
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

137

Abstract—Automated discovery of Rule is, due to its

applicability, one of the most fundamental and important method in
KDD. It has been an active research area in the recent past.
Hierarchical representation allows us to easily manage the
complexity of knowledge, to view the knowledge at different levels
of details, and to focus our attention on the interesting aspects only.
One of such efficient and easy to understand systems is Hierarchical
Production rule (HPRs) system. A HPR, a standard production rule
augmented with generality and specificity information, is of the
following form:

Decision If < condition>
Generality <general information>
Specificity <specific information>.

HPRs systems are capable of handling taxonomical structures
inherent in the knowledge about the real world. This paper focuses
on the issue of mining Quantified rules with crisp hierarchical
structure using Genetic Programming (GP) approach to knowledge
discovery. The post-processing scheme presented in this work uses
Quantified production rules as initial individuals of GP and discovers
hierarchical structure. In proposed approach rules are quantified by
using Dempster Shafer theory. Suitable genetic operators are
proposed for the suggested encoding. Based on the Subsumption
Matrix(SM), an appropriate fitness function is suggested. Finally,
Quantified Hierarchical Production Rules (HPRs) are generated from
the discovered hierarchy, using Dempster Shafer theory.
Experimental results are presented to demonstrate the performance of
the proposed algorithm.

Keywords—Knowledge Discovery in Database, Quantification,
Dempster Shafer theory, Genetic Programming, Hierarchy,
Subsumption Matrix.

I. INTRODUCTION
N KDD, the most predominant representation of the
discovered knowledge is the standard production rules in

the form If P Then D [12]. As the number of rules becomes
significant, they are not comprehensible to people as

Tamanna Siddiqui is with the Department of Computer Science, Jamia

Hamdard (Hamdard University), New Delhi 110 062, India (e-mail:
ja_zu_siddiqui@hotmail.com).

M. Afshar Alam is with the Department of Computer Science, Jamia
Hamdard (Hamdard University), New Delhi 110 062 India (e-mail:
afshar@rediffmail.com).

meaningful knowledge, from which they can gain insight into
the basis of decision-making. Much world knowledge is best
expressed in the form of hierarchies. Hierarchies give
comprehensible knowledge structure that allows us to manage
the complexity of knowledge, to view the knowledge at
different levels of details, and to focus our attention on the
interesting aspects. Several efforts have been made in the
recent past towards automated discovery of hierarchical
structure in large databases [3]-[9]. Uncertainty pertains to
information that is not definitely fixed, not precisely
determined. Uncertainty must be quantified in order to use it
systematically in decision-making processes. Uncertainty
Quantification is the quantitative characterization and use of
uncertainty in information applications In Genetic
Programming (GP) [10][11] the basic idea is the evolution of
a population of “program”, i.e., candidate solutions to the
target problem. A program (an individual of the population) is
usually represented as a tree, where the internal nodes are the
functions (operators) and the leaf nodes are terminal symbols.
Both the function set and terminal set must include symbols
suitable for the target problem. Each individual of the
population is assessed regarding its ability to solve the target
problem. This evaluation is conducted by a fitness function,
which is problem-dependent. Individuals undergo the action
of genetic operators such as reproduction, crossover and
mutation. Once genetic operators have been applied to the
population based on given probabilities, a new generation of
individuals is created. These newly created individuals are
evaluated by the fitness function. The whole process is
repeated iteratively for a fixed number of generations or until
other termination criterion is met. The result of GP (the best
solution found) is usually the fittest individual created along
all the generations [11]. In the present work, a post-processing
scheme based on GP and Dempster Shafer Theory is
presented that takes quantified if then rules as input and
discovers crisp hierarchical structure. Further, Quantified
Hierarchical Production Rules(HPRs)[2], are generated using
the discovered hierarchy. A concept of Subsumption Matrix
(SM) is used to summarize the relationship between the
classes. An appropriate encoding, suitable genetic operators
and effective fitness function are suggested for the proposed
scheme.

