
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:2, 2011

216

Abstract—In today scenario, to meet enhanced demand imposed
by domestic, commercial and industrial consumers, various
operational & control activities of Radial Distribution Network
(RDN) requires a focused attention. Irrespective of sub-domains
research aspects of RDN like network reconfiguration, reactive
power compensation and economic load scheduling etc, network
performance parameters are usually estimated by an iterative process
and is commonly known as load (power) flow algorithm. In this
paper, a simple mechanism is presented to implement the load flow
analysis (LFA) algorithm. The reported algorithm utilizes graph
theory principles and is tested on a 69- bus RDN.

 Keywords—Radial Distribution network, Graph, Load-flow,
Array.

I. INTRODUCTION

ENERALLY, radial distribution system (RDS) has high
R/X ratio. Due to this conventional load flow algorithm

[1,2] shows convergence problem. Some researchers try to
address high R/X ratio of RDN and suggested some modified
load flow algorithm. However it fails to converge for some
cases. Baran and Wu [3], proposed a Newton rapson based
load flow analysis, but it requires large number of
computation due to involvement of Jacobin matrix. In most of
the reported studies so far in literature are based upon
forward-backward sweep mechanism. Moving from substation
to towards leaf is called forward approach and moving form
leaf to towards substation is called backward approach.
According to various reported studies; these two mentioned
schemes used by many researchers. According to Nanda et. al
reported work [4], branch current is calculated by using
reverse sweep approach and a separate reverse sweep is
required for individual branch, so this repetition shows the
inefficiency of this method. Mok et. al suggested [5] that, in
order to calculate a branch current, reverse sweep is used till
the concern branch arrives. Arvindhababu et. al have [6] used
matrix with reverse sweep for the branch current computation.
So in this approach the use of matrix gives improper use of
memory. Venkatesh et.al reported load flow study [7], in this
reported work author exploit tree like structure of RDN with
efficient use of dynamic
datastructure. However, it uses so many recursive calls for
voltage calculation makes it inefficient. Prasad et al suggested

D.P.Sharma is with the National Institute of Technology Karnataka,
Surathkal- 575025, India; (e-mail: dps158@ rediffmail.com).
A.Chaturvedi, is with the National Institute of Technology Karnataka,
Surathkal- 575025, India; (e-mail: ashvini@nitk.ac.in).
G.N.Purohit is with the Banasthali University, Rajasthan-304022, India (e-
mail: gn_purohitjaipur@yahoo.co.in).
R.Shivarudraswamy is with the National Institute of Technology Karnataka,
Surathkal- 575025, India; (e-mail: swamysrs@ rediffmail.com).

a simple algorithm for load flow Analysis [8]. In this work,
author exploits the properties of tree with efficient use of data
structure. However, it is based upon an inefficient procedure
for finding leaf node, and same procedure when used
repeatedly in convergence loop, further made it more
inefficient. The present paper describes a new efficient load
flow algorithm. Due to tree type structure of RDN, it can be
modeled as graph and finally adjacency list is used for the
efficient representation of RDN in computer memory.
This proposed algorithm built individual leaf node structure
for each leaf (terminal) node present in the RDN network. In
this proposed work, authors have used the mathematical
treatment for load flow analysis as given in [8].

II. LOAD FLOW ANALYSIS DESIGN

Based upon graph –theoretical approach, the
implementation of proposed algorithm is presented on
modular basis in various subsections. Initially, a given RDN is
represented as a directed weighted graph G (V, E) with set of
vertices (V) and edges (E); the modeling of a RDN as an
equivalent graph is presented in section A. The proposed LFA
algorithm makes use of BFS algorithm [9] to create two
arrays, here after referred as Leaf Node Structure (LS) array
and Universal Junction node (UJ) array and the formulation of
these two arrays are discussed in section B. Using reduction
module, the molded graph (network) is further reduced into
more simple and small graph and is presented in section C.
The proposed LFA algorithm’s pseudo code is reported in
section D, which calls reduction module repeatedly until the
RDN transformed into a single branch (line) network.

