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Disturbance Observer for Lateral Trajectory
Tracking Control for Autonomous and Cooperative

Driving
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Abstract—In this contribution a structure for high level lateral
vehicle tracking control based on the disturbance observer is
presented. The structure is characterized by stationary compensating
side forces disturbances and guaranteeing a cooperative behavior at
the same time. Driver inputs are not compensated by the disturbance
observer. Moreover the structure is especially useful as it robustly
stabilizes the vehicle. Therefore the parameters are selected using the
Parameter Space Approach. The implemented algorithms are tested
in real world scenarios.

Keywords—Disturbance observer, trajectory tracking, robust
control, autonomous driving, cooperative driving.

I. INTRODUCTION

IN the last century advanced driver assistance systems
(ADAS) have prevailed more and more in the vehicle.

Initially it was mainly longitudinal guidance systems or
parking systems. More recently, lateral vehicle guidance
systems using electronic power steering have been introduced
into market. Thereby functions like lanekeeping assistance
can be implemented. With such functions the driver assistance
system and the driver handle the task of driving together
(cooperative driving). In the future, functions are also possible
in which the ADAS will completely take over the lateral
guidance.
The aim of this paper is therefore to introduce a control
structure for high-level lateral control that can handle both
cooperative maneuvers in interaction with the driver as well
as hands off maneuvers.
Since the control structure is to be applied in a wide variety
of vehicles in different operating conditions (i.e. varying
mass), methods of robust control are considered. In the
robust control theory the so-called disturbance observer [1]
has proven. It is used in a large number of applications and
provides robust and stationary accurate control results. As
will be shown, the disturbance observer is particularly useful
for the task of cooperative driving. A modification of the
usual disturbance observer structure allows to compensate
only a part of the disturbances and thus not compensating the
driver input.
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Concerning lateral control a lot of contributions have
dealt with the topic. Most of them concentrate on autonomous
driving, i.e. without driver interaction. It exist for example
approaches based on linear controller design [2], nonlinear
controller design [3] or modelpredictive control [4].

This contribution is organized as follows: Section II
gives a brief overview of the control structure. In Section III,
we recall the kinematic system dynamics of the vehicle
relative to a road and a planned trajectory. The control
design will be based on this model. In Section IV the theory
of the disturbance observer is briefly summarized and a
variation of the usual structure is presented. Based on this,
the control design is presented in Section V. Section VI
outlines the advantages of the presented control structure
for cooperative driving and in Section VII the tuning of the
control parameters is explained using the Parameter Space
Approach. The presented control structure is finally evaluated
in Section VIII in real-world scenarios.

II. CONTROL STRUCTURE

The control structure is based on the two-degrees of
freedom structure. Thus it is possible to separately define
the command response and disturbance attenuation. Fig. 1
shows the structure. The trajectory planning and feedforward
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Fig. 1: Control structure

control calculate the feedforward signal κff . It also provides
the reference signals xref for the controller. The controller
suppresses deviations Δx caused by disturbances and model
deviations with the control signal κtc. A usual controller with
integrating behavior would also compensate the driver inputs
Th. To introduce a controller showing a cooperative behavior
concerning the driver input is the aim of this contribution.

III. MODELING

For modeling the lateral dynamic behavior of the vehicle
the well-known single-track model is used [5]. The yaw rate
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ψ̇ and the slip angle β represent the state variables. They result
from the transfer functions

ψ̇ = Gψ̇(s) δ (1)

and
β = Gβ(s) δ (2)

with δ being the steering angle, representing the input. The
derivation of the equations is described in the Appendix. Since
the transient behavior of the tire forces is taken into account
both transfer functions have PD2T4 behavior (i.e. relative
degree 2).
The steering angle is controlled by a lower-level control like
presented in [6]. For the sake of simplicity it is assumed that
the dynamic behavior of the steering and its controller can
be represented by a PT2-behavior. Thereby, not the desired
steering angle is used as an input but the desired curvature
κd. Thus, δ results as

δ = Gδ(s)κd =
Kδ

τ2δ s
2 + 2Dδτδ + 1

κd. (3)

τδ and Dδ describe the time constant and damping. The unity
gain Kδ can be calculated as

