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Disturbance Observer-Based Predictive Functional
Critical Control of a Table Drive System

Abstract—This paper addresses a control system design for a
table drive system based on the disturbance observer (DOB)-based
predictive functional critical control (PFCC). To empower the
previously developed DOB-based PFC to handle constraints on
controlled outputs, we propose to take a critical control approach. To
this end, we derive the transfer function representation of the PFC
controller and yield a detailed design procedure. The effectiveness
of the proposed method is confirmed through an experimental
evaluation.

I. INTRODUCTION

IN many industrial applications of positioning devices such

as table drive systems, the so-called cascade control system

is traditionally applied, which has a minor velocity loop with

a PI or I-P controller and a major position loop with a P

controller [3]. As a rule of thumb, the minor velocity loop

should be designed so as to have faster dynamics than that of

the major position loop. This design strategy sounds intuitive,

but the tuning of these controllers gains is nontrivial, and

inappropriate controller gains might result in poor closed-loop

performance.

The predictive functional control (PFC) developed by

Richalet et al. [1], [4], [5] is one of the model predictive

control (MPC) schemes. The PFC is known for its

good tracking performance and robustness against model

uncertainties and disturbances. However, especially from

mechatronics viewpoint, the speed of disturbance rejection

is relatively slow in the PFC, though disturbances are

asymptotically rejected. To overcome this drawback, Satoh

et al. [6], [7] proposed a disturbance observer (DOB)-based

PFC where the inner DOB feedback loop cancels disturbances

immediately and the outer PFC loop achieves good reference

tracking. We basically focus on the design and implementation

of the DOB-based PFC in this paper.

Usually, the PFC does not handle constraints on controlled

outputs. Although a few techniques for handling constraints

have been proposed, they each have a drawback. For

example, the technique proposed by Abu el Ata-Doss et
al. [1] cannot handle constraints on manipulated variables

and output variables in a unified manner, and a linear
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programing approach developed by Zhang et al. [13] increases

on-line computational burden. We therefore propose to design

the disturbance observer-based predictive functional control

system as the critical control system (CCS) [11] in this

paper. The CCS is defined as a control system which has

responses required to be strictly within prescribed bounds for

any exogenous inputs that are likely to occur in practice.

Since the critical control systems design is based on an

off-line computation, the proposed method does not increase

the on-line computational burden. Also, all constraints are

treated in a unified way.

The proposed control method, which is referred to as

the disturbance observer-based predictive functional critical

control (DOB-PFCC), is applied to a position control problem

of a single axis table drive system. The effectiveness of the

DOB-PFCC is checked through an experimental evaluation

where constraints are imposed on the tracking error and

controller output.

The organization of this paper is as follows. Section II

provides a mathematical model of a single axis table drive

system and a brief outline of the PFC, DOB and CSS where

the transfer function representation of the PFC controller is

given. A design procedure of the proposed control is also

shown in Section II. Section III shows a detailed DOB-PFCC

design for the single axis table drive system and experimental

results. Section IV states conclusions.

II. PRELIMINARIES

Let R, R+, R
n, Z+, Z

n be the set of all real numbers, the set

of all nonnegative real numbers, the set of all n-dimensional

real vectors, the set of all nonnegative integers, and the set of

all n-dimensional integer vectors, respectively. In addition, let

V be the normed vector space of infinite sequences.

For an infinite sequence x (k) : Z+ → R, the l∞ norm of

x (k) is defined by

‖x‖∞ := sup {|x (k)| : k ∈ Z+} , (1)

and the l1 norm of x (k) is defined by

‖x‖1 :=
∞∑

k=0

|x (k)|. (2)

Finally, the difference of x (k) is defined by Δx (k) := x (k)−
x (k − 1).
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B. Modeling of Table Drive Systems

Fig. 1 shows the external view of the single axis table drive

system which is used in this paper. Also, Fig. 2 shows the

schematic diagram of the experimental setup. As is clear from

Fig. 2, the system is controlled by the semi-closed-loop control

method. The core of this experimental apparatus is a single

axis linear actuator, which is driven by an 80 Watt DC servo

motor equipped with an optical encoder with the resolution

of 1000 pulses/revolution. The DC motor is driven by a DC

servo amplifier. The specifications of the linear actuator and

DC motor are summarized in Table I. The encoder pulse is

received by a 24-bit encoder counter board and counted by

quad edge evaluation. The command signal to the DC servo

amplifier is sent from a 12-bit digital-to-analogue converter,

and the current monitor signal from the DC servo amplifier

is received by a 12-bit analog-to-digital converter. The table

drive system is controlled at the sample rate of 1 kHz.