A.Graphical Modeling Of Rdn

The substation, load buses (nodes) and branches of a RDN
are represented by vertices (V) and edges (E) respectively in
modeled directed weighted Graph, G. The index (name to
edge) assign to the edges of the graph is same as the
corresponding branch number in a RDN. Generally, two
approaches are used for graph representation, and these are
adjacency matrix and adjacency list. In this proposed work,
approach based on adjacency list is used. For N- node RDN,
adjacency list is an array of length N denoted by Adj [V] ,
where V=1,2…..N. The each element of array Adj [V],
represents a vertex of graph G, points to a list of its adjacent
nodes. Each node in the list corresponds to one successor of
vertex V and every node has four fields. The first field of the
node represented by A, stores node adjacent to the node V.
The second field represented by B and third field represented
by C stores index (label) assigned to the incoming and

D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy

Distributed Load Flow Analysis using Graph
Theory

G

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:2, 2011

217

outgoing edge, corresponding to the node V respectively.
When V represents a main substation then the value of field B
is zero, as there is no incoming edge and using the same logic
way if V represents leaf (terminal) node then the value of C is
zero, as there is no outgoing edge from V .The fourth field
denoted as D points to the next node if any more node is
adjacent to V, otherwise it stores a null value. Adjancey list
representation of one example RDN (Fig. 1a) is shown in Fig.
1b. In Fig 1b, for node number 2, i.e. Adj [2].B is x1 and also
Adj [2].C is x7 and x2. Although, on traversing towards leaf
nodes either of these two nodes, i.e. x2 or x7 is considered as
a successor at a time.

Fig. 1(a) Fig. 1(b)

B Leaf Node Structure and Universal Junction Nodes

BFS algorithm is used in the proposed scheme to estimate
LS and UJ for a given RDN (Graph). The definition of LS and
UJ arrays are defined in the following section.

B.1. LEAF NODE STRUCTURE
LS is a record which has following four fields.
(a) Leaf node says L.
(b) Path of the leaf node (the path from leaf node to the root
node) i.e. An array of path vertices say P.
(c) It is an array of those nodes/vertex in current path P whose
out degree is more than one say J.
(d) Branch Current for which leaf act as source i.e. say Cleaf
whose initial value is zero.
For example, if we apply BFS algorithm for fig1a , it returns
three LSs corresponding to each leaf. The details of all the
field of one of the LS say for leaf 7 are as follows:
(1) L=7; (2) Path =7�6�3�2�1 i.e. P= [7, 6, 3, 2,
1]
(3) J= 3, 2 (4) Cleaf=0

B.2. Universal Junction Nodes
It is an array of nodes whose outgoing degree is more than
one in the whole network. So BFS will return array UJ=[3, 2].

C. Reduction
The main objective of this reduction is to reduce the

number of Leaf node structures (LSs). This is done by
selecting two or more leaf node structures whose junction
nodes are common i.e. it is a function which takes two or
more Leaf node structures as input, based upon common
junction nodes and reduces into a single node structure with
creating a virtual leaf node. All the four attributes of leaf node
structure, for this virtual leaf is same as described in section
B.1. To understand the reduction process, a graph is taken
with nine nodes as shown in the Fig.1a .Initially the three LS
are identified corresponding to each leaf present in the Graph
G. In the first iteration of the reduction process, two leaf
structures corresponding to common junction node say 3 in
our graph are identified as an input to reduction process. To
reduce the graph, it will take one LS at a time and compute
branch currents from the leaf node to the node whose level is
one less than the junction node. This process is repeated in for
all other remaining input LSs. The next step is to sum up all
the branch currents that lie beneath the junction node. The
node 3 in the given Fig.2 is called as Virtual leaf node as it is
obtained by the reduction process whose brief algorithm is
stated below

 Fig.2

REDUCTION (Leaf Structures, UJ)
// i=It is a variable that tell current considered LNS such that 1 ≤ i ≤
No_of _LNS pass as an input for the reduction process. So LNSi will
represent different LNS for different values of i.
// j=It work as array index for P attribute in selected LNS. So LNSiPj
will give one of the vertex in Graph corresponding unique
combination of values of variables i and j.
// IBR and IL represents the branch and load currents.
// Temp variable used in summing up all the branch currents that lie
beneath the junction node.

