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Abstract—Automated discovery of Rule is, due to its 

applicability, one of the most fundamental and important method in 
KDD. It has been an active research area in the recent past. 
Hierarchical representation allows us to easily manage the 
complexity of knowledge, to view the knowledge at different levels 
of details, and to focus our attention on the interesting aspects only. 
One of such efficient and easy to understand systems is Hierarchical 
Production rule (HPRs) system. A HPR, a standard production rule 
augmented with generality and specificity information, is of the 
following form: 
 
Decision If < condition> 
Generality <general information> 
Specificity <specific information>.  
 
HPRs systems are capable of handling taxonomical structures 
inherent in the knowledge about the real world. This paper focuses 
on the issue of mining Quantified rules with crisp hierarchical 
structure using Genetic Programming (GP) approach to knowledge 
discovery. The post-processing scheme presented in this work uses 
Quantified production rules as initial individuals of GP and discovers 
hierarchical structure. In proposed approach rules are quantified by 
using Dempster Shafer theory. Suitable genetic operators are 
proposed for the suggested encoding. Based on the Subsumption 
Matrix(SM), an appropriate fitness function is suggested. Finally, 
Quantified Hierarchical Production Rules (HPRs) are generated from 
the discovered hierarchy, using Dempster Shafer theory. 
Experimental results are presented to demonstrate the performance of 
the proposed algorithm.  
 

Keywords—Knowledge Discovery in Database, Quantification, 
Dempster Shafer theory, Genetic Programming, Hierarchy, 
Subsumption Matrix.  
 

I. INTRODUCTION 
N KDD, the most predominant representation of the 
discovered knowledge is the standard production rules in 

the form If P Then D [12]. As the number of rules becomes 
significant, they are not comprehensible to people as 
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meaningful knowledge, from which they can gain insight into 
the basis of decision-making. Much world knowledge is best 
expressed in the form of hierarchies. Hierarchies give 
comprehensible knowledge structure that allows us to manage 
the complexity of knowledge, to view the knowledge at 
different levels of details, and to focus our attention on the 
interesting aspects. Several efforts have been made in the 
recent past towards automated discovery of hierarchical 
structure in large databases [3]-[9]. Uncertainty pertains to 
information that is not definitely fixed, not precisely 
determined. Uncertainty must be quantified in order to use it 
systematically in decision-making processes. Uncertainty 
Quantification is the quantitative characterization and use of 
uncertainty in information applications In Genetic 
Programming (GP) [10][11] the basic idea is the evolution of 
a population of “program”, i.e., candidate solutions to the 
target problem. A program (an individual of the population) is 
usually represented as a tree, where the internal nodes are the 
functions (operators) and the leaf nodes are terminal symbols. 
Both the function set and terminal set must include symbols 
suitable for the target problem. Each individual of the 
population is assessed regarding its ability to solve the target 
problem. This evaluation is conducted by a fitness function, 
which is problem-dependent. Individuals undergo the action 
of genetic operators such as reproduction, crossover and 
mutation. Once genetic operators have been applied to the 
population based on given probabilities, a new generation of 
individuals is created. These newly created individuals are 
evaluated by the fitness function. The whole process is 
repeated iteratively for a fixed number of generations or until 
other termination criterion is met. The result of GP (the best 
solution found) is usually the fittest individual created along 
all the generations [11]. In the present work, a post-processing 
scheme based on GP and Dempster Shafer Theory is 
presented that takes quantified if then rules as input and 
discovers crisp hierarchical structure. Further, Quantified 
Hierarchical Production Rules(HPRs)[2], are generated using 
the discovered hierarchy. A concept of Subsumption Matrix 
(SM) is used to summarize the relationship between the 
classes. An appropriate encoding, suitable genetic operators 
and effective fitness function are suggested for the proposed 
scheme. 
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II. BACKGROUND 
The concept of CPR as suggested by Michalski and 