We use the DC servo amplifier in the current control mode

to command and control the motor torque instead of directly

manipulating the motor current. Hence, on the assumption that

the table drive system can be approximated by a one-inertia

system, its equation of motion subject to friction torque is

given by

θ̈ (t) =
KS

J
ea (t) − D

J
θ̇ (t) (3)

where θ denotes the angle of the motor shaft, ea is the

command voltage to the DC servo amplifier, J is the

equivalent moment of inertia, KS is the conversion factor

from the command voltage to the motor torque, and D is the

viscous friction coefficients. In our experimental apparatus,

the conversion factor is given by KS = 0.0801 Nm/V, and

the nominal value of the moment of inertia is identified

as J = 1.6928 × 10−4 kg m2 by using a standard system

identification technique. We define the state vector and output

variables as (x1 x2)
T := (θ θ̇)T and y := θ, respectively. Then

the state-space description of the single axis table drive system

is given by⎧⎪⎪⎨
⎪⎪⎩

(
ẋ1 (t)
ẋ2 (t)

)
=

(
0 1
0 −D/J

) (
x1 (t)
x2 (t)

)
+

(
0

KS/J

)
ea (t) ,

y (t) =
(
1 0

) (
x1 (t)
x2 (t)

)
.

(4)

TABLE I
S

Description Value Description Value

ball screw lead 10 mm nominal voltage 24 V
stroke 500 mm rated current 2.96 A

rail length 670 mm rated torque 0.28 Nm
maximum rotational speed 500 mm/s rated speed 1810 r/min

C. Predictive Functional Control

In this subsection, we give a brief overview of the predictive
functional control (PFC). For more details of the PFC

algorithm based on the state-space model, see, for example,

S. Abu el Ata-Doss et al. [1].

Fig. 3 shows the basic concept of the PFC. Suppose that the

current time is labeled as time step k. A set-point trajectory
is defined as a command signal which the process output yP

should track, and the value of the set-point trajectory at the

current time step is denoted by c (k). Also shown is a reference
trajectory denoted by yR. This trajectory starts at the current

process output yP (k) and defines a desired trajectory along

which the process output yP should follow. On the reference

trajectory, there are a few coincidence points on which the

performance index is defined so that the process output yP

will coincide with the reference trajectory yR. As an example,

three coincidence points are shown in Fig. 3. The optimal

control input trajectory is then computed on the basis of the

predicted output. Once we have computed a future control

input trajectory, we apply only the first element to the process.

At the next time step, we repeat the whole cycle from the

definition of the reference trajectory to the application of the

first element of the optimal control input trajectory. We call

this way of control a receding horizon control.
Next, we show the basic PFC algorithm. Now assume that

the plant is stable and has the time delay of L and that the

sampling period is Ts. The development of the PFC algorithm

is based on the following SISO discrete-time linear state-space

model of the plant:{
xM (k + 1) = AMxM (k) + BMu (k) ,

yM (k) = CMxM (k)
(5)

where xM ∈ R
n is the state vector, u ∈ R is the control

input, yM ∈ R is the model output, respectively. Here, the

Fig. 1 Single axis table drive system

Fig. 2 Schematic diagram of experimental setup

PECIFICATIONS OF TABLE DRIVE SYSTEM AND DC MOTOR

Fig. 3 Concept of the predictive functional control
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model output yM (k) is used to predict the future plant output

ŷP (k + d) where d ∈ Z is defined as the nearest integer to

L/Ts. Assume that the following condition holds:

det
(

AM − I BM

CM 0

)
�= 0. (6)

Then the reference trajectory is defined as follows:

yR (k + d + i) := c (k + d + i)−αi (c (k + d) − ŷP (k + d)) ,
(7)

where α ∈ R is a parameter which adjusts the approaching

ratio of the reference trajectory to the set-point (0 < α < 1).

