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Abstract—The dissolution of spherical particles in liquids is 

analyzed dynamically.  Here, we consider the case the dissolution of 
solute yields a solute-free solid phase in the outer portion of a particle.  
As dissolution proceeds, the interface between the undissolved solid 
phase and the solute-free solid phase moves towards the center of the 
particle.  We assume that there exist two resistances for the diffusion 
of solute molecules: the resistance due to the solute-free portion of the 
particle and that due to a surface layer near solid-liquid interface.  In 
general, the equation governing the dynamic behavior of dissolution 
needs to be solved numerically.  However, analytical expressions for 
the temporal variation of the size of the undissoved portion of a 
particle and the variation of dissolution time can be obtained in some 
special cases.  The present analysis takes the effect of variable bulk 
solute concentration on dissolution into account. 
 

Keywords—dissolution of particles, surface layer, shrinking core 
model, dissolution time.  

I. INTRODUCTION 
HE dissolution of solid particles in liquids can roughly be 
described by two process in series: the escape of solute 

molecules from the solid surface and the diffusion of these 
molecules toward the bulk liquid phase.  Depending on the 
operating condition, the rate of dissolution may be controlled 
by one of these two steps [1],[2].  A model often used for the 
description of the transport of solute molecules to the bulk 
liquid phase is the film theory proposed by Sherwood et al [3].  
This approach provides a convenient way of describing the 
dynamic phenomenon under consideration.  However, since the 
concentration of solute in the bulk liquid phase is assumed 
constant, it is most appropriate for the case of low solubility.  
By assuming that the bulk liquid phase is stagnant and of 
infinite size, Chen and Wang [4] have derived an analytical 
expression for the variation of dissolution time as a function of 
the concentration of solute in the bulk liquid phase.  For the 
dissolution of particles comprise inorganic and electrochemical 
materials, the method of invariant functions is often adopted for 
the description of its dissolution kinetics [5].  

In some cases, the solubility of only one of the components 
contained in the solid phase is appreciable compared with the 
rest components.  In these cases, if the amount of the dissolving 
component is limited, the appearance of the solid phase will 
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remain essentially unchanged during the course of dissolution.  
As dissolution proceeds, the undissolvable solid phase provides 
a resistance for the diffusion of solute molecules toward the 
bulk liquid phase.  This can be advantageous in practical 
applications.  A well-known example is the controlled-release 
of an active agent in drug [6] and fertilizer [7] where the 
resistance due to the undissolvable solid is utilized to maintain 
the dissolution rate on a certain favorable level. 

The purpose of this report is to examine the dynamic behavior 
of the dissolution of solid particles in liquids.  In particular, we 
are interested in the case the dissolution yields a solute-free 
solid phase.  An attempt is made to take the effect of finite bulk 
liquid on dissolution into account.  The mathematical 
representation thus obtained us not limited to the magnitude of 
solubility. 

