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     Abstract—A multivariable discontinuous feedback linearization 
approach is proposed to position control of an electrically driven fast 
robot manipulator. A desired performance is achieved by selecting a 
useful controller and suitable sampling rate and considering 
saturation for actuators. There is a high flexibility to apply the 
proposed control approach on different electrically driven 
manipulators. The control approach can guarantee the stability and 
satisfactory tracking performance. A PUMA 560 robot driven by 
geared permanent magnet dc motors is simulated. The simulation 
results show a desired performance for control system under 
technical specifications. 

 
Keywords—Fast robot, feedback linearization, multivariable 

digital control, PUMA560. 

I. INTRODUCTION  
OMPUTER-assisted direct digital control is being 
increasingly used in process industries. Many industries 

use the proportional-integral-derivative control (PID) for 
direct digital control (DDC). The reasons for its popularity 
include well-known tuning methods for analog controller 
design and relaxed requirements for mathematical model of 
robot manipulators [1]. However, the control problem 
becomes hypersensitive, when faster trajectories are 
demanded. For instance, laser cutting of thin films, and arc 
welding can be mentioned. The main reason for this 
sensitiveness refers to dynamic problems resulting from high 
velocities and accelerations. In the other word, the 
manipulator dynamics is highly nonlinear with strong 
couplings existing among the joints which complicate the task 
of a simple PID controller. Therefore, robot performance 
degrades quickly, as speed increases [2]. To avoid this, using 
of nonlinear decoupling controllers is the best approach. 
Recent developments in nonlinear control allow the design of 
controllers that make full use of existing nonlinear models 
over a broader operating region. Many of these techniques are 
special cases of feedback linearization, which has a sound 
theoretical base in differential geometry [3], [4]. Several 
researches have been performed for flexible arms based on 
input-output feedback linearization [5]-[9].  

Whenever the number of outputs is larger than the number 
of inputs, a part of dynamics of flexible manipulator becomes 
unobservable. These unobservable dynamics which refer to 
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the zero dynamics of the system represent the motion of the 
flexible subsystem. Feedback linearization was used to 
linearize and decoupling of incorporated dynamics of 
manipulator and actuators [10]. A digital implementation of 
acceleration was used as feedback control without velocity 
and acceleration measurements [11]. A new scheme was 
proposed due to coupling.  The proposed approach was 
applied for the three first joint of PUMA 560 Robot driven by 
flexible geared DC motor [12]. Many researches were 
performed based on feedback linearization [13]-[14]. 
However, the aforementioned studies have used continuous-
time feedback linearization control while most robot 
manipulators like as PUMA 560, measure joint position 
digitally by using shaft encoders. In the other word, in 
practice, the digital data such as digital measurements are only 
available at specific instances and control inputs can only be 
changed at these instances. Hardware configuration of the 
robot control system is show in Fig. 1. Since a broad spectrum 
of continuous-time systems is computer controlled, we employ 
feedback linearization in combination with optimal control 
technique to design a discontinuous nonlinear feedback 
controller for trajectory tracking in joint space.  

This paper is organized as follows: Section II describes the 
dynamic model formulation of actuator and robot. Section III 
describes the general steps of feedback linearization design 
and dedicate to define the model based control strategy of this 
study. Section IV is related to sampling rate option. Section V 
lists general steps for discontinuous feedback linearization and 
major simulation results in terms of tracking performance in 
analog and digital space. Section VI is performed for stability 
proof and conclusions are given in Section VII. 

