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Abstract—State-of-the-art methods for secondary structure 

(Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility 
(Sable, ACCpro) predictions use evolutionary profiles represented by 
the position specific scoring matrix (PSSM). It has been 
demonstrated that evolutionary profiles are the most important 
features in the feature space for these predictions. Unfortunately 
applying PSSM matrix leads to high dimensional feature spaces that 
may create problems with parameter optimization and generalization. 
Several recently published suggested that applying feature extraction 
for the PSSM matrix may result in improvements in secondary 
structure predictions. However, none of the top performing methods 
considered here utilizes dimensionality reduction to improve 
generalization. In the present study, we used simple and fast methods 
for features selection (t-statistics, information gain) that allow us to 
decrease the dimensionality of PSSM matrix by 75% and improve 
generalization in the case of secondary structure prediction compared 
to the Sable server. 
 

Keywords—secondary structure prediction, feature 
selection, position specific scoring matrix 

I.INTRODUCTION 

ROTEIN structure prediction from the amino acid 
sequence is an fundamental and challenging problem in 

molecular biology. Stimulated by the difficulty of the overall 
structure prediction, computational methods for the prediction 
of intermediate attributes, such as secondary structure (SS)[1] 
[2] [3], solvent accessibility (SA) [4] [5], contact number [6], 
are being developed in order to facilitate protein folding 
simulations, structure prediction and functional annotation of 
important domains, motifs and individual amino acid residues. 
These problems are not only easier to solve (compared to the 
3d structure prediction), but are also better suitable for 
machine learning approaches.  
 In order to apply machine learning algorithms, proteins 
(and individual amino acid residues) are typically represented 
as vectors. For example, Artificial Neural Networks and 
Support Vector Machines, which are widely used in structural 
bioinfomatics, require vector representation in some feature 
space. In fact, the choice of the representation is crucial for a 
successful development of accurate and robust predictors with 
good generalization. Many descriptors of residues (features), 
such as hydrophobicity, polarity, amino acid propensities etc., 
have been applied to distinguish, e.g., if residue is in a helix or 
strand in case of secondary structure prediction [7], [8] , or if 
it is in contact with the other residue in the case of the contact 
map prediction [9]. However, it has been shown that 

evolutionary-based representations that utilize multiple 
alignment and information about protein families, as encoded 
by the position specific scoring matrix (PSSM) [10], yield the 
highest accuracies in secondary structure and solvent 
accessibility problems [1], [6]. In the PSSM, each amino acid 
residue (“position” in the sequence) is represented by 20 
numbers (20 possible amino acid substitutions) that reflect 
frequencies of substitutions observed at this position in a 
protein family. PSSM scores are positive, indicate that given 
amino acids substitution occurs more frequently in the 
alignment that expect by chance, and negative, substitution 
occurs less frequently then expected. Multiple alignments and 
the resulting PSSMs are typically computed iteratively, e.g., 
using the Psi-BLAST program [11]. 
 From the machine learning point of view there is one 
disadvantage of using evolutionary profiles in data vectors – 
size of the PSSM matrix, in other words number of features. 
The more features in the training vector the bigger size of the 
training set, to fully cover feature space, must be. Models that 
need to be trained are minimizing some function that depends 
on the number of features and high dimensional functions 
have potential to be much more complicated then the lower 
one so its harder to find good local minimum. This may lead 
to poor generalization and of course long training time. 
Dimensionality reduction is the solution for this problem and 
also may help to understand the data, it is possible to find 
features that are most informative or most important for 
particular problem. 
 So far most prediction methods, were PSSM matrix has 
been used,  are using raw PSSM matrix without 
dimensionality reduction. There are only few examples of 
dimensionality reduction of PSSM matrix [12], [13] where 
PCA (principle component analysis) [14]  and C-NLPCA 
(cascaded non linear components analysis) has been used. 
Both papers reports improvements in secondary structure 
prediction on database developed by Cuff and Barton CB396 
[15] 
 This article presents application of features extraction, 
features selection and combination of these two methods on 
PSSM matrix and its influence on secondary structure and 
solvent accessibility predictions. For features extraction PCA 
has been used, features selection is based on information gain 
[16]  and t-statistics. 
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II.MATERIALS AND METHODS 

A.Training and control sets 
Training set has been build using the same protein structures 
as were used to develop Sable [4] [17] method. In that case 
representative and non-redundant set of protein chains was 
created based on Pfam (Protein Families) database, version 
6.6. After careful preprocessing of Pfam families and its 
representative PDB structures 860 PDB structures (about 
210000 residues) with no homology between each other were 
selected. 

 For control sets we used the same sets as it was used for 
Sable server evaluation. There are 603 protein chains  (with 
143000 residues) with no homology to proteins included in 
the training that are grouped into 4 datasets referred to as 
S156 (156 structures submitted to PDB from January through 
March of 2002), S135 (135 structures submitted from April 
through June), S163 (163 structures submitted from July 
through September), and S149 (149 structures submitted from 
October through December of 2002). The list of protein 
structures in the training and all control sets can be 
downloaded from http://sable.cchmc.org. 