 
Fig. 1 A schematic representation of the dissolution phenomenon 

under consideration 

II. ANALYSIS 
By referring to Fig. 1, we assume that there exists a surface 

layer near the surface of a spherical particle.  Also, the 
dissolution of solute yields a solute-free solid phase on the 
outer portion of the particle.  As dissolution proceeds, the 
interface between the undissolved solid phase and the 
solute-free solid phase moves towards the center of the particle.  
The dissolution of solute consists of three steps in series: (i) 
Diffusion of solute molecules from the solid-solid interface 
through the solute-free portion of the particle to the solid-liquid 
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interface.  (ii) Diffusion of solute molecules from the 
solid-liquid interface through the surface layer to the outer 
boundary of the surface layer.  (iii) Diffusion of solute 
molecules from the outer boundary of the surface layer to bulk 
liquid phase.  Suppose that the concentration of solute on the 
solid-solid interface is at saturation.  On the basis of these 
assumptions, a solute balance over the solute-free portion of the 
particle and the surface layer region yields, respectively, 
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where C denotes the concentration of solute, t is time, D1 and 
D2 are respectively, the effective diffusivity of solute in the 
solute-free solid phase and the diffusivity of solute in the 
surface layer, r0 and rc are, respectively, the radius of the 
particle and the radius of core, δ  is the thickness of the surface 
layer, and r is the distance measured from the center of the 
particle.  If the diffusion rate of solute is much greater than the 
rate of moving of the solid-solid interface towards the center of 
the particle, a pseudo-steady state can be assumed.  In this case, 
(1) and (2) reduce to, respectively, 
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Integrating these two equations, subject to the conditions C=Ce 
at r=rc, C=Cs at r=r0, and C=Cb, at r=r0+δ , we obtain 
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where Ce, Cs, and Cb represent the concentrations of solute at 
dissolving front, at the solid-liquid interface, and in the bulk 
liquid phase, respectively.  At the solid-liquid interface, we 
have 
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where S denotes the surface area of the particle.  By referring to 
(5) and (6), this expression becomes 
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Solving this expression for Cs, we obtain 
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where η =D2/D1.  Let m be the number of moles of solute 
contained in the solid particle.  At pseudo-steady state, we have 
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Integrating this equation with respect to r, subject to the 
boundary conditions C=Ce at r=rc and C=Cs at r=r0, yields 
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Substituting (9) into this expression and noting that 

Mrm c 3/4 3ρεπ= , we have 
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where M denotes the molecular weight of solute, ρ  is the 
density of particle, and ε  is the weight fraction of solute. 
 

A. Constant Bulk Concentration  
If the volume of the bulk liquid phase V is large enough, the 

concentration of solute in the bulk liquid phase is essentially 
constant.  Denote this concentration as C0.  For convenience, 
(12) nondimensionlized as 
 

*
*

*
*2* )]()([ C

dt
dr

rPr c
cc ηηη −=+−                                         (13) 

 
where 
 

nrCCVMC e επρ 3
00

* 4/)(3 −=                                            (13a) 
 

0
* / rδδ =                                                                          (13b) 

 
)1/(11 *δ+−=P                                                                (13c) 

 

0
* / rrr c=                                                                           (13d) 

 
VnrtDt 3/4 01

* π=                                                             (13e) 
 
where n is the number of particles.  Solving (13), subject to the 
initial condition *

cr =1 at *t =0, we obtain 
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*2*3** /]}2/)1([]3/))(1{[( CrPrt cc ηηη −+−−−=            (14) 
 
This equation describes implicitly the variation of the radius of 
a particle as a function of time. 
 

B. Variable Bulk Concentration  
If the volume of the bulk liquid phase is finite, the variation 

of the bulk liquid concentration is 
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The variation of C as a function of r at pseudo-steady state can 
be obtained by integrating (5) and (6) with the conditions C=Ce 
at r=rc, C=Cs at r=r0, and C=Cb at r=r0+δ .  The results are 
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Substituting (16) and (17) into (15), we obtain 
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Substituting Cs from (9) into (17a) through (17d) and 
substituting the resultant expressions into (18), we have 
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In these expression, 
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Substituting (19) into (12), gives 
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Special cases 

If 1/ 0 <<rδ , then (15) reduces to 
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If Ce<< M/ρε  and 1/ 0 <<rδ , then 
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Substituting this expression into (12), we obtain, after 
simplification, 
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Solving this equation, subject to the initial condition *

cr =1 at 
*t =0, we obtain 
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where 1*3 −= Cα . 
 

C. Dissolution Time  
The dimensionless time required to dissolve a particle, or the 

dimensionless dissolution time, *
dt , can be evaluated by letting 

*
cr =0 in either (14) or (24).  We have, for the case of constant 

bulk concentration 
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and for the case of variable bulk concentration with Ce << 

M/ρε  and 1/ 0 <<rδ  
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D. Solid Phase Diffusion Control  
If η  >> 1 (or D2 >> D1), the diffusion resistance due to 

surface layer is negligible.  By following the similar procedure 
as that employed for the derivation of (14) through (26), it can 
be shown that, for the case of constant bulk concentration, 
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for the case of variable bulk concentration with Ce << M/ρε  
and 1/ 0 <<rδ . 
 

