
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1046

Abstract—This Paper presents an on-going research in the area

of Model-Driven Engineering (MDE). The premise is that UML is

too unwieldy to serve as the basis for model-driven engineering. We

need a smaller, simpler notation with a cleaner semantics. We

propose some ideas for a simpler notation with a clean semantics.

The result is known as µML, or the Micro-Modelling Language.

Keywords—Model-driven engineering, model transformations,

domain-specific languages, end-user development.

I. INTRODUCTION

N the real-world, there is a demand to adopt an accurate

information system that satisfies the requirements and used

effectively for the business. However, having vague or

misinterpreted requirements causes errors and extra costs.

Therefore, domain experts, who clearly understand the

business logic, goals and aware of what exactly they need

inside organisation without professional software developing

skills, should play key roles in the development lifecycle using

high level tools. There are many approaches that aim to tackle

these issues and reduce the gap between initial requirements

and implementation and accelerating the development process,

such as Model-Driven Engineering (MDE), Domain-Specific

Languages (DSL) and End-user Development (EUD).

Although the Unified Modelling Language, UML [13], is

commonly used to express structural and behavioural of a

system within MDE approaches, it suffers from semantics

ambiguity and complexity issues. This produces inconsistent

UML models difficult to interpret [12]. This lack of formality

and more make UML cannot serve as a basis for MDE from

business-users’ perspective.

II. BACKGROUND

The general strategy of Model-Driven Engineering aims to

capture system specifications through the employment of

Models that are expressed at a very high level of abstraction,

without technical platform-specific details. It supports

integration and interoperability, improves software quality and

Ahmad F. Subahi is with the Umm Al-Qura University, Makkah, Saudi

Arabia. He is now a PhD candidate in Computer Science Department,
University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1

4DP, UK (e-mail: AFSubahi1@sheffield.ac.uk).

Anthony J. H. Simons is with the Department of Computer Science,
University of Sheffield, Room 119, Regent Court, 211 Portobello Street,

Sheffield S1 4DP, UK (e-mail: A.J.Simons@sheffield.ac.uk).

reduces a development cost [1]. These levels of abstraction are

designed using two possible ways: the UML Meta-Object

Facility (MOF) via “Profiles” using limited and restricted

extensibility mechanisms [3], or appropriate DSLs for a

particular domain with an execution engine [2].

The UML-based Web Engineering (UWE) approach, for

instance, uses UML profiles to construct DSL for building

web applications in more flexible way. It is considered a

lightweight extension that captures business process,

presentation and navigation aspect of the web systems. UML

CASE tools, which support UWE, provide a semi-automatic

generation of web software and employ different languages

for implementing model transformations [14].

Extended UML models such as Use case, Activity,

Sequence, State-Transition and Class Diagram are used

intensively to construct the structure and behaviour models.

Therefore, an adequate degree of modelling skills and UML

awareness are necessary in order to build syntactically and

semantically valid UWE models.

Alternatively, building a suitable Domain-Specific

Language from scratch is another way to define

metamodelling architecture. The DSL represents the syntax

and semantics of models with simpler details (subset) than

UML. The semantics is defined either by code generators or

model transformations using the sufficient information from

models [4].

WebML, for instance, is a DSL for web engineering. It

allows specifying the conceptual model of web applications,

such as data, service, navigation and processes. WebML is

supported by tool for code generation [10], [11].

Users in WebML specify all composition and navigation

features of their web application using a number of designing

languages. The modelling process starts with constructing the

data model and ends up with designing the hypertext and

presentation view. According to that, end-users must act as a

web designer to design each part individually of the system.

The End-User Development (EUD) is a development

technique that aims to empower end-users, without technical

knowledge, to become involved in the process of designing

and/or customising their systems to increase their productivity

and satisfaction [5]. It also aims translate accurately and

comprehensively the informal description of domain problems

to reduce the gap between the exact user desires and what

functionalities the implemented system has [8].