Winston has the following form: 
If P {premises/preconditions} 
Then D {actions/decision} 
Unless C {censor conditions} 
A censor is a low likelihood condition when hold will block 
the rule. So when the system is having low resources, it can 
skip checking the censor conditions. If the resources are 
available, the censor conditions are examined, increasing the 
certainty factor of making a high speed decision or reversing 
the decision itself. The above concept of CPR has been 
extended to HCPR [1] to incorporate both aspects of precision 
namely certainty and specificity. Two new operator added to 
CPR and we have the concept of HCPR 
having the general form as follows: 
D {decision/concept/action} 
If P [p1,p2,p3,…,pn] {preconditions} 
Unless C [c1,c2,…,cn] {censor conditions} 
Generality [G%] {general information} 
Specificity S [s1,s2,…,sk] 
{mutually exclusive set of specific information} 
As a special case, dropping the unless operator due to time 
constraint, HPR takes the form 
D{decision/concept/action} 
If P[p1,p2,…,pn] {preconditions} 
Generality [G%] {general information} 
Specificity S [s1,s2,…,sk] 
{mutually exclusive set of specific information} 
 

The root represents the most general concept in a HPR tree 
and any child in tree is more specific case of its parent. As the 
concept becomes more specific, the number of elements in its 
precondition part will increase obviously. However it is not 
required to list all such elements because total inheritance is 
an inherent feature of the HPRs tree structure; each HPR 
inherits the entire preconditions set of its parent HPR, and 
thus of all of its ancestors. So the redundancy is minimized in 
the listing of preconditions in the child node. HPR system 
collects fragmented knowledge and represents these as 
collective one and hence significantly reducing the knowledge 
base. This representation scheme reduces the complexity of 
the discovered knowledge substantially, makes knowledge 
base easy to understand and efficient for future processing. 
 
As an example, consider the following HPRs [1]: 
level 0 
change_car_status If [obstacle_ahead] 
Generality [ ] 
Specificity [use_breaks, turn_off_road] 
level 1 
use_breaks If [speed_distance_ratio_high] 
Generality [change_car_status] 
Specificity [ ] 
turn_off_road If [not_on_bridge] 
Generality [change_car_status] 
Specificity [ ]. 
 

The above related HPRs form a tree (called HPR-tree) giving 
the following hierarchical structure Fig.1. 

 

III. DAMPSTER SHAFER THEORY 
It provides a method for explicitly representing the 

ignorance inherent in knowledge and of reasoning in the 
absence of certain information. According to Haddawy the 
belief in a proposition A is represented by a shafer interval 
[s(A) .. p(A)] which is a subinterval of the unit interval [0 .. 
1], where s(A) is called the support and p(A) is called the 
plausibility of the proposition A. These values can be thought 
of as an upper and lower bounds on the probability of A. The 
uncertainty of a proposition is then defined as the width of the 
interval: u(A) = p(A) – s(A). The precision of the probability 
estimate for the proposition A is then defined as: PRE(A) = 1 
– u(A) . The PRE of the decision is the measure, which will be 
used to characterize the certainty of an inference. 

The variable precision logic (VLP) represents knowledge in 
terms of facts and rules. To apply Dempster Shafer theory to 
VLP, we must provide an interpretation of rules and facts in 
terms of shafer intervals. Dempster Shafer theory can be 
defined as: 
S(A) + s(∼A) + I = 1,  Where I stands for Ignorance. 
According to Dempster Shafer theory  a belief factor is 
associated with each flat rule like P→ D: γ, which can be 
computed as [2] 
 

γ =⎜ P→ D⎜/ ⎜P⎜.                                    (1) 
This belief factor represents the support of the rule. Support of 
the decision can be obtained by using following formula:  

  s(D) = s(P)*s(P→ D)=s(P)* γ                (2) 
 where s(P) is probability of occurrence of proposition A.  
 
If rules can be expressed with uncertainty quantification using 
Shafer interval: 
 
IF P1[s(P1), p(P1)] and P2[s(P2), p(P2)] THEN D 
[s(P> D), p(P> D)] 
Dempster Shafer theory can be used for approximate 
reasoning in following manner: 
a) prob (P1 andP2) . [s(P1) * s(P2), p(P1) * 

p(P2)] 
b) prob (P1 or P2) . [s(P1) + s(P2) – (s(P1) * 

s(P2)), p(P1) + p(P2) –( p(P1) * p(P2))] 
c) prob (¡« P) . [1-p(P), 1-s(P)] 
d) prob (D) . [s(P)*s(P→ D), (1 - s(P)) + s(P) 
* p(P→D)] 