Kδ = l

(
1 +

(
v

vch

)2
)

(4)

where l is the vehicle wheelbase, vch the characteristic velocity
and the v the longitudinal velocity.
To describe the vehicle movement relative to the road and
a planned trajectory the heading angle ψr is used (see
Fig. 2). It describes the differential angle between the vehicle
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T
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Fig. 2: Vehicle relative to the road and a planned trajectory

longitudinal axis and the tangent to the road R and results
from

ψ̇r = ψ̇ − v κs. (5)

κs is the road curvature. For the control the so-called course
angle θr is required. It is obtained by considering the slip

angle
θr = ψr + β. (6)

Furthermore, the lateral deviation is required, describing the
shortest distance to the road. Its differential equation is

ḋr = v θr. (7)

The used trajectory planning calculates a trajectory T relative
to the road R. It is described by the reference curvature κr,ref ,
the reference course angle θr,ref and the reference lateral
deviation dr,ref . Hence the control errors result as

Δθ = θr,ref − θr (8)

and
Δd = dr,ref − dr. (9)

The main disturbances that have to be compensated, result
from side force disturbances Fyd and moment disturbances
Mzd. They are caused by lateral force disturbances which can
for example result from crosswinds or hanging roadways. Both
result in a yaw rate disturbance zψ̇ and a slip angle disturbance
zβ .

IV. DISTURBANCE OBSERVER

The theory of the disturbance observer (DO) was first
introduced in [1]. It has been widely employed due to its
robust compensation of disturbances and plant uncertainties.
For example it has been used for the design of a steering
angle controller [7], a control for a DC Servo Motor [8]
and the position control of a industrial robot [9]. Usually
the disturbance observer provides an estimation z̃ of the
disturbance z which is used for compensation. For this purpose
the disturbance observer compares the input u and the output y
of the plant by inverting a model of the plant G̃(s). To realize
the inversion a filter Q(s) is used. Fig. 3 shows the common
structure of the disturbance observer. n denotes measurement
noise. The closed loop transfer functions are given by

Q(s)

Q(s) · G̃(s)−1

G(s)

−

ur yu

ũz̃

z

n

−

disturbance
observer

Fig. 3: Structure of the disturbance observer

Gury(s) :=
Y (s)

Ur(s)
=

G(s)G̃(s)

G̃(s) + (G(s)− G̃(s))Q(s)
, (10)

Gzy(s) :=
Y (s)

Z(s)
=

G(s)G̃(s)(1−Q(s))

G̃(s) + (G(s)− G̃(s))Q(s)
, (11)

Gny(s) :=
Y (s)

N(s)
=

G(s)Q(s)

G̃(s) + (G(s)− G̃(s))Q(s)
. (12)
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For low frequencies (Q(s) ≈ 1) results:

Gury(s) ≈ G̃(s), Gzy(s) ≈ 0, Gny(s) ≈ 1 (13)

and high frequencies (Q(s) ≈ 0):

Gury(s) ≈ G(s), Gzy(s) ≈ G(s), Gny(s) ≈ 0 (14)

At low frequencies the DO based control loop behaves like
the nominal plant G̃(s) and at high frequencies like the real
plant G(s). That means for low frequencies the structure
impresses the nominal behavior of G̃(s) to the plant. This
may facilitate that the control design of the outer controller
can be performed for the nominal model G̃(s). Therefore the
transient behavior is the same in the presence of disturbances
and parameter uncertainties. This is an important feature in
industry where robustness and the same transient behavior for
different product units is necessary.
[10] showed that the DO can even handle nonlinear behavior of
the plant. The effects of nonlinearities can be canceled by the
DO and thus make the system behave like the linear nominal
model.
The design of the DO is mainly the task of selecting G̃(s)
and Q(s). [11] presents an almost necessary and sufficient
condition for guaranteeing robust stability of closes-loop
systems with DO. The relative degree of the nominal model
G̃(s) has to be the same as the real plant’s relative degree.
If this is taken into account and the filter Q(s) is fast
enough, then a robust compensation is guaranteed. This means
that unknown parameters or disturbances can be controlled
robustly.
Concerning the filter Q(s) the following requirements have to
be fulfilled:

• relative degree of Q(s) should be greater or equal to the
relative degree of G̃(s) (causality of Q/G̃(s))

• disturbance rejection at low frequencies
• measurement noise rejection at high frequencies

A low-pass filter with the required relative degree fulfills
these requirements and is usually selected (although in some
applications a different filter might be useful, see for example
[12]).