II. ACTUATOR/MANIPULATOR DYNAMIC MODELING 
    We first notice to familiar differential equations of motion 
which describe the DC motor dynamics to drive a n degrees of 
freedom robot. These equations are given by 

 

             ( )
k k km b mJ b V rm m m m lR R

θ θ τ+ + = −�� �  
(1) 

 
where mθ�  is the load angular velocity, V is the motor voltage, 
τl is the torque load, R is the armature resistance, Kb is the 
back EMF constant, Km is the torque constant, Jm is the 
moment of inertia, bm is the damping coefficient and r is the 
gear ratio. It must be noted that, here we are ignored the motor 
inductance. However, armature resistance is significant in  
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Fig. 1 Hardware configuration of the control robot system 

 
determining the maximum achievable joint velocity [12], [19]. 
Whereas, feedback linearization is a strongly model-based 
controller design approach, it is important to obtain an 
accurate model of the rigid robot manipulator dynamics as 
follows 
 

             [ ] 2( ) ( ) ( ) ( )A q q B q qq C q q g q τ⎡ ⎤+ + + =⎣ ⎦�� � � �  (2) 

 
where ,q q  are the joint velocity and acceleration vectors, 
respectively, A(q) denotes the inertia matrix, C(q), B(q) 
expresses the matrices of coriolis and centripetal forces 
respectively, and G(q) is the gravity vector. 

III. MULTIVARIABLE FEEDBACK LINEARIZATION DESIGN 
   In this section, we recall briefly the basics of feedback 
linearization theory. For a detailed treatment, see [4]. Consider 
a generic nonlinear dynamic system 
 

      
( ) ( )
( )

f g u
y h

= +
=

x x x
x

�
 

         
(3) 

 
where x is the n-dimensional state and u is the m-dimensional 
input. The exact state linearization problem via static feedback 
consists in finding a control law of the form 
 

              ( ) ( )u x x vα β= +           (4) 

 
with β(x) nonsingular and v an auxiliary input, and a change 
of coordinates z =φ(x) such that, in the new coordinates, the 
closed-loop system is linear and controllable. Necessary and 
sufficient conditions exist for the solvability of this problem 
(Theorem 5.2.3) [4].  For fully actuated robots, i.e., with a 
number of generalized coordinates equal to the number of 
input commands, these conditions are trivially satisfied and 
the control law (2) leads to the well-known computed torque 
method. If static feedback does not allow one to solve the 
problem, one can try to obtain exact state linearization by 
means of a dynamic feedback compensator of the form  
 

         
( ) ( )
( ) ( )

, ,

, ,

u x x v

x x v

α ζ β ζ

ζ γ ζ δ ζ

= +

= +�  
         

(5) 

 
where ξ is the ν-dimensional compensator state, together with 
a change of coordinates z =φ(x,ζ). Only sufficient conditions 
are available for the solvability of this problem (see 
proposition 5.4.4) [4]. In robotics, dynamic feedback has been 
used for the exact linearization of manipulators with elastic 
joints [15] and of nonholonomic wheeled mobile robots [16]. 
In both the static and the dynamic feedback case, if the 
sufficient conditions are satisfied, the actual construction of 
the control law requires us to identify an auxiliary m-
dimensional output y = h(x), such that the corresponding 
vector relative degree is well defined and the sum of its 
elements equals n. In particular, this output vector, together 
with its derivatives up to a certain order, defines the 
linearizing coordinate z. As a byproduct, the control laws (4) 
or (5) also yield input-output decoupling between v and y. In 
our study, we will restrict our analysis to the multivariable 
nonlinear systems with the same numbers of inputs and 
outputs. Under the nonlinear state transformation z =φ(x) and 
the control low (4), the original nonlinear system (3) can be 
transformed into a simple linear system: 
 

     

0 0 0
0

0
0

0 0
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I
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# %� #
#
… …

v v

 

 
 

(6) 
 

 
where v is control input vector and I is a diagonal unit matrix 
[17]. We can achieve any state in finite time using a suitable 
control low if the given system to be controllable. To control a 
linearized system, we can use a linear state feedback control 
law of the form 
 

              (7) 
 
where k is a vector of design parameters for pole placement 
and r is a desired trajectory. The coefficient vector k is 
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determined such that the system poles are placed in desired 
places. Substituting (7) into (6) yields 
 

                  ( )= − +z A bk z br�
 

(8) 

 
 In this manner, the closed loop poles are eigenvalues of the 

A-bk matrix. The linear state feedback provides possibility of 
achieving a wide range of closed loop poles.  One solution for 
determination k, is given by the optimum linear control law of 
the form 
 

