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Dispersion of a Solute in Peristaltic Motion of a
Couple Stress Fluid through a Porous Medium with

Slip Condition
Habtu Alemayehu and G. Radhakrishnamacharya

Abstract—The paper presents an analytical solution for disper-
sion of a solute in the peristaltic motion of a couple stress fluid
through a porous medium with slip condition in the presence of both
homogeneous and heterogeneous chemical reactions. The average
effective dispersion coefficient has been found using Taylor’s limiting
condition and long wavelength approximation. The effects of various
relevant parameters on the average coefficient of dispersion have been
studied. The average effective dispersion coefficient tends to increase
with permeability parameter but tends to decrease with homogeneous
chemical reaction rate parameter, couple stress parameter, slip param-
eter and heterogeneous reaction rate parameter.

Keywords—Dispersion, Peristalsis, Couple stress fluid, Porous
medium, Chemical reaction, Slip condition.

I. INTRODUCTION

D ISPERSION (or diffusion) of a solute describes the
spread of particles through random motion from regions

of higher concentration to regions of lower concentration. The
fluid mechanical aspects of dispersion of a solute received
the attention of some investigators in the last few decades.
The dispersion of a solute in a viscous liquid flowing in a
circular pipe under laminar conditions was studied by Taylor
[1]–[3] and Aris [4]. Studies reveal that in a wide variety of
problems of chemical engineering, diffusion of a solute takes
place with simultaneous chemical reaction in situations such
as hydrolysis, gas absorption in an agitated tank, esterifica-
tion, etc. (Padma and Ramana Rao [5]). Hence, Padma and
Ramana Rao [5], Gupta and Gupta [6] and Ramana Rao and
Padma [7]- [8] dealt with the effect of chemical reaction on
dispersion in Newtonian fluids. Dutta et al. [9], Soundalgekar
and Chaturani [10] and Shukla et al. [11] studied dispersion in
non-Newtonian fluids by considering only homogeneous first-
order chemical reaction in the bulk of the fluid. Further, a
number of authors have studied the dispersion of a solute
in a porous medium under different conditions (Dulal [12],
Mehta and Tiwari [13]). Porosity has various physiological
applications such as the flow of blood in the micro-vessels of
the lungs which may be treated as a channel bounded by two
thin porous layers (Misra and Ghosh [14]).

Peristalsis is a mechanism of fluid transport that occurs
widely in several physiological situations such as flow through
ureter, mixing of food and chyme movement in the intestine,
movement of eggs in the fallopian tube, transport of the
spermatozoa in the cervical canal, transport of bile in the bile
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duct, transport of cilia, and circulation of blood in small blood
vessels. There are also many other important applications of
peristalsis such as the design of roller pumps and finger pumps
which are used to transport blood or corrosive fluids. Peristaltic
transport of Newtonian fluids has been studied by Fung and
Yih [15], Shapiro et al. [16], and Misra and Pandey [17] under
different conditions.

It is well known that most physiological fluids including
blood behave as non-Newtonian fluids. Hence, the study of
peristaltic transport of non-Newtonian fluids may help to get
better understanding of the working biological systems. Moti-
vated by this, several researchers studied peristaltic transport
of non-Newtonian fluids ( Misra and Ghosh [14], Radhakrish-
namacharya [18], Misra and Pandey [19], Ramachandra Rao
and Mishra [20]).

Couple stress fluids are fluids consisting of rigid, randomly
oriented particles suspended in a viscous medium. Couple
stress fluid is known to be a better model for bio-fluids, such
as blood, lubricants containing small amount of high polymer
additive, electro-rheological fluids and synthetic fluids. The
main feature of couple stress fluids is that the stress tensor
is anti-symmetric and their accurate flow behavior cannot
be predicted by the classical Newtonian theory. Stokes [21]
generalized the classical model to include the effect of the
presence of the couple stresses and this model has been widely
used because of its relative mathematical simplicity (Islam
and Zhou [22]). For couple stress fluids, there have been a
number of studies carried out due to its widespread industrial
and scientific applications, such as the works of Stokes [21],
Srivastava [23], Mekheimer and Abd elmaboud [24] and Sobh
[25].