In some cases it may be useful to divide the dynamics
of the plant and to consider them separately. This allows
an estimation of only one part of the disturbances. Fig. 4
shows the structure to compensate z2. The other disturbance
z1 won’t be compensated by the DO. The plant is divided
in G1(s) and G2(s). For example G1(s) can represent the
actuator. The transfer functions of the closed loop are given
as:

Gury =
G1G2G̃1G̃2

G̃1G̃2 +Q1Q2(G1G2 −G1G̃2)
, (15)

Gny =
G1G2Q1Q2

G̃1G̃2 +Q1Q2(G1G2 −G1G̃2)
, (16)

Gz1y =
G1G2G̃1G̃2

G̃1G̃2 +Q1Q2(G1G2 −G1G̃2)
, (17)

Gz2y =
G2G̃2(G̃1 −G1Q1Q2)

G̃1G̃2 +Q1Q2(G1G2 −G1G̃2)
. (18)

Using this structure, G̃1(s) has to represent G1(s) as
accurately as possible that the approximation G1(s) ≈ G̃1(s)
holds.
Hence, for low frequencies (Q1(s) ≈ 1, Q2(s) ≈ 1) results

Gury(s) ≈ G1(s)G̃2(s), Gny(s) ≈ 1, (19)

Gz1y(s) ≈ G1(s)G̃2(s), Gz2y(s) ≈ 0 (20)

and for high frequencies (Q1(s) ≈ 0, Q2(s) ≈ 0)

Gury(s) ≈ G1(s)G2(s), Gny(s) ≈ 0, (21)

Gz1y(s) ≈ G1(s)G2(s), Gz2y(s) ≈ G2(s). (22)

This means that this structure impresses a nominal model
G̃2(s) to the plant G2(s) for low frequencies and suppresses
disturbances z2. However G1(s) has to be known accurately
as the disturbance observer won’t match the nominal model
G̃1(s) to G1(s). The big advantage however is that z1 won’t be
estimated and compensated. This characteristic will be utilized
in the following controller design.
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−1
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−
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ũz̃2

z2

n

−

disturbance
observer
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−1

Q2(s)

Fig. 4: Modified structure of the disturbance observer to
compensate z2

V. CONTROLLER DESIGN

The disturbance observer can be used for the problem
of vehicle lateral control. The control structure is based on
the considerations of [13]. Fig. 5 depicts the whole control
structure. The trajectory planning provides the reference
signals κr,ref , θr,ref and dr,ref . A feedforward control
calculates the feedforward signal κff using a simplified model
of the underlying plant. To attenuate disturbances a disturbance
observer and a tracking controller are used. Each of them
will be explained in the following. The whole control law
calculates as

κd = κff + κtc + κdo. (23)

As written before the disturbance observer is used to
guarantee stationary accuracy. The measured heading angle
ψr is used as input to the DO. In principle, any signal could
be used which lies behind the disturbance that has to be
compensated. The main disturbance that has to be eliminated
is zψ̇ . Therefore ψ̇ would be the first choice. However, since
the measured road curvature κs may differ considerably from
the real one, the heading angle ψr is used as an input to the
DO.
According to the classical implementation of the DO, the
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Fig. 5: Proposed control structure for lateral trajectory tracking control

heading angle would be compared to the control output κd. It
results

κdo = Qdo(s)

⎛
⎜⎜⎝κd − G̃(s)−1

(
κs +

s

v
ψr

)
︸ ︷︷ ︸

κ̃ψr

⎞
⎟⎟⎠ . (24)

In this case G̃(s) represents a simplified transfer function of
Gδ(s) · Gψ̇(s). As the heading angle ψr is used as an input,
the road curvature κs has to be considered and ψr has to be
derived and divided by the vehicle velocity v.
Using the steering angle δ instead of κd as an input, the driver
intervention is not considered as a disturbance. Therefore δ is
transformed to a curvature using (4). The cooperative version
of the DO thus calculates as

κdo = Qδ(s)G̃δ(s)
−1 Qdo(s)

⎛
⎜⎜⎝ δ

Kδ︸︷︷︸
κ̃δ

−G̃(s)−1
(
κs +

s

v
ψr

)
︸ ︷︷ ︸

κ̃ψr

⎞
⎟⎟⎠ .

