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Abstract—In neural networks, when new patters are learned by a
network, they radically interfere with previously stored patterns. This
drawback is called catastrophic forgetting. We have already proposed
a biologically inspired dual-network memory model which can much
reduce this forgetting for static patterns. In this model, information
is first stored in the hippocampal network, and thereafter, it is
transferred to the neocortical network using pseudopatterns. Because
temporal sequence learning is more important than static pattern
learning in the real world, in this study, we improve our conventional
dual-network memory model so that it can deal with temporal
sequences without catastrophic forgetting. The computer simulation
results show the effectiveness of the proposed dual-network memory
model.
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I. INTRODUCTION

HEN a neural network is trained on one set of patterns

and then when it later attempts to add new patterns
to its repertoire, catastrophic interference or complete loss
of all of its previously learned information may result. This
type of radical forgetting is unacceptable for both a model of
human memory and practical engineering applications. One of
the typical solutions to catastrophic forgetting is interleaved
learning, that is, mixing in patterns of the previous set during
training on a new pattern set. However, this solution requires
the unrealistic assumption of permanent access to all patterns
on which the network was previously trained on. Thus, to
reduce catastrophic forgetting without straight rehearsal, sev-
eral methods have been proposed. Most learning techniques
to reduce catastrophic forgetting have relied on reducing the
overlap of internal representations [1], [2], [3], [4].

On the other hand, various authors have developed models
that employ pseudopatterns rather than the real patterns that
were learned previously [5], [6], [7], [8]. Among them, we
have recently proposed a biologically inspired dual-network
memory model [9]. This model is composed of two distinct
networks: a hippocampal network for early processing and a
neocortical network for long-term storage. This model em-
ploys a chaotic neural network [10] in CA3 of the hippocampal
network, and the information stored by the hippocampal
network is transferred to the neocortical network by chaotic
recall of the hippocampal network. Because previously learned
original patterns can be extracted with chaotic recall, we have
shown that our dual-network model can significantly reduce
catastrophic forgetting [9].
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Although it is believed that the hippocampus has an im-
portant role for processing not only semantic memory but
also episodic memory in the human brain [11], our previous
model can deal with only static patterns. Because much of
what we do consists of mastering the serial order of pattern
sequences: from calling phone to starting a car. Therefore, it
is very important to be able to learn serially many temporal
sequences of patterns without catastrophic forgetting. Hence,
in this paper, we extend our previous model to deal with
temporal sequences of patterns without catastrophic forgetting,
and compare its performance with that of the conventional
model [12].

The rest of this paper is organized as follows. In Section
I, we briefly review the conventional dual-network memory
mode for temporal sequences [12]. Section Il explains the
proposed dual-network memory model. In Section IV, we show
the experimental results. Finally, conclusions are given in
Section 5.

Il. CONVENTIONAL DUAL-NETWORK MEMORY MODEL

Fig. 1 shows a reverberating simple recurrent network
(RSRN) which is designed to learn temporally ordered se-
quences of patterns S(1),5(2),---,S(t),---,S(n), where ¢ is
the time parameter [12]. A RSRN involves adding associative
nodes to the output layer of a simple recurrent network, or
Elman network [13]. The input to a RSRN consists of the
sequence item S(¢), and the context input H (¢t —1).

The conventional dual-network model for learning temporal
sequences consists of two identical RSRNs, NET 1 and
NET 2 [12]. New sequences are learned only by NET 1,
while NET 2 stores the previously learned information. The
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Fig. 1. Structure of the conventional dual-network memory model for
temporal sequences [12].
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Fig. 2. Structure of the proposed dual-network memory model for temporal sequences. In the hippocampal network, the connections shown in gray arrows
are used only in learning, and the connectivity between the two regions is shown in percentage.

learning procedure of the RSRN dual-network is as follows.
Suppose that some previously learned sequences are already
stored in NET 2. When a sequence, S = S(1), 5(2),---,.S(n),
is presented to NET 1, the network makes a single pass
through the entire sequence, updating its weights once for
each item in the sequence. This defines one learning epoch.
In the mean time, a random input % is presented to the input
layer of NET 2 and fed through the network to the output
layer. Only the activation values of the associative nodes in
the output layer are used to constitute a new input, ¢’. This
vector 4’ is then given to the network in order to produce a
pattern of activation on the autoassociative output nodes, i”.
After a number R of these reverberating cycles through the
network, the final reverberated input i is sent through the
network, and the activation vector on all output nodes, o, is
used to produce a pseudopattern, % — o. This pseudopattern
reflects the contents of the previously learned information
stored in NET 2. NET 2 generates M; pseudopatterns. For
each NET 2 pseudopattern, NET 1 performs on feedforward
backpropagation learning pass. Once this is completed, a new
learning epoch starts and NET 1 makes another pass through
the sequence S. NET 2 generates new M, pseudopatterns,
each of which is learned by NET 1. This process continues
until S is learned to criterion by NET 1. This is called the
interleaving phase.