Problems that involve slip boundary conditions would be
useful models for flows through pipes in which chemical reac-
tions occur at the walls, flows with laminar film condensation,
certain two phase flows and flows in porous slider bearings
(Terrill [26]). Curiously enough, there are two extremely
different types of fluids which appear to slip. One class
contains the rarefied gases (Kwang and Fang [27], Bhatt and
Sacheti [28]) and the other fluids with much elastic character.
In such fluids, some slippage occurs under a large tangential
traction. It has been claimed that slippage can occur in non-
Newtonian fluids, concentrated polymer solution and molten
polymer. Further, in the flow of dilute suspensions of particles,
a clear layer is sometimes observed next to the wall (Sobh
[25]). Consequently, from a macroscopic viewpoint, there can
be seen a slip velocity at the porous wall and the velocity
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Fig. 1. Geometry of the problem.

gradient changes across the interface (Suga et al. [29]).
Dispersion of a solute in peristaltic motion of a couple

stress fluid through a porous medium with slip condition
has not received much attention. Peristalsis, diffusion and
porosity are very important aspects in biological, chemical,
environmental and bio-medical processes (Paul [30]). It is
realized that peristalsis may have effect on dispersion of a
solute in fluid flow. This, in turn, may help in better absorption
of nutrients and drugs in physiological systems. Hence, the
study of the interaction of peristalsis with diffusion under
different conditions particularly under slip condition may lead
to better understanding of the flow situation in physiological
systems. In this paper, dispersion of a solute in peristaltic
motion of a couple stress fluid through a porous medium
with slip condition is investigated. Using long wavelength
approximation and Taylor’s approach, closed form solution has
been obtained for the dispersion coefficient for both the cases
of homogeneous first-order irreversible chemical reaction and
combined first-order homogeneous and heterogeneous chem-
ical reactions. The effects of various relevant parameters on
the average effective dispersion coefficient are studied.

II. MATHEMATICAL FORMULATION

Consider the dispersion of a solute in peristaltic flow of
couple stress fluid in an infinite uniform channel of width 2d.
It is assumed that the channel is filled with porous material.
Further, the walls of the channel are supposed to be flexible
on which traveling sinusoidal waves of long wavelength are
imposed. Cartesian coordinate system (x, y) is chosen with
the x-axis aligned with the center line of the channel. The
traveling waves are represented by (Fig.1)

y = ±h = ±
[
d+ a sin

2π

λ
(x− ct)

]
(1)

where a is the amplitude, c is the wave speed and λ is the
wavelength of the peristaltic wave.

Under long wavelength approximation and neglecting body
forces and body couples, the equations governing the peri-
staltic motion of incompressible couple stress fluid through a

porous medium for the present problem are given as

∂u

∂x
+

∂v

∂y
= 0 (2)

−∂p

∂x
+ μ

∂2u

∂y2
− η

′ ∂4u

∂y4
− μ

k0
u = 0 (3)

−∂p

∂y
= 0 (4)

where u(x, y, t) and v(x, y, t) are the velocity components
in the x and y directions respectively, μ is the viscosity
coefficient of classical fluid dynamics, η

′
is the couple stress

viscosity and k0 is permeability of the medium.
We assume that the walls are inextensible so that only lateral

motion takes place and the horizontal displacement of the wall
is zero. Thus, the relevant boundary conditions for the velocity
are given by

u = −d
√
Da

α1

∂u

∂y
at y = ±h (5)

∂2u

∂y2
= 0 at y = ±h (6)

where (5) is the Saffman’s slip boundary condition (Bhatt
[28]), Da is the permeability parameter (or Darcy number)
and α1 is the slip parameter.