Producing end-user tools for constructing web applications,

such as DEMIN and Mashups, CBEADS [7] is a widely-

Ahmad F. Subahi and Anthony J. H. Simons

Domin-Specific Language for Enabling End-

Users Model-Driven Information System

Engineering

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1047

known example of applying EUD in the real-word to tackle

the problem of the lack of web developing skills for non-

programmers [6]. This kind of tool considers business-users’

perspectives or mental model [6], encodes developers’

knowledge as rules [9] and enables users to easily tailor

software to meet their individual needs [5].

Ginige and De Silva have introduced a metamodelling

approach for enabling end-users to be involved in the

continuous development process, side by side with developers,

with little technical knowledge. It also aims to enable them to

employ effectively the metamodels in such as customisable

environment [7].

The concepts in the metamodel are similar to those in the

UWE approach [14]. However, all common aspects are

grouped at a separate level of abstraction for describing

information systems, namely, Shell, Application and Function

level [8]. These models are embedded into a component-based

Shell introduced as developers’ templates for end-users to

instantiate a metamodel instance and populate it at one or

more levels. The CBEADS and other related (SMART) tools

are used to generate business objects and, functions, user’s

interfaces and SQL queries [7].

In overall, we can realise that current MDE tools required

skills of dealing complex models that are syntactically and

semantically unclear. This prevents end-users to contribute

efficiently and express formally their functional requirements

they need. This paper discusses our vision to handle this issue.

III. MICRO-MODELLING LANGUAGE (µML)

The premise for this paper is that UML is too unwieldy to

serve as the basis for model-driven engineering. The models in

UML are too complex and eclectic to be given a single, clear

interpretation, while paradoxically not covering all of the

views that are needed to completely specify a software system.

We propose some ideas for a simpler notation, with a cleaner

semantics, in which the iconography is more consistent.

Individual models are smaller and more restricted; but there

are more kinds of model to cover the different interlinking

views of a system. As a result, it is possible to specify partial

and total transformations between different kinds of model.

The result is known as µML, or the Micro-Modelling

Language.

µML aims at raising the level of abstraction to suit business

end-users, enabling them to construct their system easily,

using less technical knowledge in an efficient way than in

existing approaches. This tackles some issues in requirements

elicitation to accelerate the development process and meet

end-user requirements. Furthermore, it reduces the ambiguity

of requirements and troubles that occur during client-designer

communication.

A.Task Model

The task model is a structural model that describes the

breakdown of some business in terms of the goals and tasks it

performs, as well as human interaction and other external

system participations. It will typically capture the wider

context of the business, within which some software system is

to be developed. The intention is that this model should

replace the use case diagram in UML [13].

The task model supports capturing tasks (ellipses) at

different granularities and encourages the designer to explore

task decomposition or composition (diamond arrowhead),

until a homogeneous view of the business is obtained. In Fig.

1, the Circulation task is decomposed into An Issue Loan

and/or Discharge Loan task.

Fig. 1 The task model of a part of a library system

B. Impact Model

The impact model is used to capture the data produced and

consumed by tasks in the business. Working out what kinds of

data is an intermediate step in requirements capture, which is

not well supported in UML [13]. Knowing what data is

produced or consumed by tasks constrains the possible orders

of task execution.

The impact model captures a partial order on tasks, induced

by data dependency. In Fig. 2, a Borrower and a Copy must

exist before a Loan involving these objects can be created.

Therefore, the tasks that add the Borrower and Copy to the

system (not shown) logically precede Issue Loan.

The nodes appearing in the impact model are tasks (ellipses)

and logical information, physical objects or people

(rectangles). The only arcs appearing in the impact model are

the Create (solid arrowhead), Read (open arrowhead), Update

(double-ended), and Delete (star arrowhead) flows.

Fig. 2 The impact model of a part of a library system

C. Information Model

Describing data in terms of conceptual entities, attributes

and relationships is a standard approach taken in software

engineering and is one of the aspects that UML supports in its

class diagram [13]. However, the UML class diagram notation

mixes up two distinct levels of detail in information

modelling: one which is concerned with initial perceptions and

the other which is concerned with detailed design.

