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 
Abstract—In this paper we propose a discrete tracking control of 

nonholonomic mobile robots with two degrees of freedom. The 
electromechanical model of a mobile robot moving on a horizontal 
surface without slipping, with two rear wheels controlled by two 
independent DC electric, and one front roal wheel is considered. We 
present backstepping design based on the Euler approximate discrete-
time model of a continuous-time plant. Theoretical considerations are 
verified by numerical simulation.  
 

Keywords—Actuator Dynamics, Backstepping, Discrete-Time 
Controller, Lyapunov Function, Wheeled Mobile Robot.  

I. INTRODUCTION 

N autonomous wheeled mobile robot is a complex, 
controllable electromechanical system [1]. The problem 

of tracking control of wheeled mobile robots has attracted a lot 
of attention over the past twenty years. The backstepping 
technique [2]-[5] has been widely used as one of popular 
strategies for controlling nonholonomic mobile robots 
considering kinematics and dynamics. Initially there is 
considered the kinematic model of the system, and by 
constructing Lyapunov functions there are founded laws of 
speeds to ensure the stabilization of a given motion. And then 
constructed the control for the entire system, including both 
the dynamic model, and using composite Lyapunov function 
provides the rationale for the observed laws to solve the 
problem stabilization. The disadvantage of this approach to the 
synthesis of control is usually a complex nonlinear structure 
built of law, which leads to the problem of simplifying the 
structure through the use of new types of Lyapunov functions. 

In many practical problems, the control law, realizable by 
specific actuators cannot be adequately described by means of 
continuous models, as the availability of digital devices in 
control systems for mechanical objects, leads to the fact that 
information between the parts management system is 
transferred at discrete points in time and in the form of a 
discrete and executive agencies implement control taking 
values in some fixed discrete sets. Hence, it is necessary to 
study of discrete control models. 

The purpose of this paper is the constructing a motion 
stabilizing control of three-wheeled mobile robot with two 
degrees of freedom on the basis of a sampling system and 
application of backstepping procedure with Lyapunov 
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function, which allows to simplify the structure of the law 
found. 

The paper is organized as follows: Section II introduces a 
mathematical model of mobile robot for the problem of 
tracking control; the proposed control is presented in Section 
III; in Section IV the conclusion of the paper is presented.  

II. PROBLEM FORMULATION 

We consider a mobile robot with two degrees of freedom 
(Fig. 1). The system consists of a vehicle with two driving 
wheels mounted on the same axis and a front free wheel. The 
motion control is achieved by two independent actuators, e.g., 
DC motors. The kinematics, robot dynamics and actuator 
dynamics of this robot are described by the following 
differential equations: 
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where ,x y  are the coordinates of the point A  in the middle of 

the rear axle of the vehicle, and   is the angle between the 
heading direction and the X  axis, v  is the velocity of the 
point A , and   represents the angular velocity of the vehicle, 

1 2,i i  are the currents, r  is the radius of the back wheels, c  is 

the so-called coefficient of electromechanical interaction, n  is 

the gear ratio of the reduction gearbox, l  is the half interval 
between back wheels, a AC , L  is the generalized 

inductance of the circuit of an electric motor, R  is the ohmic 
resistance of the circuit of a rotor, 

1 2,i i  are currents in external 

circuits of electric motors, 
1 2,U U   are the voltages applied to 

the motors. 
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Here 

1m  is the mass of the platform, 
km  is the total mass of 

the driving wheel together with the rotor of the electric motor, 
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1J  is the moment of inertia of the chassis with respect to the 

vertical axis passing through the center of mass  C , kzJ  is the 

moment of inertia of a driving wheel with respect to the 
vertical axis, 2

y ky ryJ J n J   is the “reduced” moment of 

inertia of a wheel, 
kyJ  is the moment of inertia of a driving 

wheel with respect to the horizontal axis, 
ryJ  is the moment of 

inertia of the rotor of an electric motor. 
 

 

Fig. 1 The mobile robot with two degrees of freedom 
 
The robot is required to follow a trajectory generated by an 

exosystem, i.e., a fictitious “reference robot”: 
 

= ( ) cos , = ( ) sin , = ( )r r r r r r r rx v t y v t t    
 

 

where the functions ( )rv t  and ( )r t  are given reference 

velocities. 

III. PROBLEM SOLUTION 

We introduce the deviation from the desired trajectory by  
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Neglecting the inductance L  can obtain the following 
equation of dynamic model of the robot  
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where 

3 1 2=U U U  and 
4 1 2=U U U . 