Discovery of Quantified Hierarchical
Production Rules from large set of Discovered

Rules
Tamanna Siddiqui, and M. Afshar Alam

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

138

II. BACKGROUND
The concept of CPR as suggested by Michalski and

Winston has the following form:
If P {premises/preconditions}
Then D {actions/decision}
Unless C {censor conditions}
A censor is a low likelihood condition when hold will block
the rule. So when the system is having low resources, it can
skip checking the censor conditions. If the resources are
available, the censor conditions are examined, increasing the
certainty factor of making a high speed decision or reversing
the decision itself. The above concept of CPR has been
extended to HCPR [1] to incorporate both aspects of precision
namely certainty and specificity. Two new operator added to
CPR and we have the concept of HCPR
having the general form as follows:
D {decision/concept/action}
If P [p1,p2,p3,…,pn] {preconditions}
Unless C [c1,c2,…,cn] {censor conditions}
Generality [G%] {general information}
Specificity S [s1,s2,…,sk]
{mutually exclusive set of specific information}
As a special case, dropping the unless operator due to time
constraint, HPR takes the form
D{decision/concept/action}
If P[p1,p2,…,pn] {preconditions}
Generality [G%] {general information}
Specificity S [s1,s2,…,sk]
{mutually exclusive set of specific information}

The root represents the most general concept in a HPR tree
and any child in tree is more specific case of its parent. As the
concept becomes more specific, the number of elements in its
precondition part will increase obviously. However it is not
required to list all such elements because total inheritance is
an inherent feature of the HPRs tree structure; each HPR
inherits the entire preconditions set of its parent HPR, and
thus of all of its ancestors. So the redundancy is minimized in
the listing of preconditions in the child node. HPR system
collects fragmented knowledge and represents these as
collective one and hence significantly reducing the knowledge
base. This representation scheme reduces the complexity of
the discovered knowledge substantially, makes knowledge
base easy to understand and efficient for future processing.

As an example, consider the following HPRs [1]:
level 0
change_car_status If [obstacle_ahead]
Generality []
Specificity [use_breaks, turn_off_road]
level 1
use_breaks If [speed_distance_ratio_high]
Generality [change_car_status]
Specificity []
turn_off_road If [not_on_bridge]
Generality [change_car_status]
Specificity [].

The above related HPRs form a tree (called HPR-tree) giving
the following hierarchical structure Fig.1.

III. DAMPSTER SHAFER THEORY
It provides a method for explicitly representing the

ignorance inherent in knowledge and of reasoning in the
absence of certain information. According to Haddawy the
belief in a proposition A is represented by a shafer interval
[s(A) .. p(A)] which is a subinterval of the unit interval [0 ..
1], where s(A) is called the support and p(A) is called the
plausibility of the proposition A. These values can be thought
of as an upper and lower bounds on the probability of A. The
uncertainty of a proposition is then defined as the width of the
interval: u(A) = p(A) – s(A). The precision of the probability
estimate for the proposition A is then defined as: PRE(A) = 1
– u(A) . The PRE of the decision is the measure, which will be
used to characterize the certainty of an inference.

The variable precision logic (VLP) represents knowledge in
terms of facts and rules. To apply Dempster Shafer theory to
VLP, we must provide an interpretation of rules and facts in
terms of shafer intervals. Dempster Shafer theory can be
defined as:
S(A) + s(∼A) + I = 1, Where I stands for Ignorance.
According to Dempster Shafer theory a belief factor is
associated with each flat rule like P→ D: γ, which can be
computed as [2]

γ =⎜ P→ D⎜/ ⎜P⎜. (1)
This belief factor represents the support of the rule. Support of
the decision can be obtained by using following formula:

 s(D) = s(P)*s(P→ D)=s(P)* γ (2)
 where s(P) is probability of occurrence of proposition A.