            
1 TR P−=k b  (9) 

 
where P and Q are the symmetric positive definite n×n 
matrixes and R>0 which satisfy the Riccaty equation as 
follows 
   

          
1 0T TA P PA PbR b P Q−+ − + =  

(10) 

IV. SAMPLING RATE OPTION 
A large class of continuous-time systems is in fact computer 

controlled. In these cases the system data are only available at 
specific instances and control inputs can only be changed at 
these instances. Recent advancements in the speed and size of 
digital technology (DSP, microprocessors, etc.), make 
possible implementation of digital control design for robot 
manipulator. However, often it is hard to get around sampling 
rate for sampling operation. To avoid this, in many of 
literatures, it does usually assume the sampling frequency is 
sufficiently high, such that, the closed-loop system considers 
as a continuous-time system. But how much the sampling 
frequency is big for actual systems? Examples of systems 
which are inherently sampled are given by [18]. For 
calculating a practical sampling frequency, an initial 
continuous-time design must be performed. To this end, we 
perform exact feedback linearization on combined dynamics 
of robot and actuators. After that, the optimal state feedback 
vector for trajectory tracking is obtained by suitable selection 
of Q and R weight matrices and using (9). A sampling 
frequency, sω , between of at least ten times and at most 
twenty times of closed-loop system bandwidth, bω , (11) is the 
best selection based on drawing the frequency response of 
closed-loop system. 
 

                 10 20s

b

ω
ω

< <  (11) 

 
Then 
 

               2
s

s
T π

ω
=  

(12) 

V.  DISCONTINUOUS FEEDBACK LINEARIZATION DESIGN 
Continuous-time control method is applied to digital 

controller design. This design methodology requires a high 

sampling rate. This method is highly practical. Design of a 
digital controller usually starts with an analog design, if only 
to select a suitable sample period. The equivalent diagram of 
the proposed approach is shown in Fig. 2. So, based on 
descriptions that mentioned to them in above, the procedure 
used to design of digital controller entails four steps: 

Step1: Initial Continuous-Time Design 
1) Combine the dynamic model of robot and actuators as 

follows: 
 

( ) ( )

( )

21 1( ( ) )

1 1 1 1                               ( )

q qqA q r J r q B C q qm
k km bG q r b r q r k R Vm mR

⎡ ⎤ +⎣ ⎦
− −+ +

− − − −+ + + =

� ��� �

�
 

(13) 
where Jm is a diagonal matrix of the moment of inertia. A 
compact  form of (13) is given by 
 

                    ( ),( ) + =��� q qD q q h u  (14) 
 
where 
 

( ) ( ) ( ) ( )2

1 1( ) ( )

1 1( )

1 1

, q qq

D q A q r J rm
k km bB C q q G q r b r qm R

u r k R Vm

h q q ⎡ ⎤ + +⎣ ⎦

− −= +

− −+ +

− −=
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(15) 
 

By choosing position and velocity of actuators as state 
variable (16), the state space form of equation (14) is  
 

                    1

2

X q
X q

=⎧
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(16) 
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(17) 

 
2) Checking the linearization conditions and forced a 

change of coordinates z =φ(x).  As said in Section III, for fully 
actuated robots, i.e., with a number of generalized coordinates 
equal to the number of input commands, these conditions are 
trivially satisfied and so, change of coordinates is formed as 
 

 1 1 1 1 2
1

2 2 2 2 1 2( ( , ))

z X z X X

z X z X D u h X X υ−

= ⇒ = =

= ⇒ = = − =

��
��

 
(18) 

 
By comparing (18) and (4), α and β are obtained 

 
         1 2( , )h X Xα =     ,     ( )D qβ =  (19) 
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Fig. 2 Discontinuous feedback linearization scheme 
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Fig. 3 Desired trajectory 

 
In this manner, the decoupled system is 

 

               
0 0
0 0

I
z Az bv z v

I
⎡ ⎤ ⎡ ⎤

= + = +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�            
(20) 

