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Abstract—The mixed convection stagnation point flow toward a 

vertical plate is investigated. The external flow impinges normal to 
the heated plate and the surface temperature is assumed to vary 
linearly with the distance from the stagnation point. The governing 
partial differential equations are transformed into a set of ordinary 
differential equations, which are then solved numerically using 
MATLAB routine boundary value problem solver bvp4c. Numerical 
results show that dual solutions are possible for a certain range of the 
mixed convection parameter. A stability analysis is performed to 
determine which solution is linearly stable and physically realizable. 
 

Keywords—Dual solutions, heat transfer, mixed convection, 
stability analysis.  

I. INTRODUCTION 

HE problem of stagnation point flow over a flat plate was 
considered by Hiemenz (see [1]) who discovered that this 

flow can be analyzed exactly by the Navier-Stokes equations. 
The temperature distribution of this flow was analyzed by 
Goldstein [2]. This problem was then extended to the 
axisymmetric flow by Homann (see [1]) for the velocity field 
and by Sibulkin [3] for the temperature field. 

The mixed convection stagnation point flow toward a 
vertical plate was considered by Ramachandran et al. [4] 
where the existence of dual solutions for the opposing flow 
case was reported. Ishak et al. [5] then considered the flow 
toward a permeable surface and reported that the second 
solutions obtained by Ramachandran et al. [4] continue further 
to the assisting flow regime.  

The objective of the present paper is to investigate the 
stability of the solutions reported previously by Ramachandran 
et al. [4] and Ishak et al. [5]. 

II.  MATHEMATICAL FORMULATION 

Consider a steady stagnation point flow of a viscous fluid 
toward a vertical plate as shown in Fig. 1. The external flow 
impinges normal to the plate, ( )eu x , and the surface 

temperature, ( )wT x , are assumed to vary linearly with the 

distance from the stagnation point, i.e. ( )eu x ax  and 

( )wT x T bx   , where a  and b  are constants and T  is the 

ambient temperature. Under these assumptions, the steady 
governing continuity, momentum and energy boundary layer 
equations are [4], [5] 
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where u and v are the velocity components along the x- and y-
axis respectively, T is the fluid temperature, α is the thermal 
diffusivity,   is the thermal expansion coefficient, ν is the 

kinematic viscosity and g  is the acceleration due to gravity.  

The equations (1)-(3) are subjected to the boundary 
conditions  
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Fig. 1 Physical model and coordinate system 
 

In order to solve (1) to (3) subject to the boundary 
conditions (4), we introduce the following similarity 
transformation: 
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where   is the stream function defined as /u y    and 

/v x   , which identically satisfies (1).  

Substituting (5) into (2) and (3) we obtain the following 
ordinary differential (similarity) equations 
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where prime denotes differentiation with respect to  , 

2/g b a   is the buoyancy or mixed convection parameter 

and Pr /   is the Prandtl number. The boundary conditions 
(4) become 
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The quantities of physical interest are the skin friction 

coefficient fC , and the local Nusselt number xNu , which are 

defined as 
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where w  is the surface shear stress along the plate and wq  is 

the heat flux from the plate, which are defined as   
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Using (5) we get 
 

 1/2 1 2Re (0), Re 0x f x xC f Nu         (11) 

 

where Re /x eu x   is the local Reynolds number.  

III. STABILITY OF SOLUTIONS 

In order to perform a stability analysis, we consider the 
unsteady problem. Equation (1) holds, while (2) and (3) are 
replaced by  
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where t denotes the time. Based on the variables (5), we 
introduce the following new dimensionless variables: 
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so that (2) and (3) can be written as 
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and are subjected to the boundary conditions 
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To test the stability of the steady flow solution 

0( ) ( )f f 
 
and 0( ) ( )     satisfying the boundary-value 

problem (1)-(4), we write (see [6]-[8]), 
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where   is an unknown eigenvalue, and ( , )F    and ( , )G    

are small relative to 0 ( )f   and 0 ( )  . Solutions of the 

eigenvalue problem (15)-(17) give an infinite set of 
eigenvalues 1 2    ; if the smallest eigenvalue is 

negative, there is an initial growth of disturbances and the 
flow is unstable; but when 1  is positive, there is an initial 

decay and the flow is stable. Introducing (18) into (15) and 
(16), we get the following linearized problem 
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along with the boundary conditions 
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The solutions 0( ) ( )f f 
 
and 0( ) ( )     of the steady 

equations (6) and (7) are obtained by setting 0  . Hence 

0 ( )F F   and 0 ( )G G   in (19) and (20) identify initial 

growth or decay of the solution (18). In this respect, we have 
to solve the linear eigenvalue problem  
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along with the boundary conditions 
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It should be stated that for particular values of Pr and  , the 

stability of the corresponding steady flow solutions 0 ( )f   and 

0 ( )   are determined by the smallest eigenvalue  . As it has 

been suggested by Harris et al. [9], the range of possible 
eigenvalues can be determined by relaxing a boundary 
condition on 0 ( )F   or 0 ( )G  . For the present problem, we 

relax the condition that 0 ( ) 0F    as    and for a fixed 

value of   we solve the system (26, 27, 28) along with the 

new boundary condition 0 (0) 1F   . 