If rules can be expressed with uncertainty quantification using
Shafer interval:

IF P1[s(P1), p(P1)] and P2[s(P2), p(P2)] THEN D
[s(P> D), p(P> D)]
Dempster Shafer theory can be used for approximate
reasoning in following manner:
a) prob (P1 andP2) . [s(P1) * s(P2), p(P1) *

p(P2)]
b) prob (P1 or P2) . [s(P1) + s(P2) – (s(P1) *

s(P2)), p(P1) + p(P2) –(p(P1) * p(P2))]
c) prob (¡« P) . [1-p(P), 1-s(P)]
d) prob (D) . [s(P)*s(P→ D), (1 - s(P)) + s(P)
* p(P→D)]

Change car status

Use breaks Turn off road

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

139

IV. SUBSUMPTION MATRIX
A class Di can be defined by set of properties (values of

distinct attributes), class_prop(Di). Let Di and Dj be any two
classes with the set of properties class_prop(Di) and
class_prop(Dj), respectively. We can define the degree of
subsumption (deg_sub(Di, Dj)) as follows:

 ⏐class_prop(Di)∩class_prop (Dj)⎜
deg_sub(Di,Dj) = (3)
 ⎜ class_prop (Di) ⎜
 (3)
where deg_sub(Di, Dj) € [0,1].
A SM that summarizes the relationship between the
classes,D1, D2,…….,Dn is an n × n matrix defined as under:

 1 if deg_sub(Di, Dj) = 1
 i.e. Di ⊆ Dj
 SM[Di,Dj]= [4]

 0 otherwise

V. GENETIC PROGRAMMING APPROACH
As a post-processing scheme, we are using GP to discover

crisp hierarchical production rules from the flat rules as input.
The details of encoding, genetic operators and the fitness
function for the proposed scheme are discussed in the
following subsection:

A. Encoding
A hierarchical structure is encoded as list representing a

general tree:
Tree: (Root (sub-tree 1) (sub-tree 2)…… (sub-tree i)……
(sub-tree k)), where sub-tree i is either empty or has the same
structure as Tree. For example the hierarchy in Fig. 2.

Fig 2 Hierarchy

would be encoded as (a (f (e (b) (d) (k))).

An individual, as hierarchy must satisfy the following
condition: Di I Dj = Ø for any two classes Di and Dj at the

same level in the hierarchy. During crossover/mutation
operators, if any of the offspring or mutated individuals does
not satisfy the above condition, then it will be rejected as an
illegal individual.

B. Genetic Operators
The new elements in the population are generated by means

of three operators: reproduction, crossover and mutation.
a) Reproduction
The reproduction operator selects one individual of the

present population in proportion to its fitness value, so that the
fitter an individual is the higher the probability that it will take
part in the next generation of individuals. After selection, the
individual is copied into the new generation without any
modifications. Reproduction reflects the principle of natural
selection and survival of the fittest [11].

b) Crossover
The crossover operator replaces a randomly selected sub

tree of an individual with a randomly chosen sub-tree from
another individual and creates new offspring by exchanging
sub-trees (i.e., sub-lists) between the two parents. The
crossover point was chosen at random for both parents. For
example, consider the following two individuals as parents
(the “crossover point” is indicated by a tilted line and the sub
trees swapped by crossover are shown in bold):
Parent 1: (a(b (c (h (n)))
Parent 2: (a(f) (e (b) (d) (k)))
with corresponding hierarchical structure is given in Fig.3.

Fig. 3 Two parents before crossover

a

f e

b
d k

a

b c

h
n a

f e

b
d k

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

140

The two offspring resulting from crossover are:
Offspring 1: (a(e (b) (d) (k)) (c(h) (n))) and
Offspring 2: (a(f) (b)) are shown below in Fig.4.

Fig. 4 Two offspring produced by crossover

c) Mutation
For the tree mutation a sub-tree/leaf is replaced by

randomly chosen sub-tree/ leaf.

C. Fitness Function
The fitness function evaluates the quality of an individual in

the population. For the proposed algorithm, the fitness
measure of an individual is defined as:

Fitness = ∑SM [Di, Dj] (5)
∀ Di, Dj
The wining individual has the highest fitness such that
∀ i, j Di→ Dj.

VI EXPERIMENTAL RESULTS
Each GP run consisted of a population of 25 individuals

evolving over generations. The probability of crossover,
reproduction and mutation set to 0.8, 0.1 and 0.1, respectively,
and the selection method used for both parents was fitness
proportionate. For the practical reason of avoiding the
expenditure of large amounts of computer time on occasional
oversized programs, the depth of initial programs was limited
to 8 and during the run the maximum tree depth was set to 10.

