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Abstract—The drainage Estimating is an important factor in 

dam management. In this paper, we use fuzzy support vector 
regression (FSVR) to predict the drainage of the Sirikrit Dam at 
Uttaradit province, Thailand. The results show that the FSVR is a 
suitable method in drainage estimating. 

Keywords—Drainage Estimation, Prediction. 

I. INTRODUCTION 
HE drainage estimating is the most important factor in 
planning, designing and managing including controlling 
reservoir and dam for Irrigation Engineers. In addition, 

this information may be used in flood or drought warning. 
Drainage estimating 3( / )m s is a difficult task because drainage 
is varied based on consist of Inflow 3( / )m s  is nature water 
into Dam. Level ( )m  is level water in dam which reference 
form mean sea level. Storage 3( )m  is all water amounts in 
dam. Water for electric power generate 3( / )m s  is water 
quantity pass to dynamo for electric power generate. And 
evaporate loss 3( )m . This occurs to be uncertain. So it trouble 
to drainage estimating of dam. 
There are several estimating systems for water management 
that use back propagation (BP) neural networks. For example, 
in [1], they predict Runoff coefficient at Eastern Botswana. In 
[2], they develop a water level model for flood warning 
system. In [3], they predict Runoff in water management. In 
addition, this several water management of dam management 
used neural network. 

However, Back-Propagation (BP) neural network, suffers 
from difficulty in selecting a large number of controlling 
parameters which include relevant input variables, hidden 
layer size, learning rate, momentum term.  

From the trouble of Back-Propagation (BP) neural network, 
Vapnik et al. [4] developed support vector machines (SVMs). 
The introduction of Vapnik’s -insensitive loss function, SVMs 
have been extended to solve non-linear regression estimation 
problems. They have been shown to exhibit excellent 
performance in time series forecasting [5]. In [6], the 
comparison results between support vector machines 
regression (FSVMR) and BP neural network show that 
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FSVMR performs better than BP. In several regression 
applications, the FSVMR is a popular tool. For example, in [7, 
8], they found that FSVMR is the best tool in the finance 
forecasting and Mackey-glass data. In [9], the FSVMR is used 
to develop an ocean model estimate the tidal force and its 
direction effecting by the wind in the Gulf of Thailand. In 
Runoff prediction, there are a few researchers using FSVMR 
as a tool. For example, in [10], one-lead-day rainfall 
forecasting and Runoff forecasting are performed using 
FSVR, in which the input data are pre-processed by Singular 
Spectrum Analysis, resulting in a high-dimensional input 
space. The relationship model between rainfall and river 
discharge is made by FSVR. Bray and Han applied FSVR to 
forecast Runoff, focusing on the identification of an 
appropriate model structure and relevant parameters [11]. In 
[12], sequential elimination approach is used to identify the 
optimal training data set and then FSVMR is performed to 
forecast the water level. 

This paper focuses on the application of FSVR in drainage 
estimating of Sirikrit dam at Uttaradit province, Thailand. This 
paper is divided into 5 sections. Section 2 provides a brief 
introduction to general principles of FSVR and its application 
in forecasting. The procedures of employing FSVR for 
drainage estimating are presented in section 3 in details by 
raising an experiment. Section 4 experimental results followed 
by the conclusions drawn from this study in the last section.  

II. THEORIES 
Here a brief description of FSVR is given. For a more 

detailed description the reader is referred to Vapnik [4,13], 
Scholkopf and Smola [14] and Cristianini and Shawe-Taylor 
[15]. 
 
 
 
 
 
 
 
 
 

Fig. 1 In FSVR, a tube with radius ε is fitted to the data. The trade-off 
between model complexity (flatness) and points lying outside the tube 
(slack variables ξ) is determined by minimizing Eq. (4). The points outside 
the ε zone are support vectors (black stars). On the right, the ε-insensitive 
loss function is shown in which the slope is determined by C (the star 
represents a support vector). 
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Like most linear regression models e.g. PLS, the FSVR 
algorithm developed by Vapnik [4,13] relies on estimating a 
linear regression function: 
 
 ( )  ( ,  x ( dimension input space))T df w x b w R d= + ∈ −x     (1) 

 
Where w and b are the slope and offset of the regression line. 