E. Surface Layer Diffusion Control  
The definition of η  suggests that if η  << 1 (or D2 << D1), the 

diffusion resistance is mainly due to surface layer.  It can be 
shown that, for the case of constant bulk concentration, 
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where VnrtDt 3/4' 02
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dt  is the dimensionless 

dissolution time.  For the case of variable bulk concentration 
with Ce<< M/ρε  and 1/ 0 <<rδ , we have 
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Fig. 2 Simulated temporal variation of the radius of the undissolved 
solid phase for the case *δ =0.1, *V =100, η =0.5, C0=0, and C*=3.  

Solid curve: constant bulk concentration, (14); long dash curve: 
variable bulk concentration with Ce << M/ρε  and 1/ 0 <<rδ , (23); 

short dash curve: variable bulk concentration, (20) 

III. RESULTS AND DISCUSSION 
Fig. 2 shows the simulated variation of the radius of the 

undissolved solid phase as a function of time.  As can be seen 
from this figure, the dissolution is faster for the case of constant 
bulk liquid concentration than for the case of variable bulk 
liquid concentration.  This is due to the decrease of 
concentration driving force during the course of dissolution for 
the latter.  In a study of the controlled-release of progesterone 
from microcapsules, Gupta and Sparks [8] have derived a 
kinetic expression similar to (24).  In their mathematical 
formulation, the solute distributed in the region [rc, r0+ δ ] is 
neglected.  As can be seen from Fig. 2, neglecting the solute 
contained in this region may lead to an appreciable error. 

The variation of dissolution time as a function of 
concentration difference is shown in Fig. 3.  As suggested by 
(13a), for a fixed solid-liquid combination, C* increases with 
the increase of V.  Thus, C* is a measure of the relative 
significance of the variation of solute concentration in the bulk 
liquid phase.  The greater the C*, the less significant the 
variation of the solute concentration in the bulk liquid phase.  
Figure 3 reveals that if C* is on the order of 10, the variation of 
the solute concentration in the bulk liquid phase is negligible.  
In other words, if (Ce-C0)> VMnr 3/40 3

0 ρεπ , the assumption of 
constant bulk concentration is appropriate in estimating the 
dissolution time of a particle.  Note that the solute contained in 
the region [rc, r0+ δ ] have a significant effect on dissolution 
time for small C*. 

The variation of dissolution time as a function of 
concentration different values of for the case *δ =0.3 is shown 
in Fig. 4.  As suggested by the definition of )/( 12 DD=η , if η  
is small, the dissolution is surface layer diffusion 
controlled-release, a specific material is often coated on the 
surface of a particle to reduce the rate of dissolution.  Here, the 
coated solid plays the role of the surface layer of this study and 
D2 is interpreted as the effective diffusivity of solute in the 

coated material.  The analysis is essentially the same as that 
presented in the present study. 

 

 
Fig. 3 Variation of dissolution time as a function of concentration 

difference.  Solid curve: constant bulk concentration, (25); long dash 
curve: variable bulk concentration with Ce << M/ρε  and 1/ 0 <<rδ , 
(26); short dash curve: variable bulk concentration with Ce << M/ρε  

and 1/ 0 <<rδ  not satisfied 
 

 
Fig. 4 Variation of dissolution time as a function of concentration 

difference for different values of for the case *δ =0.3, *V =100, and 
C0=0.  Solid curve: (26); long dash curve: (30); short dash curve: (34).   

(a): η =0.05; (b): η =1; (b): η =5 

APPENDIX 
If 1/ 0 <<rδ , then 
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By referring to (15) in the text, we have 
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Therefore if Ce<< 
M
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