Training Data Set (Employee)
Employee
-lives-in

Time Nature-of-
the-Day

Decision

City night Sunday Is-in-city
City night working Is-at-home
City night working Is-in-city
City day Sunday Is-outside-

home
City night Sunday Is-in-city
City day working Is-working-

outdoor
City night working Is-in-city
City night Sunday Is-at-home
City night working Is-at-home
City day Sunday Is-entertaining-

outdoor
City day working Is-outside-

home
City day working Is-outside-

home
City day Sunday Is-entertaining-

outdoor
City day working Is-working-

outdoor
City night Sunday Is-at-home
City day Sunday Is-outside-

home
City night Sunday Is-in-city
City day Sunday Is-entertaining-

outdoor
City day Sunday Is-outside-

home
City night working Is-at-home
City day Sunday Is-entertaining-

outdoor
City day working Is-working-

outdoor
City day Sunday Is-entertaining-

outdoor
City day working Is-working-

outdoor
City day working Is-working-

outdoor

Example 1: By applying rule discovery algorithm and also
using Dempster Shafer theory five flat rules along with belief
factor are discovered:

1) If Emplyee_lives_in_city _y Then Emplyee _is_ in_city_y
: 0.2
2) If Emplyee _ lives_in_city_ y ٨ time(night) Then
Emplyee _is_at_home : 0.5
3) If Emplyee _ lives_in_city_ y ٨ time(day) Then Emplyee
_is_outside_home : 0.3
4) If Emplyee _lives_in_city_y ٨ time(day) ٨ day(working)
Then Emplyee_is_ working_outdoor : 0.7
5) If Emplyee_lives_in_city_y ٨ time(day) ٨ day(Sunday)
Then Emplyee_is_ entertaining_outdoor : 0.6

a

e
c

h

n b d k

a

f b

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

141

Support of the rules 1, 2,3,4,5 is obtained by using formula
(1). Values of γ1, γ2, γ3, γ4 and γ5 are 0.2, 0.5, 0.3, 0.7, and
0.6 respectively.

Using (1) and (2) the SM is constructed for the five classes
D1= Emplyee _is_in_city_y ; D2= Emplyee _is_at_home ;
D3= Emplyee _is_outside_home ; D4= Emplyee
_is_working_outdoor ;
D5= Emplyee _is_entertaining_outdoor ,

Support for these decision classes can be obtained by using
formula (2)
S(D1) = s(P) * γ1 = 1.0 * 0.2 = 0.2
S(D2) = s(P) * γ2 =.0.4 * 0.5 = 0.2
S(D3) = s(P) * γ3 = 0.6* 0.3= 0.18
S(D4) = s(P) * γ4 = 0.28 * 0.7= 0.19
S(D5) = s(P) * γ5 = 0.32 * 0.6 = 0.19

Above five decision classes are mentioned in table

TABLE I
SUBSUMPTION MATRIX (5 × 5)

D1 D2 D3 D4 D5

D1 1 1 1 1 1
D2 0 1 0 0 0
D3 0 0 1 1 1
D4 0 0 0 1 0
D5 0 0 0 0 1

The proposed algorithm produced the following individual
with the highest fitness = 4 :
(D1(D2)(D3(D4)(D5))).

The corresponding hierarchy is shown in Fig.5.

Fig. 5 Hierarchy-the individual with the highest fitness=4

From the discovered hierarchy shown in Fig. 5, the following
Quantified HPRs are generated:
level 0
(D1 If [Emplyee _lives_in_city_y] Generality []
Specificity [D2,D3]) [0.2 . . 1]

level 1
(D2 If [time (night)]
Generality [D1]
Specificity []) [0.5 . . 1]
(D3 If [time (day)]
Generality [D1]
Specificity [D4 ,D5]) [0.3 . . 1]
level 2
(D4 If [day (working)]
Generality [D3]
Specificity []) [0.7 . 1]
(D5 If [day (Sunday)]
Generality [D3]
Specificity []) [0.6. . 1]

Dempster shafer intervals in the form [s(P→D), p(P→D)] are
obtained for each HPR. Further uncertainty of each rule can
be obtained by using formula
u(A) = p(A) – s(A).