 
3) By choosing weight matrices Q and R  
 

6 6 6 6 6 6 6 6

6 6 6 66 6 6 6

0 0 0
10000 ,     R 100

0 0 0

I
Q

I
× × × ×

× ×× ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= × = ×
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
(21) 

 
The optimal state feedback vector K is proposed as  
 

              6 6 6 6 6 121000 44.7K I I× × ×
= × ×⎡ ⎤⎣ ⎦  (22) 

 
For continuous-time design, desired trajectory, tracking error, 
and output tracking are shown by Fig. 3, Fig. 4 and Fig. 5, 
respectively. It must be noted that, the same trajectories are 
considered for all of joints.  Also, a proof of stability for 
continuous-time design is easily provided. 

Step2: Choosing sample period 
Bode diagram of closed loop system is shown in Fig. 6. We 

obtain the closed-loop bandwidth from the closed-loop 
frequency response. It is approximately 64.9 rad /sec. We can 
choose a sampling frequency in the following range. 

 
( ) ( )/ sec / sec10 20 64.9 ra 649 1298d radto tosω = × =  (23) 
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Fig. 4 Tracking error  
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Fig. 5 Output trajectory 

 
Then 
 

        2 0.0048 0.0097secsT to
sω
Π

= =   (24) 

 
It is necessary to remind that, we choose the worse of 

sampling rate for sampling operation (Ts = 0.01 sec).  
Step 3: Add sampled-data system elements 
A discrete time implementation will introduce a delay of at 

least one sample period Ts. This delay must be added to 
decoupled system. In this stage by considering to zero order 
hold approximation effect, we obtain a controller that 
establishes design criteria’s. The controller is designed as 

 
          ( ) 6 644.7 1000s I ×+ ×   (25) 

 
Step 4: Digitize control law 
After obtaining the compensator (25), which satisfy the 

design criteria’s of continuous-time system, find its discrete 
time equivalent form, for example, by the Tustin method. The 
result given by: 
 

                         ( ) 6 6
9944 7944

1
z Iz ×
− ×+  

           (26) 

 
Output trajectory and tracking error have shown by Fig. 7 and 
Fig. 8, respectively. It is shown that the tracking errors to be 
under about 0.008 rad that is acceptable due to  
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Fig. 6 Closed-loop frequency responses  
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Fig. 7 Output trajectory 

 
mechanical resolution. The technical limits such as voltage 
limit, and torque limit should be considered. Fig. 9 and Fig.10 
show voltages of motors and load torque of robot respectively 
that designate good operation of actuators. It must be noted 
that the load torque for the second three joints is approximatly 
zero because there are no distortion in center wrist. By using 
Prewrap method, tracking error is given by Fig. 11.  

VI. STABILITY ANALYSIS 
In here, we present stability analysis for discontinuous 

feedback linearization. We had shown that, the combined 
dynamics of actuators and robots after implementation of 
feedback linearization is divided to six same independent 
subsystems as follows 
 

                i iq v=��             (27) 
 

Discrete time equivalent form for i’th subsystem analog 
controller sees in Fig 12. At first, Z transform of ( ) ( )h pG s G s  
given by 
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Fig. 8 Digital tracking error (Tustin method) 
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Fig. 9 Motor voltages 
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Fig. 10 Load torques 
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Fig. 11Prewrap method with ω=20rad/sec 
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Fig. 12 Discrete time equivalent form for the analog controller  

 
On the other hand, the closed loop equation is  
 

1 ( ) 0G z+ =                                        (29) 
where: 
 

 
Solving (29) leads to 

 
By using jury stability criteria [23], the closed-loop poles are 
obtained 

 
where all poles are within circle unit as seen in Fig 13, 
therefore the closed loop system is stable. 