(25)
In this case G̃(s) represents the dynamics of Gψ̇(s). Since
the real transfer function has relative degree of 2 (see (1)), an
ideal damped PT2 can be used

G̃(s) =
1

τ2v s
2 + 2τvs+ 1

(26)

representing the vehicle nominal dynamics with its time
constant τv . In contrast to (24), G̃δ(s) has to be considered
separately. For its inversion a second filter Qδ(s) is necessary.
If the underlying steering angle controller is fast enough G̃δ

may be neglected.
The benefit of this structure is that driver inputs Th won’t be
compensated according to (19) and (20). Thus, it yields

GTh→κdo ≈ 0 (27)

for the cooperative DO. The underlying steering angle
controller also shouldn’t compensate the driver’s torque that
the control behavior is completely cooperative. [6] therefore
presents a structure to consider it in the underlying controller.
The classical implementation of the DO treats the driver
input as a disturbance. Since the DO has integral behavior,
the output of the DO would increasingly continue to work

against the driver input. This characteristic will be discussed
in Section VI in detail.

According to (19) the DO matches the desired behavior
to the underlying plant. As mentioned before this feature
is useful for the controller design. Varying parameters (e.g.
varying mass) can therefore be handled.

The outer loops are based on the feedback of the course
angle error and the lateral deviation. The tracking controller
law is calculated as

κtc = kθΔθ+kdΔd = kθ(θr,ref−θ̃r)+kd(dr,ref−dr). (28)

As described in [13], cameras usually don’t measure the
course angle relative to the road θr but the heading angle ψr.
For a stationary accurate control this is however necessary.
Therefore an observer is used to estimate β̃. Its transfer
function is

β̃ = Qβ(s)
(
ψr +

s

v
dr

)
. (29)

Therefore the heading angle and the lateral deviation are used.
A filter Qβ(s) is necessary to make the differentiation of
dr possible and to guarantee noise cancellation. An ideal
damped PT2 proofed as the best compromise between noise
cancellation and fast estimation.
The estimated side slip angle is used to calculate the course
angle

θ̃r = ψr + β̃. (30)

For calculating the gains kθ and kd exists a variety of
approaches. Most of them use gain scheduling to adapt to the
vehicle velocity. With the following approach this however
not necessary. The control aim is to asymptotically decay the
lateral deviation to the reference trajectory

lim
t→∞Δd(t) = 0. (31)

For this, the following simplified model is assumed:[
Δḋ

Δ
˙̃
θ

]
=

[
0 v
0 0

] [
Δd

Δθ̃

]
+

[
0
−v

]
κtc (32)

It results from (5)-(9) with neglecting the vehicle dynamics,
the reference curvature and the side slip angle. The reference
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curvature is already considered with the feedforward control.
The side slip angle is compensated by using an estimator, see
(30). This allows to consider the course angle for the feedback
law.
The control law for κtc results directly from the differential
equation for Δd (32). By differentiating it until the control
input appears, one obtains

Δd̈ = v̇Δθ̃ + vΔ
˙̃
θ = v̇Δθ̃ − v2κtc. (33)

It has to satisfy the equation of an ideal damped PT2 with a
desired time constant τd:

τ2dΔd̈+ 2τdΔḋ+Δd = 0. (34)

Solved for the control variable κtc, results in

κtc = Δθ̃
v̇τ2d + 2vτd

τ2d v
2

+Δd
1

τ2d v
2
. (35)

This control law ensures the asymptotic decay of lateral
deviations. The amplification factors are speed-dependent
and thus avoid the need for gain scheduling of the gains.
Regardless of the driving speed, the same dynamic behavior
of the controlled system results.