Difference equations in deviations for discrete models based 
on the Euler approximation take the form 
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We define the state vector 5( , ) R    of the system (5) as  
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Then in the new variables, (5) takes the form, consisting of 

two subsystems 
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The system (6) is represented as a cascade of two 

subsystems with state vectors    and  , respectively. The 

input signal for the first subsystem of a cascade is the state 
vector of the second subsystem. To construct  stabilizing 
controls 

3U  and 
4U  for (6) use a recursive procedure of 

backstepping method [2], which is applied to this problem 
means that first we find the law [ ] ( , [ ])k kT k    with 

smooth function 3 2: R R R   , which stabilizes the zero 

position 0   of the first subsystem (6), and the 

corresponding Lyapunov function. Then, by constructing a 
composite Lyapunov function for the whole system (6), we 
obtain the desired control. Put 3 3| |   and 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:11, 2014

1432

 

 

1 3 2

2
3 1

2 3

[ , [ ]] [ ] 2 [ ]( [ ] [ ]) [ ]

(1 [ ])( [ ] [ ]) [ ],

[ , [ ]] [ ] [ ]

r r

r

r

k k v k k k k k

k k k k

k k k k

     

   
   

   

  
 

 (7) 

 
where the functions [ ]r k  and [ ]k   and constant  satisfy 
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with control 
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kinematic part of the system (6) takes the form 
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To prove the uniform asymptotic stability of the zero 

solution 
1 2 3 0     of the system (9) take the Lyapunov 

function 
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We have the following comparison equation 
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Then we obtain the following estimate for the norm of the 

matrix ( , [ ])C k k  
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Choosing constants  

1 2, 0const     large enough, under 

the conditions (8) we obtain that there exists a number 
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is uniformly asymptotically stable. 

Thus, it was found that the law [ ] ( , [ ])k kT k    

provides stabilization to the uniform asymptotic stability of 
the zero position 0   of the first subsystem (6). 

In [5] by using the method of backstepping for the part of 
the kinematic system (5) there was built control of the form 
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which solves the problem of stabilization to the uniform 
asymptotic stability of the zero solution 0e e ex y     of 

the first subsystem (5). 
 

 

Fig. 2 The simulation results for the controls (7) and (10) and values 
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Fig. 3 The simulation results for the controls (7) and (10) and values 
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Figs. 2 and 3 show the results of modeling of the kinematic 

system (6) with controls (7) and (10) for 0 k N  . On Fig. 2 
and 3, the solid line shows a process obtained by the control 
(7) and a dotted – by the control (10).  As can be seen, control 
(7) provides a higher rate of convergence compared with (10).  

Using composite Lyapunov function 
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provides a uniform asymptotic stability of the zero solution of 
system (6). Indeed, we make the change of variables 
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The system (6) with control (11) can be written as 
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For composite Lyapunov function along the solution of the 

system with the initial condition  [0] 0cV const    
we 
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we find that the comparison equation  
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is uniformly asymptotically stable. Hence we obtain the 
uniform asymptotic stability of the zero solution of (6). 

IV. CONCLUSION 

In the paper  we proposed a stabilizing motion control law 
of three-wheeled mobile robot with two degrees of freedom 
which is justified the technique of the solving the problem of 
stabilization of nonlinear time-varying systems with piecewise 
constant control on the basis of a sampling system and 
application of backstepping method. This method is based on 
the representation of the entire system as a cascade connection 
of subsystems and on the following synthesis of nonlinear 
control law on the basis of constructing of Lyapunov functions 
for each subsystem. Effectiveness of the construction of the 
control law is that, firstly, it is applicable for a wide class of 
program motions, secondly, is easily implemented in software, 
thirdly, it allows to determine for each case the most 
appropriate set of control parameters. The novelty of this 
technique is the use of Lyapunov functions of the form of 
vector norms and difference comparison equations, effective 
in constructing of laws of discrete controls for considered 
systems with higher speed of convergence, the expansion of 
the domain of attraction of solutions, simplifying the control 
structure in comparison with known results. We consider 
electromechanical model of a mobile robot moving on a 
horizontal surface without slipping, with two rear wheels are 
controlled by two independent DC electric, and front roal 
wheel. On the problem of synthesis of a piecewise constant 
control of a continuous system there is used an approach based 
on sampling systems with use of Euler approximation and 
construction of stabilizing discrete control laws for discrete 
model. On the basis of the recurrent procedure of 
backstepping method consisting in the transition from the 
control synthesis problem for the kinematic model to the 
problem of constructing controlling signals for dynamic model 
of the robot found a piecewise constant control law that 
practically stabilizes the set of unsteady motion of the robot. 
The results of numerical simulations confirming the 
effectiveness of the proposed control law are presented. 
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