Here, we view conceptual modelling as a separate activity

from database design. The model is common for physical

Reader

Services
Borrower

Circulation

Issue Loan Discharge Loan

Issue

Loan
Loan

Copy

Discharge

Loan

Borrowe

r

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1048

objects or documents, shown as rectangular nodes, to require

further logical decomposition, especially if they contain

repeating groups of data. The purpose of an Information

model is to capture sufficient information used by the system

ab initio to generate a Data model.

Fig. 3 The information model of a part of a library system

D.Data Model

The data model is intended to represent the logical data, as

rectangular nodes, of the system and support development to a

point where a logical database schema may be generated. It

may be constructed directly from an impact analysis of events

(Impact model). Alternatively, the data model may be

constructed from a multiplicity analysis of conceptual

associations (Information model), as discussed in section 5.

Either or both of these prior models may be used as a source

for the data model, and may be crosschecked for consistency.

Fig. 4 The data model of a part of a library system

A dependency in the Data model is drawn as a directed

edge, with an open arrowhead, to represent dependency of one

object upon another. In Fig. 4, a Loan object is dependent

upon the Borrower and Copy that it relates.

The data model may also be used to reverse-engineer

constraints upon the prior models. If dependency is known,

then multiplicity is partially predictable. Read/write and

creation/deletion constraints may be inferred likewise.

E. Data Flow Model

The work on the data flow is not completed yet. The aim is

to depict the flow between the tasks (ellipses) act on data, and

data stores (rec that retrieve the data). The model introduces

represents different types of flows, as well as structured text

on flows to indicate variables, attributes, and constraints. This

level of details and the distinction in the types of flow can lead

to derive possible control flows of the tasks and GUIs

behaviour that need business-user decisions to resolve

complex constructs.

Fig. 5 Data flow model of a part of a library system

IV. MODEL TRANSFORMATION

Model transformations are a common task in all MDE

approaches and play a key role in mapping models between

different levels of abstraction. There is a number of model

transformation approaches and languages have emerged in the

last few years. They can be viewed as Declarative Languages

for performing MDE, such as Atlas Transformation Language

(ATL), UML-RSDS, and Kermeta. Here, we are using the

(imperative) direct manipulation approach for manipulating

model transformations [15].

The starting point is high-level models, close to the business

domain, expressed using the proposed µML language. The

envisaged processing involves some model-to-model

translation steps, mapping a source model to a different target

models; and some model-to-code generation steps. How the

various high-level models will be combined, possibly "folded"

together in the style of aspect-oriented programming, is

currently our open research question.

A. Transforming the Impact Model into the Data Model

Tracing the CRUD effects, in the Impact model, of a single

task execution on individual objects (viz. a set of individuals)

informs the notion of data dependency in the Data model. For

instance:

1) A task reading from two objects supposes some kind of

association between them, whose properties cannot be

further elaborated.

2) A task reading two objects in order to create a third object

builds a structure in which the third object depends on the

other two.

3) A task reading from two objects and updating the second

object implies that the second object depends on the first

one.

4) A task reading from one object and destroying a second

object implies that the second object depends on the first

one.

5) A task reading exclusively from one or other object

implies these may be generalised in a disjoint fashion.

In the same context, the rest of mapping rules, including

mapping Objects into Entities (collection of objects of the

same type), are treated likewise. Fig. 2 shows that a new Loan

is created for a pre-existing Borrower and Copy.

Alternatively, the information model is transformed until all

the associations are many-to-one (or one-to-one). A many-to-

one association taken from the information model is always

resolved in the direction from the many to the one in the data

model. This is because multiple objects may be created and

deleted on the many-side for each object on the one-side. If

ever the object on the one-side is deleted, this results in a

cascading deletion of objects on the many-side. For instance, a

many-to-many Loan association between a Borrower and a

Copy the information model (Fig. 3) is promoted to an object

which depends on its related parts (Fig. 4).