In this paper, we choose the parameter α as α = e−3Ts/TCLTR

along with the following three coincidence points:

(
h1 h2 h3

)
=

(
TCLTR

3Ts

TCLTR

2Ts

TCLTR

Ts

)
(8)

where TCLTR ∈ R is constant and called the desired
closed-loop time response. The performance index is defined

as the quadratic sum of the errors between the predicted

process output ŷP and the reference trajectory yR as follows:

J (k) :=
nh∑
j=1

{ŷP (k + d + hj) − yR (k + d + hj)}2
(9)

where hj ∈ Z (j = 0, 1, . . . , h) and nh ∈ Z are respectively

the coincidence time point and the number of coincidence

points. In the PFC, the future control input computed at each

sampling instant is assumed to be the sum of weighted basis

functions, and a time-dependent polynomial basis is usually

employed. Then the optimal control input that minimizes the

performance index (9) is given by

u (k) = k0 {c (k + d) − yP (k)}
+ ν̃T

x xM (k) + ν̃T
xdxM (k − d) (10)

where k0 ∈ R, km ∈ R, ν̃x ∈ R
n and ν̃xd ∈ R

n are

respectively given by

k0 = νT

⎛
⎜⎝

1 − αh1

...

1 − αhnh

⎞
⎟⎠ , ν̃x = −

⎛
⎜⎜⎜⎝

CM

(
Ah1

M − αh1I
)

...

CM

(
A

hnh

M − αhnh I
)
⎞
⎟⎟⎟⎠

T

ν, ν̃xd = −

⎛
⎜⎝

(
αh1 − 1

)
CM

...(
αhnh − 1

)
CM

⎞
⎟⎠

T

ν. (11)

In (11), ν ∈ R
nh is given by

ν =
(
yB (h1) · · · yB (hnh

)
)T

⎛
⎝ nh∑

j=1

yB (hj) yB (hj)
T

⎞
⎠

−1

UB (0) (12)

where yB (hj) =
(
yB1 (hj) · · · yBnB

(hj)
)T

∈ R
nB and

UB (0) = (1 0 · · · 0)T ∈ Z
nB . Here, yBl

(i) ∈ R

is the forced response to the basis function of the form

il−1 (l = 1, 2, . . . , nB).

Since the optimal control law in (10) is linear and

time-invariant, it is possible to derive the transfer function

representation of the PFC controller as stated in the following

theorem.

Theorem 1. Let us introduce the following notation:(
A B
C D

)
= C (zI − A)−1

B + D. (13)

Then, the pulse transfer function of the PFC controller is given
by

C (z) =
(

A� B†

C� k0

)
(14)

where

A� :=

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
BM ν̃T

xd 0 0 · · · AM + BM ν̃T
x

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

n(d+1)×n(d+1),

B† :=

⎛
⎜⎜⎜⎝

0
...
0

BMk0

⎞
⎟⎟⎟⎠ ∈ R

n(d+1)×1, C� :=
(
ν̃T

xd 0 · · · ν̃T
x

) ∈ R
1×n(d+1).

(15)

Moreover, when d = 0, the resulting pulse transfer function is
given by

C (z) =
(

AM + BMνT
x BMk0

νT
x k0

)
(16)

where

νx := −

⎛
⎜⎜⎜⎝

CM

(
Ah1

M − I
)

...

CM

(
A

hnh

M − I
)
⎞
⎟⎟⎟⎠

T

ν ∈ R
n. (17)

Proof: Omitted.

The above result serves as a foundation for the design of

the DOB-PFCC.

E. Disturbance Observer-based Predictive Functional Control

A brief outline of the disturbance observer-based predictive

functional control [6], [7] is given in this subsection.