IV. RESULTS AND DISCUSSION 

The system of equations (6)-(8) was solved numerically 
using the bvp4c solver in MATLAB software. In order to 
validate the numerical results obtained, we have compared our 
results with those reported by Ramachandran et al. [4], Ishak 
et al. [5], Hassanien and Gorla [10], Devi et al. [11] and Lok et 
al. [12], [13], which showed an excellent agreement. However, 
due to space constraint, only the results reported in [4] are 
presented in Tables I and II. 

 
TABLE I 

VALUES OF (0)f   FOR DIFFERENT VALUES OF Pr  

Pr 
Ramachandran et 

al. [4] 
Present results 

First solution Second solution 

0.7 1.7063 1.7063 1.2387 

1 - 1.6754 1.1332 

7 1.5179 1.5179 0.5824 

10 - 1.4928 0.4958 

20 1.4485 1.4485 0.3436 

 
TABLE II 

VALUES OF (0)   FOR DIFFERENT VALUES OF Pr  

Pr 
Ramachandran et 

al. [4] 
Present results 

First solution Second solution 

0.7 0.7641 0.7641 1.0226 

1 - 0.8708 1.1691 

7 1.7224 1.7224 2.2192 

10 - 1.9446 2.4940 

20 2.4576 2.4576 3.1646 

 
The variations of the skin friction coefficient (0)f   and the 

local Nusselt number (0)   are presented in Figs. 2 and 3, 
respectively. Different from the results by Ramachandran et 
al. [4], who reported the existence of dual solutions only for 
the buoyancy opposing flow case ( 0  ), these figures show 
the existence of dual solutions for both buoyancy assisting 
( 0)   and opposing ( 0)   flows. Both solutions exist up to a 

critical value of  , i.e. c  , beyond which no solution exist. 

The validity of dual solutions presented in Figs. 2 and 3 is 
supported by the velocity and temperature profiles presented 

in Figs. 4 and 5, respectively. It is seen in these figures that 
there are two different profiles for the same value of parameter 
 , where both satisfy the far field boundary conditions 
asymptotically.  

 

 

Fig. 2 Variation of the skin friction coefficient (0)f   with   when 

Pr 1  
 

To test the stability of the solutions, we perform a stability 
analysis and find the eigenvalues   in (18). If the smallest 

eigenvalue is negative, there is an initial growth of 
disturbances and the flow is unstable; while when the smallest 
eigenvalue is positive, there is an initial decay and the flow is 
stable. The smallest eigenvalues   for selected values of   

are presented in Table III which shows that   is positive for 

the first solution and negative for the second solution. Thus, 
the first solution is stable, while the second solution is 
unstable. The transition from positive (stable) to negative 
(unstable) values of γ occurs at the turning points of the 
parametric solution curves ( c  ), which is shown in Figs. 2 

and 3. 
 

 

Fig. 3 Variation of the local Nusselt number (0)   with   when 

Pr 1  
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Fig. 4 Velocity profiles for different values of   when Pr 1  

 

 

Fig. 5 Temperature profiles for different values of   when Pr 1  

 
TABLE III 

SMALLEST EIGEN VALUES   AT SEVERAL VALUES OF   

  First solution Second solution 

-2.3618 0 0 

-2 0.7912 -0.7091 

-1 1.6523 -1.2052 

0 3.0627 - 

1 4.6768 -1.6875 

2 5.1398 -1.7980 

3 5.5331 -1.8811 

 
Although the second solution is unstable and deprive of 

physical significant, it is still of mathematical interest since 
the solution is also a solution to the system of differential 
equations. The second solution may have more realistic 
meaning in other situations. For the first solution which is 
linearly stable and likely physically realizable, the skin friction 
coefficient increases as   increases, see Fig. 2, which in turn 
increase the local Nusselt number (represents the heat transfer 
rate at the surface) as presented in Fig. 3. 

V. CONCLUSIONS 

Numerical results showed that dual solutions are possible 
for a certain range of the mixed convection parameter. The 
first and the second solutions meet at the critical point of the 
mixed convection parameter, beyond which no solution exists. 
The stability analysis showed that there is an initial decay for 
the first solution, while there is an initial growth of 
disturbances for the second solution. Thus, the first solution is 
linearly stable, while the second solution is linearly unstable. 
Both the skin friction coefficient and the heat transfer rate at 
the surface increase as the buoyancy force increases. 
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