Change car status

Use breaks Turn off road
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IV. SUBSUMPTION MATRIX 
A class Di can be defined by set of properties (values of 

distinct attributes), class_prop(Di). Let Di and Dj be any two 
classes with the set of properties class_prop(Di) and 
class_prop(Dj), respectively. We can define the degree of 
subsumption (deg_sub(Di, Dj)) as follows: 
 
                                ⏐class_prop(Di)∩class_prop (Dj)⎜ 
deg_sub(Di,Dj)    = (3) 
                                           ⎜ class_prop (Di) ⎜  
                                                                (3) 
where deg_sub(Di, Dj) € [0,1]. 
A SM that summarizes the relationship between the 
classes,D1, D2,…….,Dn is an n × n matrix defined as under: 
 
 
 

    1 if deg_sub(Di, Dj) = 1 
                                i.e. Di ⊆ Dj 
 SM[Di,Dj]=                                               [4]              
 

  0    otherwise     
 

V. GENETIC PROGRAMMING APPROACH 
As a post-processing scheme, we are using GP to discover 

crisp hierarchical production rules from the flat rules as input. 
The details of encoding, genetic operators and the fitness 
function for the proposed scheme are discussed in the 
following subsection:  

 
A. Encoding 
A hierarchical structure is encoded as list representing a 

general tree: 
Tree: (Root (sub-tree 1) (sub-tree 2)…… (sub-tree i)…… 
(sub-tree k)), where sub-tree i is either empty or has the same 
structure as Tree. For example the hierarchy in Fig. 2. 
 

 
 

Fig 2 Hierarchy 
 
would be encoded as (a (f (e (b) (d) (k))). 

An individual, as hierarchy must satisfy the following 
condition: Di I Dj = Ø for any two classes Di and Dj at the 

same level in the hierarchy. During crossover/mutation 
operators, if any of the offspring or mutated individuals does 
not satisfy the above condition, then it will be rejected as an 
illegal individual. 

 
B. Genetic Operators 
The new elements in the population are generated by means 

of three operators: reproduction, crossover and mutation. 
a) Reproduction 
The reproduction operator selects one individual of the 

present population in proportion to its fitness value, so that the 
fitter an individual is the higher the probability that it will take 
part in the next generation of individuals. After selection, the 
individual is copied into the new generation without any 
modifications. Reproduction reflects the principle of natural 
selection and survival of the fittest [11].  

b) Crossover 
The crossover operator replaces a randomly selected sub 

tree of an individual with a randomly chosen sub-tree from 
another individual and creates new offspring by exchanging 
sub-trees (i.e., sub-lists) between the two parents. The 
crossover point was chosen at random for both parents. For 
example, consider the following two individuals as parents 
(the “crossover point” is indicated by a tilted line and the sub 
trees swapped by crossover are shown in bold): 
Parent 1: (a(b (c (h (n))) 
Parent 2: (a(f) (e (b) (d) (k))) 
with corresponding hierarchical structure is given in Fig.3. 

 

 
 

Fig. 3 Two parents before crossover 
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The two offspring resulting from crossover are: 
Offspring 1: ( a(e (b) (d) (k)) (c(h) (n))) and 
Offspring 2: (a(f) (b)) are shown below in Fig.4. 
 
 

 
 
 
 
 
 
 

Fig. 4 Two offspring produced by crossover 
 

c) Mutation 
For the tree mutation a sub-tree/leaf is replaced by 

randomly chosen sub-tree/ leaf. 
 
C. Fitness Function 
The fitness function evaluates the quality of an individual in 

the population. For the proposed algorithm, the fitness 
measure of an individual is defined as: 
 

Fitness = ∑SM [Di, Dj]                          (5) 
∀ Di, Dj 
The wining individual has the highest fitness such that 
∀ i, j Di→ Dj. 
 

VI EXPERIMENTAL RESULTS 
Each GP run consisted of a population of 25 individuals 

evolving over generations. The probability of crossover, 
reproduction and mutation set to 0.8, 0.1 and 0.1, respectively, 
and the selection method used for both parents was fitness 
proportionate. For the practical reason of avoiding the 
expenditure of large amounts of computer time on occasional 
oversized programs, the depth of initial programs was limited 
to 8 and during the run the maximum tree depth was set to 10. 
 