On the above discovered Quantified HCPR rules,
approximate reasoning can also be applied according to
Dempster Shafer theory explained in previous section.

Example 2: suppose we have 10 flat rules with 10 different
classes as follows:
If P1 ٨ P2 ٨ P5 Then D1 : γ1
If P1 ٨ P2 ٨ P4 ٨ P7 Then D2 : γ2
If P1 ٨ P2 ٨ P4 Then D3 : γ3
If P1 ٨ P2 Then D4 : γ4
If P1 ٨ P2 ٨ P5 ٨ P6 Then D5 : γ5
If P1 ٨ P2 ٨ P3 Then D6 : γ6
If P1 ٨ P2 ٨ P4 ٨ P8 ٨ P11 ٨ P12 Then D7 : γ7
If P1 ٨ P2 ٨ P4 ٨ P8 ٨ P9 ٨ P10 Then D8 : γ8
If P1 ٨ P2 ٨ P4 ٨ P8 Then D9 : γ9
If P1 ٨ P2 ٨ P4 ٨ P8 ٨ P13 ٨ P14 ٨ P15 Then D10 : γ10

Finally, the proposed algorithm produced the following
individual with the highest fitness = 9:
(D4(D6)(D3(D2)(D9(D7)(D8)(D10)))(D1(D5))).

The corresponding hierarchy is shown in Fig. 6.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

142

Fig.6 Hierarchy-the individual with the highest fitness=9
From the discovered hierarchy shown in Fig. 6, the following

HPRs are generated:

level 0
(D4 If [P1, P2]
Generality []
Specificity[D6,D3, D1]) : [γ1 .. 1]
level 1
(D6 If [P3]
Generality [D4]
(D6 If [P3]
Generality [D4]
Specificity []) : [γ2 ..1]
(D3 If [P4]
Generality [D4]
Specificity [D2, D9]) :[γ3 ..1]
(D1 [P5]
Generality [D4]
Specificity [D5] :[γ4 ..1]
Specificity []) : [γ2 .. 1]

(D3 If [P4]
Generality [D4]
Specificity [D2, D9]) [γ3 .. 1]
 (D1 If [P5]
Generality [D4]
Specificity [D5]) :[γ4 .. 1]

level 2
(D2 If [P7]
Generality [D3]
Specificity []): [γ5 .. 1]
D9 If [P8]
Generality [D3]
Specificity [D7,D8,D10]) [γ6 .. 1]
(D5 If [P6]

Generality [D1]
Specificity []) [γ7 .. 1]

level 3
(D7 If [P11, P12]
Generality [D9]
Specificity []) [γ8 .. 1]
 (D8 If [P9, P10]
Generality [D9]
Specificity []) [γ9 .. 1]
 (D10 If [P13, P14, P15]
Generality [D9]
Specificity []) [γ10 .. 1]

VI. CONCLUSION
As an attempt towards automated generation of hierarchies,

a GP approach along with Dempster Shafer Theory is
proposed to organize, summarize and present the discovered
rules in the form of Quantified HPRs. Suitable genetic
operators are proposed for the suggested encoding. Based on
the SM, an appropriate fitness function is suggested.
Performance of the proposed algorithm is demonstrated
through experimental results, which are quite encouraging.
Discovered Quantified HPR would facilitate quantitative
reasoning and learning. One of the most important future
research directions would be the discovery of Quantified
HPRs with exceptions i.e. Quantified HCPR from large
databases.

REFERENCES
[1] Bharadwaj, K.K., Neerja and Goel, G.C. 1994, ‘Hierarchical Censored

Production Rules system employing Dampster-Shafer Uncertainty
Calculus’, Information and Software Technology, Vol 36, pp 155-174.

[2] Tamanna Siddiqui, K. K. Bharadwaj, “Discovery of Quantified
Censored Production Rules from the Large set of Discovered rules”,
Proceedings of International Conference: Conference on Information
Science, Technology and Management (CISTM 2006), Chandigarh,
India. July 16-18, 2006.