Apart from the filter time constants, there remain only
the time constant of the nominal vehicle model τv and the
time constant of the tracking controller τd to adjust the
controller. The tuning of τd and τv in order to guarantee
robust tracking results is the objective of Section VII.
The feedforward control to calculate the feedforward signal
κff is implemented as described in [13] and won’t be
discussed further.

VI. COOPERATIVE CONTROL

As mentioned before, the classical implementation of the
DO (see (24)) will not only compensate any disturbances but
also the driver input Th. In spite of this, the modified DO,
according to (25), only compensates lateral disturbances, but
not the driver’s torque. This is possible because the underlying
steering angle controller is adapted by the driver’s torque
(see [6]). According to (23) the control law not only consists
of the DO’s output κdo but also the tracking controller’s
output κtc. The latter is working against the driver input.
Similar to impedance and admittance control [14] this control
law could also be modified by using the measurement of
the driver’s torque Th. However we don’t use this because
the driver should feel where the driver assistance systems
intends to go. The control law of the tracking controller is
relatively good-natured compared to the DO’s output as the
DO has integral behavior. Therefore the output of the tracking
controller won’t be adapted to the driver input.

VII. PARAMETER SPACE APPROACH

It exists a variety of approaches for selecting the controller
parameters τd and τv . Since significant deviations from
the underlying nominal model may occur due to modeling
uncertainties or parameter variations (by varying operating
conditions such as the varying mass of a vehicle due to

different loading) a robust control method is selected, the
Parameter Space Approach [15].
Task of the method is to find a controller that meets certain
minimum requirements for the control loop, regardless of
parameter variations. The desired properties can ask, for
example, that the eigenvalues always lie in a given region Γ.

Contrary to the traditional approaches, the parameter
space method yields a set of coefficients for a specific
controller structure that simultaneously stabilizes a finite
number of plants.
For each operating point, the derived Γ stability region will

jω

σΓ

ω [Hz]

B

h

l

ωt

|S(jω)|
∂B1

∂B2
∂Γ1

∂Γ2

Fig. 6: Example of Γ- and B regions

be mapped into the controller coefficient space. This will
yield to several overlapping Γ stabilizing regions. The system
is said to be robustly stable if the operating domain is entirely
contained in the intersection of these Γ stabilizing regions.
The region Γ with boundary ∂Γ is composed of one or more
curves in the s-plane [16]. Fig. 6 shows an example of a Γ
stability region.
Γ stability is an approach of meeting the requirements on the
system in the time domain solely. To also cover the frequency
domain magnitude specifications B stability can be used.
For example it addresses noise and disturbance rejection or
robustness against uncertainties in the plant by bounding the
magnitude frequency response of specific sensitivity functions
[15].
A sensitivity function S(jω) is considered to be B stable if
its frequency response magnitude lies within a predefined
region B [15]. By an appropriate selection of ∂B(ω) upper
bounds can be set to the frequency response magnitude of
S(jω) so that the preliminary defined requirements regarding
the sensitivity of the system to external disturbances can be
met:

|S(jω)| < ∂B(ω). (36)

∂B(ω) can be derived from the frequency response
magnitude specifications on S(jω) [15]:

• The maximum steady state error should be limited to l:

|S(0)| < l. (37)

• The high-frequency disturbance amplification should be
limited to h:

|S(jω)| < h. (38)
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Fig. 7: Γ- and B-stable parameter space for Gκr,ref→Δy(s)
and Szψ̇→Δd(s) for different loadings (with v= 50 kph)

• The transition frequency from l to h, i.e. the frequency
at which disturbances become amplified instead of
attenuated, should be ωt.

The resulting ∂B(ω) (Fig. 6) then becomes:

∂B(ω) =
{
l, ∀ω ∈ [0, ωt]

h, ∀ω ∈ (ωt,∞)
(39)

Γ- and B− specifications are considered for the selection of τd
and τv . The design of the parameters will be shown for a speed
of 50 kph by shaping Γ- and B-specification into parameter
space of the command step response Gκr,ref→Δd(s) and the
sensitivity function Szψ̇→Δd(s) with

Gκr,ref→Δd(s) =
Δd

κr,ref
using Γ− Stability (40)

and
Szψ̇→Δd(s) =

Δd

zψ̇
using B − Stability. (41)

Exemplary the approach is illustrated on a variation of the
vehicle mass m. It is varied in a range of

m =

⎧⎪⎨
⎪⎩
mmin = mnominal − 250 kg

mnominal

mmax = mnominal + 250 kg

(42)

to select controller parameters stabilizing the vehicle for all
permitted loadings. These operations were done by using the
“PARADISE”-toolbox which was developed by DLR [17].

