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 
Abstract—The knitted fabric suffers a deformation in its 

dimensions due to stretching and tension factors, transverse and 
longitudinal respectively, during the process in rectilinear knitting 
machines so it performs a dry relaxation shrinkage procedure and 
thermal action of prefixed to obtain stable conditions in the knitting. 
This paper presents a dry relaxation shrinkage prediction of Bordeaux 
fiber using a feed forward neural network and linear regression 
models. Six operational alternatives of shrinkage were predicted. A 
comparison of the results was performed finding neural network 
models with higher levels of explanation of the variability and 
prediction. The presence of different reposes is included. The models 
were obtained through a neural toolbox of Matlab and Minitab 
software with real data in a knitting company of Southern 
Guanajuato. The results allow predicting dry relaxation shrinkage of 
each alternative operation. 

 
Keywords—Neural network, dry relaxation, knitting, linear 

regression.  

I. INTRODUCTION 

HE knitted fabric is formed from a single wire mesh on 
itself or different threads interwoven [1]. Reference [2] 

mentions that the most unique feature of mesh fabrics is its 
extensibility. This extensibility involves a deformation of the 
fabric and therefore a change of its original dimensions. Knit 
fabrics are extensible and easily deformable in width and 
length. Use extreme care in handling fabric at all stages 
whether they are stacked by hand or with machines. The fabric 
should rest without tension on the cutting table, which stands 
for unfolded accordion, and let rest 24 to 48 hours 
approximately before the overlap process [3]. The influence of 
heat on the properties of the fibers is of great importance with 
respect to the textile process. In almost all synthetic fibers 
with increasing temperature, the resistance decreases and the 
elongation increases, typically fiber once cooled, regains its 
original properties. Reference [4] indicates that exposure of 
the fiber to heat can cause thermal shrinkage. Knitwear 
deforms relatively easily, which is one of the reasons for its 
advantages, but otherwise there is a risk that due to its 
deformability may arise permanent dimensional changes of 
importance by use. Reference [5] mentions that when they 
wish to manufacture products with stable dimensions and 
properties 'easy care' is paramount to the manufacturer 
measure the shrinkage that may occur during use of the article 
and have test methods available. Alternative production in the 
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textile enterprises are subjectively determined by experts 
struggling to meet the design clothing specifications. This 
research analyzes six material flow alternatives with a specific 
repose time, Measurements in knitting department used as 
input variables to the neural network and measurements in 
iron steam department used as patterns to the neural network, 
with different reposes time. These data were also used for 
simple linear regression models. 

In the literature there are applications of prediction using 
neural networks in various industrial processes such as process 
reengineering, continuous improvement, financial analysis, 
human resource planning and organizational development. 
Many studies [6]-[10] implied that the back propagation 
neural network (BNN) could efficiently resolve problems with 
classification and prediction. Reference [11] proposed a cost 
estimation model based on a fuzzy rule back propagation 
network, configuring the rules to estimate the cost under 
uncertainty. A multiple linear regression analysis is applied to 
analyze the rules and identify the effective rules for cost 
estimation. Reference [12] deals with the modeling of ring 
spun cotton yarn strength using a simple fuzzy expert system. 
The prediction accuracy of the model was found to be very 
encouraging. Reference [13] used the back propagation neural 
network (BNN) and Karhunen-Loeve (K-L) expansion method 
to construct a new and highly accurate grading system. 
Reference [14] presented a statistical modeling of the dynamic 
system knitting, to estimate lead times.  

Artificial neural systems can be considered as simplified 
mathematical models of brain-like systems and they function 
as parallel-distributed computing networks. Artificial neural 
systems, or neural networks, are physical cellular systems, 
which can acquire, store, and utilize experimental knowledge 
[15]. The knowledge is in the form of stable states or 
mappings embedded in networks that can be recalled in 
response to the presentation of cues. The basic processing 
elements of neural networks are called artificial neurons, or 
simply neurons or nodes. Each processing unit is characterized 
by an activity level (representing the state of polarization of a 
neuron), an output value (representing the firing rate of the 
neuron), a set of input connections, (representing synapses on 
the cell and its dendrite), a bias value (representing an internal 
resting level of the neuron), and a set of output connections 
(representing a neuron’s axonal projections). Each of these 
aspects of the unit is represented mathematically by real 
numbers. Thus, each connection has an associated weight 
(synaptic strength) which determines the effect of the 
incoming input on the activation level of the unit. The weights 
may be positive (excitatory) or negative (inhibitory). The 
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of the dynamic model was made through a sensitivity analysis 
and validation was done in the company with the V neck 
sweater striped pattern. The results were significant achieving 
compliance with the design specifications. As future work is 
considered, make hybrid systems incorporating fuzzy logic 
and neural networks. 
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