Solving (2)-(4) under the boundary conditions (5) and (6),
the velocity is given as

u(y) = −k0
μ

∂p

∂x
[R2 cosh(m

∗
1y)−R1 cosh(m

∗
2y) + 1] (7)

where

m∗
1 =

√√√√ μ

2η′

(
1 +

√
1− 4η′

μk0

)
,m∗

2 =

√√√√ μ

2η′

(
1−

√
1− 4η′

μk0

)

R1 =
(m∗

1)
2 cosh(m∗

1h)

a∗1 − a∗2
, R2 =

(m∗
2)

2 cosh(m∗
2h)

a∗1 − a∗2
,

a∗1 = (m∗
1)

2 cosh(m∗
1h)

[
cosh(m∗

2h) +
d
√
Da

α1
m∗

2 sinh(m
∗
2h)

]
,

a∗2 = (m∗
2)

2 cosh(m∗
2h)

[
cosh(m∗

1h) +
d
√
Da

α1
m∗

1 sinh(m
∗
1h)

]
.

Further, the mean velocity is defined as

ū =
1

2h

∫ +h

−h
u(y)dy. (8)

Substituting (7) in (8) we get,

ū = −k0
μ

∂p

∂x

[
R2

m∗
1h

sinh(m∗
1h)−

R1

m∗
2h

sinh(m∗
2h) + 1

]
.

(9)
If we now consider convection across a plane moving with the
mean speed of the flow, then relative to this plane, the fluid
velocity is given by
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ux = u− ū

= −k0
μ

∂p

∂x
[R2 cosh(m

∗
1y)−R1 cosh(m

∗
2y)

− R2

m∗
1h

sinh(m∗
1h) +

R1

m∗
2h

sinh(m∗
2h)

]
. (10)

A. Diffusion with a Homogeneous First-order Chemical Re-
action

It is assumed that a solute diffuses and simultaneously un-
dergoes a first order irreversible chemical reaction in peristaltic
transport of a couple stress fluid in a channel filled with porous
material. Assuming isothermal conditions and ∂2C

∂x2 << ∂2C
∂y2 ,

the equation for the concentration C of the solute for the
present problem satisfies the diffusion equation

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
− k1C (11)

where D is the molecular diffusion coefficient and k1 is the
first order reaction rate constant.

For typical values of physiologically relevant parameters of
this problem, it is realized that ū ≈ c. Using this condition
and following Taylor [1]–[3], we assume partial equilibrium
is maintained and then making use of the following dimen-
sionless quantities

θ =
t

t̄
, t̄ =

λ

ū
, η =

y

d
, ξ =

x− ūt

λ
, H =

h

d
, (12)

equation (10) reduces to

ux =
k0
μ

∂p

∂x
[R2 cosh(m1η)−R1 cosh(m2η)

− R2

m1H
sinh(m1H) +

R1

m2H
sinh(m2H)

]
(13)

where

m1 = m∗
1d =

√√√√m2

2

(
1 +

√
1− 4

m2Da

)
, a1 = a∗1d

2,

m2 = m∗
2d =

√√√√m2

2

(
1−

√
1− 4

m2Da

)
, a2 = a∗2d

2,

m = d(μ/η
′
)1/2, Da =

k0
d2

,

and m is the couple stress parameter.
Further, (11) becomes

∂2C

∂η2
− k1d

2

D
C =

d2

λD
ux

∂C

∂ξ
. (14)

Assuming that there is no absorption at the walls, the boundary
conditions for the concentration C are
∂C

∂η
= 0 for η = ±H = ±[1 + ε sin(2πξ)] (15)

where ε = a/d is the amplitude ratio.

Assuming that ∂C/∂ξ is independent of η at any cross-
section and solving (14) under the boundary conditions (15),
the solution for the concentration of the solute C is given as

C(η) = A cosh(αη)− d2

λD

∂C

∂ξ

k0
μ

∂p

∂x

{
R2

m2
1 − α2

cosh(m1η)

− R1

m2
2 − α2

cosh(m2η) +
R2

α2m1H
sinh(m1H)

− R1

α2m2H
sinh(m2H)

}
(16)

where

A =
d2

λD

∂C

∂ξ

k0
μ

∂p

∂x

1

L

[
m1R2

m2
1 − α2

sinh(m1H)− m2R1

m2
2 − α2

sinh(m2H)

]
,

(17)
L = α sinh(αH) and α = d(k1/D)1/2.