In case of FSVR, the regression function is calculated by 
minimizing: 
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Where 2(1 / 2) w  is the term characterizing the model 
complexity (smoothness of ( )if x ) and ( ( ), )i ic f yx the loss 
function determining how the distance between ( )if x and the 
target values iy  should be penalized. In this so-called primal 
formulation, several different loss functions [14] are available, 
but in this paper we adopted the commonly used ε-insensitive 
loss function which was introduced by Vapnik [4]. This ε-
insensitive loss function is defined by: 
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In fact, this particular constraint defines a tube with radius ε 
around the hypothetical regression function (see Fig. 1) in 
such way that if a data point is positioned in this tube the loss 
function equals 0, while if a data point lies outside the tube, 
the loss is proportional to the magnitude of the Euclidean 
difference between the data point and the radius ε of the tube. 
In this particular case, the minimization of Eq. (2) is 
equivalent to solving the following constrained optimization 
problem: 
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Where the constant C > 0 determines the trade-off between 
the model complexity of ( )f x and the amount up to which 
deviations larger than ε are tolerated. The slack variables *,i iξ ξ  
are introduced for the situation that the target value exceeds, 
this with respect to the origin of the original data space, more 
than ε above ( )iξ  and more than ε below the target *( )iξ , see 
Fig. 1. The points lying outside the ε tube are named support 
vectors (SVs), because these establish (‘support’) the 
fundaments of the estimated regression function. This implies 
that all other data points are in fact not important for inclusion 
into the model and can be removed after the FSVR model has 
been constructed. Hence, usually (much) less training objects 
do constitute the regression model; therefore, such a solution 
is referred to as ‘sparse’. 

The constrained optimization problem given by Eqs. (4) and 
(5) can be reformulated into dual problem formalism (Eq. (6)) 
by using Lagrange multipliers. In this paper we adopted the 
strategy outlined by Vapnik [4], which leads to the solution: 

                      ( ) ( ) ( )*

1
,

n

i i i
i

f α α K b
=
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where iα and *

iα  (with *0 ,i i Cα α≤ ≥ ) are the Lagrange 
multipliers and ( , )iK x x represent the so called kernel function 
[4]. Intuitively, the primal formulation is suitable to solve 
problems where many objects (samples) are available, this 
with respect to the number of variables at hand. The dual 
Lagrangian formalism, on the other hand, eliminates the curse 
of dimensionality, and hence, is even suitable to find solutions 
for ill-posed problems. In the context of Eq. (6), data points 
with nonzero iα and *

iα  value are SVs. It has been shown that 
a suitable kernel function makes it possible to map a non-
linear input space to a high-dimensional feature space where 
linear regression can be performed [4]. Several kernel 
functions have been proposed in literature, but the particular 
choice of a kernel to map the non-linear input space into a 
linear feature space depends highly on the nature of the data 
representing the problem at hand. In this paper the focus is put 
on two widely used kernel functions, namely, radial basis 
function (RBF) which are defined in Eqs. (7): 
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In case of the RBF kernel the parameter σ represents the 
kernel. The kernel parameter earlier mentioned parameters C 
and ε need to be selected properly by the user, because the 
generalization performance of the FSVR model heavily 
depends on the right setting of these three parameters. Hence, 
a reliable and robust parameter selection optimization strategy 
is a pre-requisite to obtain a well-performing and robust FSVR 
regression model. 

III.  PROCEDURE OF FSVMR FOR FORECASTING 

A. Process 
 The input data set is normalized so that they are in the same 

range, i.e., [-1,1]. We also map the desired output data set to [-
1, 1]. However, after the algorithm computes the actual output, 
we have to map the actual output value back to its normal 
range.  

B. Data collection  
The Sirikrit Dam shown in figure 2 Located at Phasom 

Village, Tambon Tha Pla, 60 kilometers away from the 
province town, constructed to contain the Nan River in the 
area of Tambon Phaluad. It is an earth dam, the ridge of which 
is clay; its is 113.60 meters tall and 810 meters long; its ridge 
is 12 meters wide, while its base is about 630 meters wide. 
The area above the dam has a length along the Nan River of 
about 129 kilometers; the widest portion is about 20 
kilometers; the water-surface area is about 178,000 rai; the 
maximum capacity is about 10,500 million cubic meters, 
capable of generating. 
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Fig. 2 The Sirikrit Dam is located in Uttaradit province at the north of 

Thailand. 
 

This paper used the data set consist of Inflow, Level, 
Storage, water for electric power generate and evaporate loss. 
That total up is five patters. Which it is features.  For used 
drainage estimating by fuzzy support vector regression.  We 
select data set five patters form January 1996 till December 
2006. We implemented 10% cross validation on the data set. 
The data set in January 2007 till December 2008 shown in 
figure 8 is utilized as a blind test data set. 

C. Performance criteria  
The prediction performance is evaluated using the mean 

absolute error (MAE) and mean square error (MSE) i.e., 
           

                          D y
MAE

n
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑                                (8)           

Where n  represents the total number of data points in the 
data set. y represents the predicted value. D is denoted as the 
desired value which is the drainage of Sirikrit Dam.  