The disturbance observer (DOB) has the structure depicted

in Fig. 4 where P (s) is the transfer function of the real plant,

Pn (s) is the nominal model of the plant, and Q (s) is a

D. Transfer Function representation of PFC Controller

Fig. 4 Structure of the disturbance observer

Fig. 5 Block diagram of DOB-based PFC for single axis servo system
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proper and stable low-pass filter (LPF). The nominal model

Pn (s) is supposed to be minimum-phase in the following.

On the assumption that disturbances acting on the system,

modeling errors and nonlinearities can be regarded as an

equivalent disturbance d at the plant input, the DOB computes

the estimate d̂ of the current disturbance d, which is subtracted

from the input u to cancel the disturbance.

When the plant has no unstable zeros, the LPF Q (s) can

be selected as [9]

Q (s) =
1 +

∑nq−ρq

m=1 fmsm

1 +
∑nq

m=1 fmsm
(18)

where nq ∈ Z, ρq ∈ Z and fm ∈ R are respectively the order

of Q (s), the relative degree of Q (s) and unknown coefficients

to be determined. To make Q (s)Pn (s)−1
proper, ρq must be

chosen as ρq � ρP where ρP ∈ Z is the relative degree of

Pn (s).
Various types of analogue filters can be utilized to realize

Q (s), and in many cases, the Butterworth and the binomial

LPFs are used. More specifically, the Butterworth filter is a

reasonable option when nq = ρq , which means that the degree

of the numerator polynomial of Q (s) is 0. Otherwise, the

binomial filter of the following form is useful:

Q (s) =
1 +

∑nq−ρq

m=1 am

(
sτnq

)m

1 +
∑nq

m=1 am

(
sτnq

)m (19)

where am (m = 1, 2, . . . , nq) are the binomial coefficients

(i.e., am = nq!/m!(nq − m)!) and τnq is a design variable to

be determined.

The disturbance observer is assumed to be placed in the

velocity loop. Hence, if d = 0, the block diagram of

the disturbance observer-based predictive functional control

system for the table drive system is shown as Fig. 5 where

the transfer function of the PFC controller is given by (16).

F. Critical Control

Critical systems are defined as control systems that have

responses required to be strictly within the prescribed bounds

to any inputs that are likely to occur in practice [11].

Let w ∈ R and z (w) ∈ R
m respectively denote an

exogenous input to the system, and the response vector of

the closed-loop system is defined by

z (w) :=
(
z1 (w) z2 (w) · · · zm (w)

)T
. (20)

Suppose that w belongs to a predefined set W and that

w (k) = 0 for k � 0. The set W is called the possible set [12].

The control of critical systems, which is referred to as critical
control, is then formulated as

|zi (k, w)| � εi, k ∈ Z+, w ∈ W, i = 1, 2, . . . , m. (21)

where εi ∈ R+ is the largest tolerable value of the absolute

response |zi (k, w)|. (21) can be rewritten as

ẑi (W) � εi, i = 1, 2, . . . , m, (22)

where ẑi (W) is defined by

ẑi (W) := sup {‖zi (w)‖∞ : w ∈ W} . (23)

Hence, the critical control problem is stated as follows: find an
internally stabilizing controller that ensures the criteria (22)

for any input that belongs to a known input set W .

The choice of the possible set W is essential for the

design of critical control systems. Throughout this paper, the

following possible set is used:

W∞ (M, D) := {w ∈ V : ‖w‖∞ � M, ‖Δw‖∞ � D} . (24)

The possible set (24) contains magnitude-and-rate-limited

inputs, and it excludes inputs with infinite rate of change such

as the unit step function.

In general, we must rely on a complex numerical analysis

or optimization to compute the value of ẑi (W∞ (M, D)) (see,

for example, Lane [2] or Silpsrikul and Arunsawatwong [8]).