The volumetric rate Q at which the solute is transported
across a section of the channel of unit breadth is defined by

Q =

∫ +H

−H
Cuxdη. (18)

Substituting (16) and (13) in (18), we get the volumetric
rate Q as

Q = − 2d6

λμ2D

∂C

∂ξ

(
∂p

∂x

)2

F (ξ, ε, α,Da,m, α1) (19)

where

F (ξ, ε, α,Da,m, α1) = (Da)2×{
R2

L(m2
1 − α2)

(
m1R2 sinh(m1H)

m2
1 − α2

− m2R1 sinh(m2H)

m2
2 − α2

)
B1

+
R1

L(m2
2 − α2)

(
m2R1 sinh(m2H)

m2
2 − α2

− m1R2 sinh(m1H)

m2
1 − α2

)
B2

+
R1R2

α2H
sinh(m1H) sinh(m2H)

(
m1

m2(m2
1 − α2)

+
m2

m1(m2
2 − α2)

)

−R2
2 sinh

2(m1H)

α2H(m2
1 − α2)

−R2
1 sinh

2(m2H)

α2H(m2
2 − α2)

− R2
2

m2
1 − α2

(
H +

sinh(2m1H)

2m1

)

+
R2

2 sinh
2(m1H)

m2
1H(m2

1 − α2)
+

R1R2

m2
1 − α2

(
1

m2
1 − α2

+
1

m2
2 − α2

)
B3

− R1R2

m1m2H
sinh(m1H) sinh(m2H)

(
1

m2
1 − α2

+
1

m2
2 − α2

)

− R2
1

m2
2 − α2

(
H +

sinh(2m2H)

2m2

)
+

R2
1 sinh

2(m2H)

m2
2H(m2

2 − α2)

}
,

(20)

B1 = m1 cosh(αH) sinh(m1H)− α cosh(m1H) sinh(αH),

B2 = m2 cosh(αH) sinh(m2H)− α cosh(m2H) sinh(αH),

and

B3 = m1 cosh(m2H) sinh(m1H)−m2 cosh(m1H) sinh(m2H).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:3, 2011

466

Comparing (19) with Fick’s law of diffusion, we find that
the solute is dispersed relative to a plane moving with the mean
speed of the flow with an effective dispersion coefficient D∗

given by

D∗ = 2
d6

μ2D

(
∂p

∂x

)2

F (ξ, ε, α,Da,m, α1). (21)

Let the average of F be F and is defined by

F =

∫ 1

0

F (ξ, ε, α,Da,m, α1)dξ. (22)

B. Diffusion with Combined Homogeneous and Heteroge-
neous Chemical Reactions

We now discuss the problem of diffusion with a first-
order irreversible chemical reaction taking place both in the
bulk of the medium (homogeneous) as well as at the walls
(heterogeneous) of the channel which are assumed to be
catalytic to chemical reaction. The diffusion equation is same
as given by (11), i.e.,

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
− k1C.

The differential material balance at the walls gives the
boundary conditions

∂C

∂y
+fC = 0 at y = h =

[
d+ a sin

2π

λ
(x− ūt)

]
, (23)

∂C

∂y
− fC = 0 at y = −h = −

[
d+ a sin

2π

λ
(x− ūt)

]
.

(24)
If we introduce the dimensionless variables (12) and assume

the limiting condition of Taylor [1]–[3], the diffusion equation
remains as (14) but subject to the boundary conditions

∂C

∂η
+ βC = 0 for η = H = [1 + ε sin(2πξ)], (25)

∂C

∂η
−βC = 0 for η = −H = −[1+ ε sin(2πξ)], (26)

where β = fd is the heterogeneous reaction rate parameter
corresponding to catalytic reaction at the walls.