VII. CONCLUSION 
Due to the complexity of the nonlinear coupling inertial, 

coriolis, centripetal and gravitational forces arising from 
motion of the manipulator, PID control algorithm is not 
suitable alone for direct digital control in high velocities and 
accelerations. A multivariable discontinuous feedback 
linearization scheme was proposed for position control of an 
electrically driven high speed robot manipulator. A suitable 
performance was achieved by selecting a suitable controller 
and desired sampling rate and considering saturation for 
actuators. It was shown that there is not significant difference 
between the performance of analog and discontinuous 
feedback linearization. 
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Fig.13 Z plane 

 
[7] D. Wang, and M. Vidyasagar, Control of a class of manipulators with a 

single flexible link: Part II. Observer controller stabilization, Journal of 
Dynamic Systems, Measurement, and Control 113, pp. 662-668, 1991. 

[8] D. Wangand,  M. Vidyasagar, Control of a class of manipulators with a 
single flexible link: Part I. Feedback linearization, Journal of Dynamic 
Systems, Measurement, and Control 113, pp. 655-661, 1991. 

[9] P. Lucibello, and M. D. Di Benedetto, Output tracking for a non linear 
flexible arm, Journal of Dynamic Systems, Measurement, and Control 
115, pp.78-85, 1993. 

[10]  T. J. Tarn, A. K. Bejczy, X. Yun, and Z. Li, Effects of motor dynamics         
on nonlinear feedback robot arm control, IEEE Transactions on Robotics 
and Automation, vol. 7. No. 1, pp. 114-122, February 1991. 

[11] J. Studenny, P-R. Belanger, L-K. Daneshmend, A digital 
implementation of the acceleration feedback control law on a PUMA 
560 manipulator, Proceedings of the 30th conference on Decision and 
control, Brighton, Engeland, December 1991. 

[12] P. J. Baines, and J. K. Mills, Feedback Linearized Joint Torque Control               
of a Geared, DC Motor Driven Industrial Robot, the international journal 
of robotics research, pp.169-192, 1998. 

[13] G. Oriolo, A. D. Luca, and M, Vendittelli, WMR Control Via Dynamic 
Feedback Linearization: Design, Implementation, and Experimental 
Validation, IEEE Transactions on control systems technology, Vol. 10, 
NO. 6, pp. 835-852, November 2002. 

[14] T. Sugie, K. Fujimoto, and Y. Kito, Obstacle Avoidance of Manipulators 
With Rate Constraints, IEEE Transactions on robotics and Automation, 
Vol. 19, No. 1, pp.168-174, 2003. 

[15] A. De Luca, and P. Lucibello, A general algorithm for dynamic feedback 
linearization of robots with elastic joints, IEEE Int. Conf. on Robotics 
and Automation, pp. 504–510, 1998. 

[16] B. d’Andrea-Novel, G. Bastin, and G. Campion, Control of 
nonholonomic wheeled mobile robots by state feedback linearization. 
Int. J. of Robotics Research 14(6):543–559, 1995. 

[17] M. W. Spong, M. Vidyasagar, Robot   Dynamics And Control, John 
Wiley And Sons, 1989. 

[18] K.J. Astrom, and B. Wittenmark, Computer-Controlled Systems, Theory  
and Design, Prentice Hall information and System Science Series, 3rd 
edn, Prentice Hall, 1997. 

[19] P. I. Corke, in situ Measurement of Robot Motor Electrical Constants. 
[20] B. Armstrong, O. Khatib, J. Burdick, The Explicit Dynamic Model and 

Inertial Parameters of the PUMA 560, IEEE Transaction, pp.510-518, 
1986. 

[21] P. I. Corke, B. Armstrong-H´elouvry, A Search for consensus among 
model parameters reported for the PUMA 560 Robot. 

[22] P. I. Corke, The Unimation Puma servo system, MTM-226, July 1994. 
[23] K. Ogata, Discrete Time Control Systems, Translated by P. J. Maralani 

and A. Khakhi sedig,  2000. 
 
 

{ } ( )2

2

4972 3972
( ) ( ) ( ) ( )

( 1)D h p
T z

G z G z z G s G s
z

−
= × =

−
 

 (30) 

2 1.5028 0.6028 0z z− + =   (31) 

1,2    0.7514  0.1956iz = ±  (32) 