There is also a transfer phase during which the information
learned in NET 1 is transmitted to NET 2. This involves
NET 1 generating M, pseudopatterns and, for each of these
NET 1 pseudopatterns, NET 2 performs a single learning pass,
thereby transferring information stored in NET 1 to NET 2.

1. NoveL DUAL-NETWORK MEMORY MODEL FOR
TEMPORAL SEQUENCES

Fig. 2 shows the structure of the proposed dual-network
memory model. We have modified the conventional
dual-network model for static patterns proposed in ref.[9]
so that it can deal with temporal sequences. The proposed
model consists of two distinct neural networks: hippocampal
and neocortical networks. Information is first stored in the

hippocampal network, and thereafter, it is transferred to the
neocortical network. The fundamental difference between our
conventional dual-network model for static patterns [9] and
the proposed one is as follows.

1) Random-bit nodes are added to both Input and Output
layers in the hippocampal network. For each pattern of
a sequence, S(t), a randomly generated pattern, R(t) is
concatenated in order to learn an ambiguous sequence
(e.g. one that contains two identical patterns).

2) In the conventional model [9], chaotic neurons are
employed in CA3 layer in the hippocampal network in
order to recall stored patterns dynamically. However, we
replace them with normal (non-chaotic) neurons because
a series of patterns should be recalled in order in the
dual-network model for temporal sequences.

3) In order to store temporal sequences in the neocortical
network, we substitute a RSRN for a feedforward net-
work used in the conventional model.

A. Learning for Temporal Sequences

Suppose that S = S(1),5(2),---,S(n) shows a sequence
to be learned. In the learning of the proposed dual-network
memory model, a random extra pattern, S(n + 1) is added to
S. For each pattern, S(t), a randomly generated pattern, R(¢)
is concatenated. Then, as shown in Fig. 2(a), two consecutive
patterns are learned by the hippocampal network, where S(n+
2) = S(0).

Although the connection weights between Input and EC are
fixed at 1, other weights are learned as follows.

EC-DG, EC-CA3, DG-CA3:

We have employed Oja’s rule [14] because it con-
stricts the divergence of weights:

wiz (t 4+ 1) = wq; (t) +ny;(xi — yywii (1)), (D)

where z; is the output of a neuron in a layer, y; is
the neuron in the subsequent layer, w;; denotes the
connection weight between these neurons, and 7 is
the learning rate.
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CA3:
Weights are learned using the Hebbian learning:

wi(t+ 1) = wiy + xixy, 2

where Wij = Wj; and w;; = 0.
CA3-Output:
Weights are learned using the Hebbian learning:

W5 (t + ].) = W;j (t) + ZiYj, (3)

where z; and y; show the output of the ith neuron

in CA3 and that of the jth neuron in Output, respec-

tively.
Because each learning rule in Egs.(1)—(3) is based on Hebbian
learning, the proposed hippocampal network acquires a new
sequence much more rapidly in comparison with those learned
by the backpropagation algorithm [12]. Moreover, Hebbian
learning does not suffer from catastrophic forgetting when the
number of patterns to be stored is small. Thus, catastrophic
forgetting can be much reduced in the proposed hippocampal
network and it functions as a short-term memory.

A stored sequence in the hippocampal network is transferred
to the neocortical network as follows. Suppose that some pre-
viously learned sequences are already stored in the neocortical
network.

1) A random input is applied to Input layer in the hip-
pocampal network.

2) On the basis of the evidence from electro-
physiological experiment [15], only the path
Input—EC—CA3—Output is used in recall. Neurons
in CA3 layer change their states asynchronously until
the state of the layer reaches a stable state. Then, the
output of the network is obtained.

3) The output is applied to Input layer.

4) Repeat 2) and 3) until the whole sequence is recalled.

5) Put patterns in order by using a random extra pattern,
S(n+1).

6) Remove S(n+1) from the recalled sequence and random
bits from each pattern.

7) The neocortical network generates M, pseudopatterns.
The resultant sequence in 6) is learned by the neocortical
network with these pseudopatterns.

In the proposed dual-network memory model, the original
sequence learned by the hippocampal network may be avail-
able for the learning of the neocortical network. This can much
contribute to reduce catastrophic forgetting.

1V. COMPUTER SIMULATION RESULTS

In computer simulation, we set the dimension of a pattern
in a sequence at 100. Each pattern in a sequence consists
of Os and 1s with a selection probability of 0.5 except the
third experiment. The number of random-bit nodes in the
proposed hippocampal network was set to 50, and the number
of hidden neurons in the RSRN was set to 50. The numbers
of pseudopatterns, M; and M, were set to 50 and 5000,
respectively.