Temp=0;
for i=1 to no _of_ Leafstructure
{
 for j=1 to no_of_element_in_LNSiP
 {
 if(LNSiPj+1 ==UJ)
 break;

If (j==1) //\\ current of branch for which leaf act as a
sink

 {

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:2, 2011

218

 IBR (Adj[LNSiPj].B)=IL(Adj[LNSiPj]) + LNSiCleaf ;
 }
 else
 {
 IBR (Adj[LNSiPj] .B) =IL(Adj[LNSiPj]) + IBR
(Adj[LNSiPj] .C) ;
 }
 } //\\ end of Inner for loop
//\\ following code used for summing up all the branch
currents that lie beneath the junction node.

If (j==1) //\\ current of branch for which leaf act as a sink
 {
 IBR (Adj[LNSiPj].B)=IL(Adj[LNSiPj]) + LNSiCleaf ;
 Temp=Temp+ IBR (Adj[LNSiPj] .B)
 }
 else
 {
 IBR (Adj[LNSiPj] .B) =IL(Adj[LNSiPj]) + IBR
(Adj[LNSiPj] .C) ;
 Temp=Temp+ IBR (Adj[LNSiPj] .B)
 }
 }//\\ end of outer for loop

D. Code for Distributed Load Flow Analysis

1. Initialization of Variables
V[i] = Vold[i] = 1.0 for i=2… N; // Initial guess for the
 node voltages of RDS
IBR [j] = 0 for j= 1,…,Nb //Initial guess for the

 branch currents; Nb = N-1
2. Calculate Leaf node Structures and Universal Junction node i.e. J

by Running BFS on RDN/Graph with starting root.i.e from the
Main station of RDN.

3. Select LNSs for reduction with the help of UJ.
4. Call Reduction function with Leaf Node structures identified at

in previous steps.
5. Built the LNS for virtual Leaf Node and then update the no of

LNS, UJ.
6. If no of Leaf Node Structure ≥2 then go to Step 1
7. Calculate the branch currents in last remaining LNS.
8. Calculate node voltage and check convergence condition defined
 as in [8].If convergence condition satisfied then stop otherwise
 goto step 3.

III. SIMPLIFIED COMPLEXITY ANALYSIS OF ALGORITHM
A simplified Analysis of Time and space complexity of

Algorithm is briefed as:
A. Time Complexity: The proposed load flow analysis has been
described in 8 steps. The steps No. 1,2,3,5,6, and 8 are
representing constant time operation. Remaining steps 4 and 7
are liner time operation. So the overall time complexity for
above discussed Load flow analysis method is order of O (n).
B. Space Complexity: The Adjacency List stores data about
nodes and edges. Since there are no recursions and dynamic
memory allocations, it is apparent that the space complexity is
linear.

IV. TEST RESULT
To test the efficiency of the proposed algorithm, 33-bus and

69 bus RDN are considered. System data for 33 bus and 69
bus system are available in [6] and [8]. The proposed
algorithm took 300 and 800 steps execution for 33 bus and 69
bus system RDN system respectively for converge solution.
Table 1 illustrates the computational efficiency of the
proposed LFA and Table 2 represents converge voltage of 69
RDN system.

TABLE I
COMPARISON OF STEPS COUNTS BETWEEN THE PROPOSED
ALGORITHM (♣) AND THE ALGORITHM PROPOSED IN [8]

Method 33-bus RDN 69-bus RDN

Proposed 300 approx. 800 approx.

Prasad[8] 9600 approx. 42500 approx.

V. CONCLUSION
In the proposed idea, concept of graph theory is been

utilized for better performance. The proposed LFA algorithm
utilizes adjacent list concept for representing RDN.
Observation done from the result stored in Table 1 indicating
the remarkable saving in the steps of execution to get
converge load flow solutions. It is also worth mentioning that
the savings further improves when the network’s size
increases. The time complexity of proposed LFA is order n
i.e. O (n).

REFERENCES
[1] W.F Tinny and C.E. Hart, “Power flow solution of the Newton Method”,

IEEE Transactions, PAS-86, 1967, pp. 1449-1456.
[2] B. Scott and O. Alsac, “Fast decoupled load flow”, IEEE Transactions,

PAS-93, 1974, pp. 859-869.
[3] M.E. Baran and F. F.Wu, “Optimal capacitor placement on radial

distribution systems”, IEEE Transactions on Power Delivery, Vol. 4, No.
1, 1989, pp. 725-734..