IV. EXPERIMENTAL AND THE RESULTS 

D. FSVR for drainage estimating 
Table I shows the setup of Runoff data set used for the 10% 

cross validation. In each cross validation set, there are 

approximately 4,018 samples and 402 samples in the training 
and testing data set, respectively. We used the real value of the 
drainage at Sirikrit Dam as a desired output. For the input of 
each sample point is comprised of inflow, level water, storage  
water for electric power generate, and evaporate loss. We used 
the input data from January 1996 till December 2006.  

The model with C = 10,000, ε =0.0001 and σ = 1.2 (kernel 
parameter), gives minimum average MAE of 10% cross 
validation on the testing data set  

We compare the results of the FSVR with that of the Back-
propagation and polynomial regression that give the best 
average MAE on the testing data set in the 10% cross 
validation. The average MAE of training and testing data set 
from FSVR model Back-propagation model and Polynomial 
regression model are shown in Table II. The MAE of testing 
data set 7 in 10% cross validation is minimum. 

 
TABLE I 

DATA SETUP TO FSVR FOR DRAINAGE ESTIMATING 

Input Feature Desired 
Output 

Level Storage Inflow Evaporate 
loss 

Water for 
electric 
generate 

Drainage 

      
1/1/1996 
2/1/1996 
3/1/1996 

1/1/1996 
2/1/1996 
3/1/1996 

1/1/1996 
2/1/1996 
3/1/1996 

1/1/1996 
2/1/1996 
3/1/1996 

1/1/1996 
2/1/1996 
3/1/1996 

1/1/1996 
2/1/1996 
3/1/1996 

      
31/12/2006 31/12/2006 31/12/2006 31/12/2006 31/12/2006 31/12/2006

 
 

The result form table 2. We select dataset 7 of FSVR while 
dataset 3 of Back-propagation. And dataset 2 of Polynomial 
regression. That is minimum MAE for test to blind test 
dataset. 

The prediction result from FSVR model, Back-propagation 
model and Polynomial regression model on the blind test data 
set is shown Table 3 and figure 3 and 4. 

TABLE II 
MAE VALUES OF COMPARATIVE METHODS (M3/S) 

Data 
set 

FSVR SVR Back-propagation Polynomial 

Training 
data 

Testing 
data 

Training 
data 

Testing 
data 

Training 
data 

Testing 
data 

Training 
data 

Testing 
data 

1 14.25 27.41 23.28 35.60 27.85 41.62 51.41 91.15 

2 19.81 22.64 21.84 27.07 45.15 32.08 46.70 75.80 

3 15.46 30.41 33.05 36.65 21.71 27.04 53.70 84.58 

4 18.89 23.74 25.00 25.48 23.69 39.98 63.94 109.47 

5 17.21 30.58 26.81 32.79 33.19 32.82 57.39 94.71 

6 30.14 45.1 43.23 47.77 27.63 48.17 49.61 78.90 

7 12.98 20.98 16.16 21.95 25.88 37.04 45.03 85.23 

8 20.65 32.54 37.24 34.16 25.68 31.74 52.42 113.84 

9 20.78 23.58 21.72 27.95 23.65 29.85 69.47 86.08 

10 17.56 30.87 19.79 33.77 27.40 41.68 51.09 95.37 
Average 

MAE 18.773 28.785 26.81 32.32 28.18 36.20 54.08 91.51 

N 

S 

Sirikrit Dam 
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TABLE III 
MAE VALUES OF COMPARATIVE METHODS (M3/S) 

dataset 
Blind test 

FSVR SVR Back-propagation Polynomial 

2007 
2008 

33.81 
35.92 

35.24 
38.51 

39.65 
39.06 

92.84 
105.82 

Average 
MAE 34.865 36.98 39.355 99.33 
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Fig. 3 drainage estimation result in the year 2007 (blind data set) 
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Fig.  4 drainage estimation result in the year 2008 (blind data set) 

V. EXPERIMENTAL AND THE RESULTS 
In this paper, we implement Fuzzy support vector regression 

(FSVR) to predict the drainage for Sirikrit Dam at Uttaradit 
province, Thailand. We found that the average MAE of the 
best FSVR model is 26.81 m3/s and 32.32 m3/s in the training 
and testing data set, respectively. While the average MAE of 
best Back-propagation model is 28.18 m3/s and 36.20 in the 
training and testing data set, respectively, And the average 
MAE of best Polynomial regression model is 54.08 m3/s and 
91.51 in the training and testing data set, respectively. While  

 
The MAE of the blind test data set in 2007year from the 

best FSVR, best Back-propagation model and best polynomial 
regression model are 33.81 m3/s 39.65 m3/s and 92.84 m3/s, 
respectively. And 2008year are 35.92 m3/s, 39.06 m3/s and 
105.82 m3/s, respectively. This shows that the FSVR is more 
effective and efficient in drainage estimating than the Back-
propagation and Polynomial regression. 
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