However, the following relationship can be derived:

ẑi (W∞ (M, D)) � M

∣∣∣∣ lim
k→∞

zi (k, 1)
∣∣∣∣ + D

∥∥∥∥zi (1) − lim
k→∞

zi (k, 1)
∥∥∥∥

1

(25)

where 1 is the unit step function, and zi (k, 1) is the unit step

response at k. Therefore, we can utilize the right-hand side

of (25) as a useful approximation of ẑi (W∞ (M, D)). The

relationship in (25) is a natural consequence of the similar

approximation derived in continuous-time domain [10].

It should be noted that, if limk→∞ zi (k, 1) = 0, the possible

set in (24) may be replaced with

W∞ (D) := {w ∈ V : ‖Δw‖∞ � D} , (26)

and ẑi (W∞ (D)) is given by

ẑi (W∞ (D)) = D ‖zi (1)‖1 , (27)

which means that the supremum absolute value is determined

only by the rate of change D without approximation. In

this case, no complex numerical analysis or optimization is

required to compute ẑi (W∞ (D)).

G. Design Procedure of DOB-PFCC System

In many cases, critical systems are designed by searching

a number of adjustable parameters directly. For example,

coefficients of the denominator and numerator polynomials in

the controller transfer function, or the closed-loop poles are

numerically searched to meet the design criteria in (22). On

the other hand, PFC has only one design parameter: the desired

closed-loop time response TCLTR. Hence, the design procedure

of the proposed DOB-PFCC system design is summarized as

follows:

Step 1. Specify the desired closed-loop time response TCLTR.

Step 2. Calculate the closed-loop transfer functions from w
to zi (i = 1, 2, . . . , m) using the plant model P (z)
and the PFC controller transfer function C (z).

Step 3. Check whether all of the closed-loop poles are inside

the unit circle. If so, proceed to Step 4.; otherwise

return to Step 1.

Step 4. Compute the the upper bound of ẑi (W)
(i = 1, 2, . . . , m) given in the right-hand side of (25).

Step 5. Check whether the design criteria in (22) are

satisfied. If so, the design is completed; otherwise,

return to Step 1.
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TABLE II
UPPER BOUND OF THE SUPREMUM PEAK RESPONSE

TCLRT tracking error (rad) controller output (V)

0.05 0.272 1.117
0.08 0.434 0.684
0.10 0.542 0.542
0.30 1.605 0.169
0.50 2.644 0.101

III. DESIGN AND EXPERIMENT

A. Design of Disturbance Observer and PFC Controller

First, we design a Q-filter in the disturbance observer. From

the state-space realization of the plant in (4), the nominal

transfer function from the command voltage ea to the angular

velocity θ̇ is given by

Pn (s) =
Ks

Js + D
=

473.2
s + 3.32

. (28)

It follows from (28) that the relative degree ρq of the Q-filter

must be greater than or equal to 1. So we assume that ρq = 1
hereafter. When nI is taken to be 2, the order of the Q-filter

is nq = nI + ρq − 1 = 2. We therefore design a second-order

filter with the relative degree of 1. According to the numerical

design procedure used in Satoh et al. [6], we obtained the

following second-order binomial filter Q (s) with a cut-off

frequency of 45 Hz:

Q (s) =
150.38 (s + 37.59)

(s + 75.19)2
. (29)

Secondly, we define the possible set W and the design

specification. We use the following possible set in this

experiment:

W∞ (10, 0.01) := {w ∈ V : ‖w‖∞ � 10, ‖Δw‖∞ � 0.01} .
(30)

Let us suppose that we have two responses to be bounded,

namely, the tracking error z1 and the PFC controller output

z2. We also assume that the purpose of control here is to keep

the two responses within the following bounds:{
ẑ1 (W∞ (10, 0.01)) � 0.5 rad,

ẑ2 (W∞ (10, 0.01)) � 1 V.
(31)

Next, we design an admissible controller by adjusting

the closed-loop response time TCLRT. It is obvious from

Theorem 1 that the resulting PFC controller varies as TCLRT

is changed, and the upper bound of ẑi (W∞ (10, 0.01)) (i.e.,
the right-hand side of (25)) is hence changed as shown in