 
 
 
 
 
 

Training Data Set (Employee) 
Employee
-lives-in 

Time Nature-of-
the-Day 

Decision 

City night Sunday Is-in-city 
City night working Is-at-home 
City night working Is-in-city 
City day Sunday Is-outside-

home 
City night Sunday Is-in-city 
City day working Is-working-

outdoor 
City night working Is-in-city 
City night Sunday Is-at-home 
City night working Is-at-home 
City day Sunday Is-entertaining-

outdoor 
City day working Is-outside-

home 
City day working Is-outside-

home 
City day Sunday Is-entertaining-

outdoor 
City day working Is-working-

outdoor 
City night Sunday Is-at-home 
City day Sunday Is-outside-

home 
City night Sunday Is-in-city 
City day Sunday Is-entertaining-

outdoor 
City day Sunday Is-outside-

home 
City night working Is-at-home 
City day Sunday Is-entertaining-

outdoor 
City day working Is-working-

outdoor 
City day Sunday Is-entertaining-

outdoor 
City day working Is-working-

outdoor 
City day working Is-working-

outdoor 
 
 
Example 1: By applying rule discovery algorithm and also 
using Dempster Shafer theory five flat rules along with belief 
factor are discovered: 
 
1)   If Emplyee_lives_in_city _y Then Emplyee _is_ in_city_y 
: 0.2 
2)   If Emplyee _ lives_in_city_ y ٨  time(night) Then 
Emplyee _is_at_home : 0.5 
3)   If Emplyee _ lives_in_city_ y ٨ time(day) Then Emplyee 
_is_outside_home : 0.3 
4) If Emplyee _lives_in_city_y ٨ time(day) ٨ day(working) 
Then Emplyee_is_ working_outdoor : 0.7 
5) If Emplyee_lives_in_city_y ٨ time(day) ٨ day(Sunday) 
Then Emplyee_is_ entertaining_outdoor : 0.6 
 

a 

e 
c 

h 

n b d k 

a 

f b 
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Support of the rules 1, 2,3,4,5 is obtained by using formula 
(1). Values of γ1, γ2, γ3, γ4 and γ5 are 0.2, 0.5, 0.3, 0.7, and 
0.6 respectively. 
 
Using (1) and (2) the SM is constructed for the five classes 
D1= Emplyee _is_in_city_y ; D2= Emplyee _is_at_home ; 
D3= Emplyee _is_outside_home ; D4= Emplyee 
_is_working_outdoor ; 
D5= Emplyee _is_entertaining_outdoor ,  
 
Support for these decision classes can be obtained by using 
formula (2) 
S(D1) = s(P) * γ1 = 1.0 * 0.2 =  0.2 
S(D2) = s(P) * γ2 =.0.4 * 0.5 =  0.2 
S(D3) = s(P) * γ3 = 0.6* 0.3=  0.18 
S(D4) = s(P) * γ4 = 0.28 * 0.7=  0.19 
S(D5) = s(P) * γ5 = 0.32 * 0.6 =  0.19 
      
Above five decision classes are mentioned in table  
 

TABLE I 
SUBSUMPTION MATRIX (5 × 5) 

D1   D2   D3   D4   D5 
 
D1   1   1    1    1    1 
D2     0   1    0          0      0 
D3    0    0    1    1     1 
D4     0    0    0    1       0 
D5    0    0   0    0     1 
 
The proposed algorithm produced the following individual 
with the highest fitness = 4 : 
(D1(D2)(D3(D4)(D5))). 
 
The corresponding hierarchy is shown in Fig.5. 
 

 
 

Fig. 5 Hierarchy-the individual with the highest fitness=4 
 
From the discovered hierarchy shown in Fig. 5, the following 
Quantified HPRs are generated: 
level 0 
(D1 If [Emplyee _lives_in_city_y] Generality [ ] 
Specificity [D2,D3 ] ) [0.2 . . 1] 

level 1 
(D2 If [time (night) ]  
Generality [D1] 
Specificity [ ] ) [0.5 . . 1] 
(D3 If [time (day)]  
Generality [D1] 
Specificity [D4 ,D5] ) [0.3 . . 1]    
level 2 
(D4 If [day (working) ]  
Generality [D3] 
Specificity [ ] ) [0.7 . 1] 
(D5 If [day (Sunday)]  
Generality [D3] 
Specificity [ ] ) [0.6. . 1] 
  
Dempster shafer intervals in the form [s(P→D), p(P→D)] are 
obtained for each HPR. Further uncertainty of each rule can 
be obtained by using formula  
u(A) = p(A) – s(A). 
 