Issue Loan Loan

Copy Borrower

Borrower

cId, bId

Copy[@id=cId]
Borrower[@id=bId]

Loan[Borrower@id,

Copy@id, date]

Borrower

Loan

Copy

Borrower Copy Loan

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1049

V. FUTURE WORK AND CONCLUSION

The current work includes designing other simple and

semantically-cleaned models to capture other views of

information systems, such as Task Flow model and GUI-State.

Transformation challenges, between the current models and

the “in-progress” one, are need to be identified and solved. In

order to reach this level of clearance, a moderate work is

carried on specifying the structure of each model formally

using First Order Logic (FOL) with equality. In addition, the

rules of transformations will be expressed similarly.

In overall, we have discussed the main ideas behind our

research on the Micro-Modelling Language (µML) approach.

Fairly sophisticated rules to generate a detailed Data model

from the Impact/Information models have been introduced.

REFERENCES

[1] Almeida, J.P., et al. (2004). On the Notion of Abstract Platform in MDA

Development. In Eighth IEEE International Enterprise Distributed

Object Computing Conference. IEEE CS Press.
[2] Kelly, S. and J.P. Tolvanen. (2008). Domain-Specific Modeling:

Enabling Full Code Generation. Wiley-IEEE Computer Society Press.

[3] Clark, T., et al. (2004). Transformation Language Design: A
Metamodelling Foundation. In Second International Conference. Rome,
Italy: Springer Berlin, Heidelberg.

[4] Mannadiar, R. and Vangheluwe, H. (2010). Domain-specific
engineering of domain-specific languages.In Proceedings of the 10th

Workshop on Domain-Specific Modeling. New York, NY, USA: ACM.

[5] Spahn, M. and Wulf, V. (2009). End-User Development of Enterprise
Widgets.In Proceedings of the 2nd International Symposium on End-

User Development (IS-EUD '09). Springer-Verlag, Berlin, Heidelberg.

[6] Rode, J. and Rosson, M. and Perez-Quinoneones, M. (2004). End-Users'
Mental Models of Concepts Critical to Web Application Development.

In Proc of the IEEE Symposium on Visual Languages-Human Centric

Computing. Washington, DC, USA: IEEE Computer Society.
[7] Ginige, A. and De Silva, B. (2007). CBEADS©: a framework to support

meta-design paradigm. In Proceedings of the 4th international

conference on Universal access in human computer interaction: coping
with diversity. Springer, Berlin, Heidelberg.

[8] De Silva, B. and Ginige, A. (2007).Meta-model to support end-user

development of web based business information systems. In Proceedings
of the 7th international conference on Web engineering. Como, Italy,

2007.Springer-, Berlin, Heidelberg.
[9] Pinggera, J. et al. (2010). How the structuring of domain knowledge

helps casual process modellers. In Proceedings of the 29th international

conference on Conceptual modeling (ER'10).Vancouver, Canada 1-5
November 2010. Springer-Verlag, Berlin, Heidelberg.

[10] Brambilla, M., P. Fraternali, and M. Tisi (2008). A Metamodel

Transformation Framework for the Migration of WebML models to
MDA. in MDWE, CEUR Workshop. CEUR-WS.org.

[11] Moreno, N., P. Fraternali, and A. Vallecillo. (2007). WebML modelling

in UML.IET Software.
[12] Naumenko, A. and Wegmann, A. (2003). Triune Continuum Paradigm

and Problems of UML Semantics.

[13] Object Management Group: Unified Modeling Language (OMG UML)
Superstructure, Version 2.3, 5 May (2010) [online] Available at:

omg.org/spec/UML/2.3

[14] UML-based Web Engineering (2011) [online] Available at:
uwe.pst.ifi.lmu.de/aboutUwe.html [accessed 18 October 2012].

[15] Mens, T., Gorp, P. V. (2006). A Taxonomy of Model Transformation.

Electronic Notes in Theoretical Computer Science, 152, 125-142.