Fig. 7 shows the resulting parameter space for different
loadings. In this case τv and τd are selected as τv = 0.08 and
τd = 0.5. The whole procedure can be repeated for different
velocities, tire characteristics and different positions of the
center of gravity.

VIII. MEASUREMENT RESULTS

The control algorithms are implemented in
MATLAB/Simulink and run on a dSpace Autobox with
a cycle time of 20 ms. As a test vehicle serves a 3 series

GT. The trajectory planning calculates trajectories relative to
a previously recorded map and the localization is done using
a differential GPS platform.
Fig. 8a shows the result of a measurement. The vehicle is
driving along a straight reference with a velocity of 50 kph.
The driver is intervening and guiding the vehicle 1.2 m to
the left. The disturbance observer’s output κdo is almost all
the time 0 as there is no disturbance acting on the vehicle
besides the driver. The tracking controller however is working
moderately against the driver, guiding the vehicle back to the
reference after the driver’s torque is zero again.
Fig. 8b shows a second maneuver, representing the suppression
of side-force disturbances. Again the vehicle has to follow
a straight line with 50 kph. A side-force disturbance is
generated by one-sided braking. Therefore the vehicle’s right
front and rear wheels are both exposed to 500 Nm braking
torque. This leads to a side-force disturbance. The disturbance
observer rejects this disturbance with minimal control error.

IX. CONCLUSION AND FUTURE WORKS

Future driver assistance systems will support the driver
by partly or fully taking over the lateral control. This paper
therefore presented a structure for handling both autonomous
as well as cooperative maneuvers with driver interaction. In
both cases lateral force disturbances are robustly compensated.
This is achieved by modifying the usual disturbance observer
structure to only compensate a certain part of the disturbances
(the lateral force disturbances) with treating the driver’s torque
not as a disturbance.

APPENDIX A
SINGLE-TRACK MODEL

For the design of the controller the single-track model
was used resulting the transfer functions Gψ̇(s) and Gβ(s).
The equations of the single-track model [5] results from
equilibrium of forces in lateral direction (see Fig. 9)

m(β̇vx + ψ̇vx) = cfαf + crαr (43)

and the moment equilibrium

Jψ̈ = cfαf lf − crαrlr. (44)

m describes the vehicle mass and J the moment of inertia
with respect to the yaw axis at the center of gravity (COG).
The distances between the COG and the front and rear axle are
referred as lf and lr. The wheelbase results as l = lr+ lf . The
angle between the wheel’s longitudinal axis and the wheel’s
velocity is defined as the slip angle α. The slip angle of the
front axis αf calculates as

αf = δ − β − lf
ψ̇

v
(45)

and the rear slip angle αr as

αr = −β + lr
ψ̇

v
. (46)
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Fig. 8: Measurement results

By introducing the tire’s relaxation length σ the transient tire
characteristic is taken into account. Applied to the front axle
results

σf

v
Ḟsf + Fsf = cfαf (47)

and for the rear tires
σr

v
Ḟsr + Fsf = crαr. (48)

The relaxation length of the tire depends on the vehicle speed
and tire condition. The cornering stiffness of the wheel are
denoted as cf and cr. Combining (43)-(48) and writing it in

l

αr

αf

δ

ψ

βv

lrFsr

Fsf

Fig. 9: Single-track model

state-space representation results in⎡
⎢⎢⎣

ψ̈

β̇

Ḟsf

Ḟsr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0
lf

Jfzg
− lr

Jfzg

−1 0 1
mv

1
mv

− cf
σf

lf −v
cf
σf

− v
σf

0
cr
σr
lr −v cr

σr
0 − v

σr

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

ψ̇
β
Fsf

Fsr

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

v
cf
σf

0

⎤
⎥⎥⎦ δ.

(49)
This can be solved for the required transfer functions Gψ̇(s)
and Gβ(s).
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