[4] J. Nanda, M.S. Srinivas, M. Sharma, S.S. Dey, L.L. Lai, “New findings
on Radial Distribution system load flow algorithms”, Proc. IEEE
conference, 2000, pp. 1157-1161.

[5] S. Mok, S. Elangovan, C. Longjian, M. M. A. Salama, “A new approach
for power flow analysis of balanced distribution systems” Electric
Machines and Power Systems, Vol. 28, 2000, pp. 325-340.

[6] P. Aravindhababu, S. Ganapathy, K.R.Nayar, “ A novel technique for
the analysis of radial distribution systems”, International Journal of
Electrical Power and Energy Systems, Vol. 23, 2001, pp. 167-171.

[7] B. Venkatesh and R. Ranjan ,” Data structure for radial distribution
system load flow analysis “, IEE Proc.-Gener. Transm. Disirih. Vol. 150.
No 1. Junuory 2003.

[8] K. Prasad, N. C. Sahoo, A. Chaturvedi and R. Ranjan “A simple
approach in branch current computation in load flow analysis of radial
distribution systems”, IJEEE - International Journal for Electrical
Engineering Education, Vol.44/1, PP: 49-63, January 2007.

[9] Cormen T. H., C.E. Leiserson, and R.L Rivest, Introduction to
Algorithms,Prentice-Hall of India Pvt.Ltd.,New Delhi,2001

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:2, 2011

219

TABLE II
COMPARISON OF LOAD FLOW RESULTS FOR 69-NODE RDN BETWEEN THE PROPOSED ALGORITHM (♣) AND THE ALGORITHM PROPOSED IN [8]

Node
Number

Voltage Magnitude
(♣) (p.u.)

Voltage Magnitude [8]
(p.u.)

Node
Number

Voltage Magnitude (♣)
(p.u.)

Voltage Magnitude [8]
(p.u.)

1 1.00000 1.00000 36 0.99992 0.99992
2 0.99997 0.99997 37 0.99975 0.99975
3 0.99993 0.99993 38 0.99959 0.99959
4 0.99984 0.99984 39 0.99954 0.99954
5 0.99902 0.99902 40 0.99954 0.99954
6 0.99008 0.99009 41 0.99884 0.99884
7 0.98079 0.98079 42 0.99855 0.99855
8 0.97857 0.97858 43 0.99851 0.99851
9 0.97744 0.97744 44 0.99850 0.99850
10 0.97243 0.97244 45 0.99841 0.99841
11 0.97131 0.97132 46 0.99840 0.99840
12 0.96814 0.96816 47 0.99979 0.99979
13 0.96521 0.96523 48 0.99854 0.99854
14 0.96231 0.96233 49 0.99469 0.99470
15 0.95943 0.95946 50 0.99415 0.99415
16 0.95890 0.95893 51 0.97854 0.97854
17 0.95802 0.95805 52 0.97853 0.97853
18 0.95801 0.95804 53 0.97465 0.97466
19 0.95754 0.95757 54 0.97141 0.97141
20 0.95724 0.95727 55 0.96693 0.96694
21 0.95676 0.95679 56 0.96256 0.96257
22 0.95675 0.95678 57 0.94004 0.94010
23 0.95668 0.95671 58 0.92894 0.92904
24 0.95652 0.95656 59 0.92464 0.92476
25 0.95635 0.95638 60 0.91958 0.91974
26 0.95628 0.95631 61 0.91217 0.91234
27 0.95626 0.95629 62 0.91188 0.91205
28 0.99993 0.99993 63 0.91149 0.91167
29 0.99985 0.99985 64 0.90958 0.90977
30 0.99973 0.99973 65 0.90901 0.90919
31 0.99971 0.99971 66 0.97125 0.97126
32 0.99961 0.99961 67 0.97125 0.97126
33 0.99935 0.99935 68 0.96781 0.96783
34 0.99901 0.99901 69 0.96781 0.96782
35 0.99895 0.99895