Table II. Moreover, Table II shows that, as TCLRT becomes

larger, the worst-case tracking error increases, whereas the

worst-case PFC controller output decreases. It can be seen

from Table II that the design specification in (31) is satisfied

when TCLRT = 0.08, so that the PFC controller is designed by

using this value. The pulse transfer function of the controller

is then given by

C0.08 (z) =
4.015 (z − 0.997)

z − 0.918
. (32)

0 1 2 3 4 5 6 7 8

−10

−5

0

5

10

reference signal

an
gl

e 
(r

ad
)

0 1 2 3 4 5 6 7 8

−0.01

−0.005

0

0.005

0.01

difference of reference signal

time (s)

an
gu

la
r 

ve
lo

ci
ty

 (
ra

d/
s)

When C0.08 (z) is used, for any reference input w ∈
W∞ (10, 0.01), the tracking error and controller output are

always kept within the bounds 0.434 rad and 0.684 V,

respectively.

We mention that limk→∞ zi (k, 1) = 0 (i = 1, 2) in

this control system. Hence, the possible set W∞ (D) given

in (26) can be used instead of W∞ (M, D). In that case,

Table II shows not the upper bound but the exact value of

the supremum peak response for any input in W∞ (0.01).

B. Experimental Evaluation

One of the reference inputs that belong to the possible set

W∞ (10, 0.01) can be constructed by connecting a number of

modified trapezoidal curves as shown in Fig. 6. This reference

input is clearly an element in the possible set W∞ (10, 0.01)
since |w (k)| � 10 and |Δw (k)| � 0.01 for k � 0.

Fig. 7 shows the experimental result of the DOB-PFCC

system where the Q-filter in (29) and the controller in (32) are

combined together. We can confirm that both the tracking error

z1 and the PFC controller output z2 fulfill the requirements

in (31). The tracking error is very close to the upper bound

0.434 rad and thus to the design requirement 0.5 rad. On the

other hand, the controller output z2 is far from the upper bound

0.684 V and hence from the design specification 1 V. So, the

design is tight from the point of view of the tracking error,

but conservative from the perspective of the controller output.

For purposes of comparison, the experimental results using

other TCLRT are shown in Fig. 8 and Fig. 9 where TCLRT is 0.3
and 0.5, respectively. The PFC controllers corresponding to

these values are given as follows:

C0.3 (z) =
0.310 (z − 0.997)

z − 0.977
, (33)

C0.5 (z) =
0.120 (z − 0.997)

z − 0.985
. (34)

We know from Table II that we cannot ensure the bound

ẑ1 (W∞ (10, 0.01)) � 0.5 rad for TCLRT = 0.3 and 0.5. In fact,

the tracking error violates the constraint as shown in Fig. 8

and Fig. 9.

It should be emphasized here that z2 is not the overall

control effort but just the PFC controller output. The overall

Fig. 6 Reference signal and its difference
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control effort, which is the sum of the DOB output and

the PFC controller output, should be bounded in practice.

In the presence of unmodeled dynamics, uncertainties and

parasitic effects such as friction, the overall control effort

differs from the PFC controller output since the disturbance

observer functions so as to compensate for the plant-model

mismatch (see the bottom figures in Fig. 7, Fig. 8 and

Fig. 9). Unfortunately, the proposed design method cannot take

account of the overall control effort directly. For this specific

design example, however, we are able to evaluate the overall

control effort in an ad hoc manner as follows. Fig. 7, Fig. 8

and Fig. 9 suggest that the DOB output is almost the same

irrespective of the value of TCLRT. So, measuring the DOB

output for the reference input beforehand, we can estimate the

maximum absolute value of the DOB output. Then the upper

bound of the overall control effort can be approximated by the

sum of the estimate and ẑ2 (W∞ (10, 0.01)).

IV. CONCLUSIONS

We have presented a disturbance observer-based predictive

functional critical control method for the position control

of a table drive system. The proposed method can handle

constraints on the responses without on-line optimization, so

that the advantage of PFC is still retained. The experimental

results show that the designed DOB-PFCC controller satisfies

the constraints on the tracking error and PFC controller output.
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