The solution of (14) satisfying the boundary conditions (25)
and (26) is

C(η) = A
′
cosh(αη)

+
d2

λD

∂C

∂ξ

k0
μ

∂p

∂x

[
R1

m2
1 − α2

cosh(m1η)

− R2

m2
2 − α2

cosh(m2η) +
R1

α2m1H
sinh(m1H)

− R2

α2m2H
sinh(m2H)

]
(27)

where

A
′

=
d2

λD

∂C

∂ξ

k0
μ

∂p

∂x

1

L′

[
m1R1

m2
1 − α2

sinh(m1H)

− m2R2

m2
2 − α2

sinh(m2H) +
βR1

m2
1 − α2

cosh(m1H)

− βR2

m2
2 − α2

cosh(m2H) +
βR1

α2m1H
sinh(m1H)

− βR2

α2m2H
sinh(m2H)

]
(28)

and L
′
= α sinh(αH) + β cosh(αH) .

Substituting (27) and (13) in (18), we get

Q = −2
d6

λμ2D

∂C

∂ξ

(
∂p

∂x

)2

G(ξ, ε, α, β,Da,m, α1). (29)

where

G(ξ, ε, α, β,Da,m, α1) = (Da)2×{
R2

L′(m2
1 − α2)

(
m1R2 sinh(m1H)

m2
1 − α2

− m2R1 sinh(m2H)

m2
2 − α2

)
B1

+
R1

L′(m2
2 − α2)

(
m2R1 sinh(m2H)

m2
2 − α2

− m1R2 sinh(m1H)

m2
1 − α2

)
B2

− R2
2 sinh

2(m1H) sinh(αH)

αHL′(m2
1 − α2)

− R2
1 sinh

2(m2H) sinh(αH)

αHL′(m2
2 − α2)

+
R1R2

αHL′

(
m1

m2(m2
1 − α2)

+
m2

m1(m2
2 − α2)

)
×

sinh(m1H) sinh(m2H) sinh(αH)

+
βR2

L′(m2
1 − α2)

(
R2 cosh(m1H)

m2
1 − α2

− R1 cosh(m2H)

m2
2 − α2

)
B1

+
βR1

L′(m2
2 − α2)

(
R1 cosh(m2H)

m2
2 − α2

− R2 cosh(m1H)

m2
1 − α2

)
B2

+
βR2 cosh(m1H) sinh(αH)

αHL′(m2
1 − α2)

(
R1 sinh(m2H)

m2
− R2 sinh(m1H)

m1

)

+
βR1 cosh(m2H) sinh(αH)

αHL′(m2
2 − α2)

(
R2 sinh(m1H)

m1
− R1 sinh(m2H)

m2

)

+
βR2

α2HL′(m2
1 − α2)

(
R2 sinh(m1H)

m1
− R1 sinh(m2H)

m2

)
B1

+
βR1

α2HL′(m2
2 − α2)

(
R1 sinh(m2H)

m2
− R2 sinh(m1H)

m1

)
B2

+
βR2 sinh(m1H) sinh(αH)

α3m1H2L′

(
R1 sinh(m2H)

m2
− R2 sinh(m1H)

m1

)

+
βR1 sinh(m2H) sinh(αH)

α3m2H2L′

(
R2 sinh(m1H)

m1
− R1 sinh(m2H)

m2

)

− R2
2

m2
1 − α2

(
H +

sinh(2m1H)

2m1

)
+

R2
2 sinh

2(m1H)

m2
1H(m2

1 − α2)

+
R1R2

m2
1 − α2

(
1

m2
1 − α2

+
1

m2
2 − α2

)
B3

− R1R2

m1m2H
sinh(m1H) sinh(m2H)

(
1

m2
1 − α2

+
1

m2
2 − α2

)

− R2
1

m2
2 − α2

(
H +

sinh(2m2H)

2m2

)
+

R2
1 sinh

2(m2H)

m2
2H(m2

2 − α2)

}
.

(30)
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Fig. 2. Effect of Da on F for m = 2.0, α1 = 0.02 and ε = 0.2.