On the above discovered Quantified HCPR rules, 
approximate reasoning can also be applied according to 
Dempster Shafer theory explained in previous section. 

Example 2: suppose we have 10 flat rules with 10 different 
classes as follows: 
If P1 ٨  P2 ٨  P5 Then D1 : γ1 
If P1 ٨ P2 ٨  P4 ٨  P7 Then D2 : γ2 
If P1 ٨  P2 ٨  P4 Then D3 : γ3 
If P1 ٨  P2 Then D4 : γ4 
If P1 ٨  P2 ٨ P5 ٨  P6 Then D5 : γ5 
If P1 ٨  P2 ٨  P3 Then D6 : γ6 
If P1 ٨  P2 ٨  P4 ٨  P8 ٨ P11 ٨ P12 Then D7 : γ7 
If P1 ٨ P2 ٨  P4 ٨  P8 ٨  P9 ٨  P10 Then D8 : γ8 
If P1 ٨  P2 ٨  P4 ٨ P8 Then D9 : γ9 
If P1 ٨ P2 ٨  P4 ٨  P8 ٨ P13 ٨  P14 ٨  P15 Then D10 : γ10 
 
Finally, the proposed algorithm produced the following 
individual with the highest fitness = 9: 
(D4(D6)(D3(D2)(D9(D7)(D8)(D10)))(D1(D5))). 
 
The corresponding hierarchy is shown in Fig. 6. 
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Fig.6 Hierarchy-the individual with the highest fitness=9 
From the discovered hierarchy shown in Fig. 6, the following 

HPRs are generated: 
 
 
level 0 
(D4 If [P1, P2]  
Generality [ ] 
Specificity[D6,D3, D1] ) : [γ1 .. 1] 
level 1 
(D6 If [P3]  
Generality [D4] 
(D6 If [P3 ]  
Generality [D4] 
Specificity [ ] ) : [γ2 ..1] 
(D3 If [P4]  
Generality [D4] 
Specificity [D2, D9] ) :[γ3 ..1] 
(D1 [P5] 
Generality [D4] 
Specificity [D5] :[γ4 ..1] 
Specificity [ ] ) : [γ2 .. 1] 
 
(D3 If [P4]  
Generality [D4] 
Specificity [D2, D9] ) [γ3 .. 1] 
 (D1 If [P5]  
Generality [D4] 
Specificity [D5] ) :[γ4 .. 1] 
 
level 2 
(D2 If [P7]  
Generality [D3] 
Specificity [ ] ): [γ5 .. 1] 
D9 If [P8]  
Generality [D3] 
Specificity [D7,D8,D10] ) [γ6 .. 1] 
(D5 If [P6]  

Generality [D1] 
Specificity [ ] ) [γ7 .. 1] 
 
level 3 
(D7 If [P11, P12]  
Generality [D9] 
Specificity [ ] ) [γ8 .. 1] 
 (D8 If [P9, P10]  
Generality [D9] 
Specificity [ ] ) [γ9 .. 1] 
 (D10 If [P13, P14, P15]  
Generality [D9] 
Specificity [ ] ) [γ10 .. 1] 
 

VI. CONCLUSION 
As an attempt towards automated generation of hierarchies, 

a GP approach along with Dempster Shafer Theory is 
proposed to organize, summarize and present the discovered 
rules in the form of Quantified HPRs. Suitable genetic 
operators are proposed for the suggested encoding. Based on 
the SM, an appropriate fitness function is suggested. 
Performance of the proposed algorithm is demonstrated 
through experimental results, which are quite encouraging. 
Discovered Quantified HPR would facilitate quantitative 
reasoning and learning. One of the most important future 
research directions would be the discovery of Quantified 
HPRs with exceptions i.e. Quantified HCPR from large 
databases. 
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