To evaluate a network’s ability to correctly reproduce the ap-
propriate outputs, a performance measure, called goodness [5],

[71, [9], [16], was adopted. Let o; be the output value of the
ith output neuron of NET 2 or the neocortical network, and
let ¢; be the corresponding component of the desired pattern.
Then, the goodness g is defined as follows:

1 N
9= ;@m (2t 1) )
where N is the number of target nodes in Output layer in
RSRN. A goodness value 1 indicates a perfect match between
the calculated and desired outputs, whereas 0 indicates chance
level.
The results of computer simulation in this section are based
on 20 trials.

A. Catastrophic Forgetting in Complex Sequences

In this experiment, we used complex sequences called
SOCs:. second-order conditional sequences [12], in which no
single element in the sequence can predict its successor. The
complexity of these sequences derived from their structure
consisting of four distinct items appearing in an order such that
every item is immediately followed by one of the three other
possible items with equal frequency. A single item cannot by
itself predict the following item better than chance. In other
words, two consecutive items are always required to predict
the next one. We created the following two SOC sequences:

SS : A-B—-C—-A—-D—-C—-D—-B—A—

—-C—-B—>D—A (5)
S +: F-F—-G—-F—+H—-G—-H—-F—FE—
-G —-F—-H—>FE (6)

where each alphabet shows 100 dimensional random pattern,
and the length of each sequence is 13.

Fig. 3 shows mean goodness of each item of S; after Sy
and S, were learned in this order. In this experiment, only
the first item of Sy is given as an input. Therefore, the item
in position 1 of Sy is not shown in the figure because it is
used to initialize recall. As shown in Fig. 3, the performance
of the conventional dual-network is getting worse and worse

‘ Oconventional M proposed ‘
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Mean goodness

2 3 4 5 6 7 8 9 10 11 12 13
Patterns

Fig. 3. Mean goodness for the previously learned SOC, Sy after S1 and S2
were learned serially.
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for items in the latter position of the sequence. In contrast, the
proposed dual-network model shows much better performance
in reducing catastrophic forgetting even for the second half of
the sequence.

B. Catastrophic Forgetting in Multiple Sequences

In this experiment, five sequences, from S; to S5 were
sequentially learned by both the conventional and the proposed
dual-network models, and we examined how both models
could reduce catastrophic forgetting for old information. The
number of items in each sequence was set to 10.

Fig. 4 shows mean goodness of items in each sequence.
As shown in the figure, the proposed dual-network model
significantly reduces catastrophic forgetting compared with the
conventional model.

‘ Oconventional M proposed ‘

Mean goodness
W =)
‘

S <
—_

S1 S2 S3 S4 S5
Temporal sequences

Fig. 4. Mean goodness for five sequences.

C. Catastrophic Forgetting in Smilar Sequences

In this experiment, we examined the relation between the
ability to reduce catastrophic forgetting and the similarity of
sequence. We defined the similarity of sequence by averaged
direction cosine as follows:

ZZ

m=1n= m+1

(5(m), S(n))

sy Mmsmy O

similarity =
where S(m) shows the mth pattern of a sequence, P shows
the number of patterns in a sequence, (S(m), S(n)) denotes
the inner product of S(m) and S(n), and || S(m) || denotes
the norm of S(m). In this experiment, we made two sets
of sequences the similarities of which were 0.3 and 0.7 by
changing the selection probability of Os and 1s. Each set has
three sequences with the same similarity, and these sequences
were sequentially learned by both the conventional and the
proposed dual-network models. Figs. 5 and 6 show the results
of this experiment. In both cases, the proposed model shows
much better performance in reducing catastrophic forgetting.
As seen in these figures, the proposed model is much more
insensitive to the similarity of sequence.
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Fig. 5. Mean goodness for temporal sequences in which similarity was 0.3.
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Fig. 6. Mean goodness for temporal sequences in which similarity was 0.7.

V. CONCLUSIONS

In this study, we proposed a novel dual-network memory
model which can learn serially temporal sequences with-
out catastrophic forgetting. In the conventional dual-network
memory model [12], pseudopatterns are used in both the
learning of NET 1 and that of NET 2. In contrast, in the
proposed dual-network memory model, because the hippocam-
pal network can extract a previously learned sequence, pseu-
dopatterns are used only in the learning of the neocortical
network. Therefore, the proposed model can much reduce
catastrophic forgetting in comparison with the conventional
one. The computer simulation results show that the proposed
dual-network model has the following features:

1) It shows much better performance in reducing catas-
trophic forgetting for complex sequences.

2) It shows much better performance when the number of
sequences to be stored is large.

3) Itis much more insensitive to the similarity of sequence.

In future research, we plan to develop our model into a more
biologically plausible one by using spiking neurons that should
allow application of the model to practical problems.
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