Comparing (29) with Fick’s Law of Diffusion, we find that
the solute is dispersed relative to a plane moving with the mean
speed of the flow with an effective dispersion coefficient D∗

given by

D∗ = 2
d6

μ2D

(
∂p

∂x

)2

G(ξ, ε, α, β,Da,m, α1). (31)

The average of G denoted by G is defined as

G =

∫ 1

0

G(ξ, ε, α, β,Da,m, α1)dξ. (32)

III. RESULTS AND DISCUSSION

The effects of various parameters on the average ef-
fective dispersion coefficient can be observed through the
functions F (ξ, ε, α,Da,m, α1) (for homogeneous case) and
G(ξ, ε, α, β,Da,m, α1) (for combined homogeneous and het-
erogeneous case) given by equations (22) and (32), respec-
tively. F and G have been obtained by numerical integra-
tion using MATHEMATICA software for different values of
relevant parameters and presented graphically. The important
parameters involved in the expressions are: the amplitude ratio
ε, the homogeneous reaction parameter α, the heterogeneous
reaction rate parameter β, the permeability parameter (or
Darcy number) Da, the couple stress parameter m, and the
slip parameter α1.

A. Homogeneous Chemical Reaction

Figs.2-5 show that average effective dispersion coefficient F
decreases with homogeneous reaction rate parameter α. This
implies that homogeneous chemical reaction tends to decrease
the dispersion of the solute. This result is expected since
increase in α leads to increasing number of moles of solute
undergoing chemical reaction, which results in the decrease
of dispersion. The result that dispersion decreases with α
agrees with previous results obtained by Gupta and Gupta [6],
Dutta et al. [9], Ramana Rao and Padma [7]- [8], Padma and
Ramana Rao [5], Shukla et al. [11]. Further, average dispersion
increases with permeability parameter (or Darcy number) Da
(Fig.2) but decreases with amplitude ratio ε (Fig.3), couple
stress parameter m (Fig.4) and slip parameter α1 (Fig.5). The
result that dispersion decreases with couple stress parameter m
agrees with the result obtained by Soundalgekar and Chaturani
[10].
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Fig. 3. Effect of ε on F for m = 2.0, α1 = 0.02 and Da = 0.002.
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Fig. 4. Effect of m on F for ε = 0.2, α1 = 0.02 and Da = 0.002.

α1=0.04

α1=0.03

α1=0.01

α1=0.02

F

α
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Fig. 5. Effect of α1 on F for ε = 0.2, m = 2 and Da = 0.002.
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Fig. 6. Effect of Da on G for α = 1.0, m = 2.0, α1 = 0.02 and ε = 0.2.

B. Combined Homogeneous and Heterogeneous Chemical Re-
actions

Figs.6-10 show the effects of various parameters on the
average dispersion coefficient G for the case of combined first
order chemical reactions both in the bulk and at the walls.
Average dispersion coefficient G increases with permeability
parameter Da (Fig.6). But G decreases with amplitude ratio
ε (Fig.7), couple stress parameter m (Fig.8), slip parameter
α1 (Fig.9) and homogeneous chemical reaction parameter α
(Fig.10). Further, Figs.6-10 reveal that dispersion decreases
with heterogeneous reaction parameter β. The result that dis-
persion decreases with heterogeneous reaction rate parameter
β agrees with previous results obtained by Gupta and Gupta
[6], Ramana Rao and Padma [7]- [8], Padma and Ramana Rao
[5]. This implies that heterogeneous chemical reaction tends
to decrease the dispersion of the solute.
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Fig. 7. Effect of ε on G for m = 2.0, Da = 0.002, α1 = 0.02 and
α = 1.0.
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Fig. 8. Effect of m on G for α = 1.0, Da = 0.002, α1 = 0.02 and
ε = 0.2.
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Fig. 9. Effect of α1 on G for m = 2.0, Da = 0.002, α = 1.0. and
ε = 0.2.
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Fig. 10. Effect of α on G for m = 2.0, Da = 0.002, α1 = 0.02 and
ε = 0.2.

IV. CONCLUSION

The dispersion of a solute in peristaltic motion of a couple
stress fluid through a porous medium with slip condition
in the presence of both homogeneous and heterogeneous
chemical reactions has been studied under long wavelength
approximation and Taylor’s limiting condition. It is observed
that average effective coefficient of dispersion tends to increase
with permeability parameter Da. But it tends to decrease
with homogeneous chemical reaction rate parameter α, couple
stress parameter m, amplitude ratio ε, slip parameter α1 and
heterogeneous chemical reaction rate parameter β.
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