[3] S. Levachkine and A. Guzman-Arenas, “Hierarchies measuring
qualitative variables,” Springer-Verlag Berlin Heidelberg 2004, A.
Gelbukh (Ed.):CICLing 2004,2004,pp.262-274.

[4] B. Liu., M. Hu. And W. Hsu., “ Inductive Representation of decision
Trees using general rules and exceptions”, AAAI-2000.

[5] Cios, K. J. Sztandera, L. M., “Continuous ID3 Algorithm with Fuzzy
entropy measures. Proc. IEEE Int. Conf. Fuzzy Systems, San Diego,
469-476, 1996.

[6] U. Fayyad, G. P. Shapiro and P Smyth, “The KDD process for extracting
useful knowledge from volumes of data”, Communications of the ACM,
vol.39, pp. 27-34, 1996.

[7] K. Sentz and S. Ferson (2002), ‘Combination of Evidence in Dempster-
Shafer Theory’, Sandia National Laboratories report SAND2002-0835.

[8] Farhad Hussain, Huan Liu, Einoshin Suzuki, Hongjun Lu: Exception
Rule Mining with a Relative Interestingness Measure. PAKDD 2000:
86-97.

[9] M. Suan, “Semi-Automatic taxonomy for efficient information
searching,” Proceeding of the 2nd International Conference on
Information Technology for Application (ICITA-2004), 2004.

[10] J. R. Koza, “Genetic programming: on the programming of computers by
means of natural selection,” MIT Press, 1994.

[11] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “ Genetic programming
for knowledge discovery in chest pain diagnosis,” IEEE Engineering in
Medical and Biology magazine-special issue on data mining and
knowledge discovery, 19(4), July/Aug 2000,pp.38-44.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

143

[12] Tamanna Siddiqui, “A KDD Tool for automated Discovery of
knowledge”, Proceedings of the 2nd national Conference INDIA Com –
2008, Computing for nation development, February 08 – 09, 2008.

[13] 223012 (M01) Statistical quantification of the sources of variance in
uncertainty analysis: Robinson R.B., Hurst B.T., Risk Analysis, Volume
17, Nr. 4, pp 447–454

[14] K. K. Bharadwaj and R. Varshneya, “Parallelization of hierarchical
censored production rules,” Information and Software Technology, 37,
1995, pp.453-460.

[15] K. K. Bharadwaj and N. K. Jain, “Hierarchical censored production rules
(HCPRs) systems,” Data and Knowledge Engineering, North Holland,
vol. 8, 1992, pp.19-34.

[16] J. Han, and Y. FU, “Dynamic generation and refinement of concept
hierarchies for knowledge discovery in databases,” AAAI’94 Workshop
Knowledge in Databases (KDD’94), Seattle, WA, July 1994, pp. 157-
168.

[17] H. Surynato and P. Compton, “Learning classification taxonomies from
a classification knowledge based system,” Proceedings the First
Workshop on Ontology Learning in Conjunction with ECAI-2000,
Berlin, pp.1-6.

[18] B. Liu, M. Hu, and W. Hsu, “Multi-level organization and
summarization of the discovered rules,” Boston, USA, SIGKDD-2000,
Aug 20-23, 2000.

[19] D. Richards and U. Malik, “Multi-level rule discovery from
propositional knowledge bases,” International Workshop on Knowledge
Discovery in Multimedia and Complex Data (KDMCD’02), Taipei,
Taiwan, May 2002, pp.11-19.

[20] A. A. Freitas, “A survey of evolutionary algorithms for data mining and
knowledge discovery,” In: A. Ghosh, and S. Tsutsui (Eds.) Advances in
Evolutionary Computation, Springer-Verlag, 2002.

[21] I. De Falco, A. Della Cioppa, and E. Tarantiono, “Discovering
interesting classification rules with genetic programming,” Applied Soft
Computing, 1, 2002, pp.257-269.

[22] M. V. Fidelis, H. S. Lopes, and A. A. Freitas, “Discovering
comprehensible classification rules with a genetic algorithm,” Proc.
Congress on Evolutionary Computation-2000 (CEC’2000), La Jolla, CA,
USA,IEEE, July 2000, pp.805-810.

