those
(a/h=40, R/a=10) for simply supported boundary conditions under all type of load
pulses prescribed in this study.
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