B.Feature space 
 For secondary structure and solvent accessibility we used 
the same feature space as it was used in data generated to train 

Sable server. The local structural environment and 
evolutionary context of each residue is characterized by a  
 
sliding window of 11 amino acids, with the residue of interest 
at position 6. The most important part of the feature space is 
evolutionary information represented in the form of position-
specific scoring matrix (PSSM) generated by PSI-BLAST 
program (version 2.2.9 with default options) on nr database 
(02.12.2007 with 5678482 sequences). For the window of the 
size 11 there is 220 features obtained from PSSM matrix, 
since each amino acid in the window is represented in the 
PSSM matrix by 20 columns of substitution scores. We tried 
also other window sizes but 11 gave best results for secondary 
structure (SS) and solvent accessibility (SA) predictions 
 
 
 

 
Each amino acid in the window is characterized by entropy, 

weighted hydrophobicity and volume. Probabilities, needed to 
calculate entropy, and weights are frequencies of amino acids 
obtained from multiple alignment, so these 33 features also 
include evolutionary information.  

i
i

iVpV ∑
=
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 where pi probability of occurring amino acid i, Vi volume 
(hydrophobicity) of i amino acid. 
 Central residue in the window and its two immediate 
neighbors are represented by binary vector of length 5, value 1 
in this vector indicates the presence of amino acids belonging 
to 1 of the 5 groups with distinct SS propensities: {A, E, L}, 
{V,I} , {S, N}, {P}, {G}. There is one more feature indicating 
the presence of cysteine residues in the window. Altogether 
input space for solvent accessibility and secondary structure 
prediction consists of 269 features. 
 For secondary structure prediction we used two steps of 
predictions that have been introduced in PHD [18] called: 
sequence to structure and structure to structure. Characterized 
feature space has been applied for the first step of prediction, 
the second one is created using only predictions of the first 
step. As in the first step training vectors are created by sliding 
window of size 11 on predicted secondary structures. Also 
architecture of networks (number of hidden nodes) used in 
structure to structure phase was the same as for sequence to 
structure networks. 

C.Training and testing protocol 
For secondary structure and solvent accessibility prediction 
neural networks, generated and trained by Stuttgart Neural 
Network Simulator (SNNS) [19],  have been applied. In all 
cases Rprop [20]  algorithm with default parameters has been 
used. The best architecture, number of hidden nodes  in 
hidden layer (we used networks with only one hidden layer), 
has been determined in 10 fold cross validation. For both 
problems networks with 30 hidden nodes have been selected. 
Architecture optimization has been made only for training set 
with full feature space, for training set where feature space has 
been reduced we used the same number of hidden nodes as in 
the optimized architecture. 

 For each fold of 10 fold cross validation 3 sets have been 
produced: training set 80% of full set, validation set and 
internal testing set 10%. Training in every fold was performed 
as long as accuracy on validation set did not drop, what was 
checked every 10 epochs. Cross validation accuracy is 
obtained by averaging results obtained on test set by selected 
networks. 

D.Relative Solvent Accessibility and Secondary Structure 
 Relative solvent accessibility (RSA) is defined as the ratio 
of the solvent-exposed surface area of that residue observed in 
a given structure, denoted as SAi, and the maximum obtainable 
value of the solvent-exposed surface area for this amino acid, 
denoted as MSAi:  
 

Fig. 1: Sliding window on the PSSM matrix. 
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i MSA

SA
RSA *100=  

Thus, RSAi adopts values between 0% and 100%, with% 
corresponding to a fully buried and 100% to a fully accessible 
residue, respectively. For convenience values of RSA has 
been rescaled to [0,1]. 
 Following training protocol of Sable server we changed 
standard cost function used to train neural network (SSE sum 
squared error) to weighted SSE. 
 

∑ −=
i

iii ozyowSSE 2))()((α  

 where yi(z) is the predicted value for the ith input vector 
given the parameters of the network (weights and biases) z, 
and oi represents the observed real-value RSAs that are 
imposed in the training, weights α(oi) are defined in [4]   and 
they account for naturally occurring variability in terms of 
RSA in families of homologous structures. 
 Secondary structure (SS) and solvent accessible (SA) for 
selected proteins have been generated using Dictionary of 
Protein Secondary Structure (DSSP) program [21]. Since the 
DSSP program assigns each residue to 1 of 8 distinct 
secondary structure classes, the following conversion from 8 
to 3 classes was applied: {G, I, H} to H, {B, E} to E, and {T, 
S, and “other”} to C, where H denotes helix, E denotes -
strand, and C denotes coil. 

E.Dimensionality reduction 
 There are two main approaches for dimensionality 
reduction: feature selection and feature extraction. Feature 
selection algorithms find the most relevant subset of original 
features that help to build robust learning model, and better 
understand the data. Feature selection methods can be divided 
into two categories: ranking features and subset selection. The 
first group of methods provides information on how important 
certain subsets of features are for the particular task at hand. 
The subset selection however is using some search algorithms 
to find the best subset of features. Each subset is evaluated 
using some machine learning model. Usually these class of 
methods give better results but disadvantage is high 
computational cost, which is an important consideration in our 
case. We applied two fast ranking features methods: t-
statistics and information gain. Number of m features that 
leads to best generalization has been determined in cross 
validation. 
 The goal of feature extraction is to find mapping from high 
dimensional space to lower one preserving at the same time 
most of the information and structure of the original space. It 
always leads to completely different feature space and as a 
consequence understanding of the original data based on  
original features is considerable more difficult. For the feature 
extraction PCA has been used. 

 
1)Information gain 

For data X={xi;i=1...m} divided into k classes 
C={cj;j=1..k}, where each vector xi in the data is represented 
by n features Fl={fi;i=1...sl}, where l=1...n, sl is the number of 

different values in the feature Fl,  information gain for feature 
Fl is defined by: 
 

)|()()( ll FCHCHFI −=  
where H(C) is the entropy of classes C in the data: 
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where p(ci), is the probability of class ci occurring 
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where )( l
ifp is the probability occurring value l

if  in the 

feature Fl and )|( l
ij fcp is the conditional probability that 

class cj occurs giving that l
if  has occurred. 

2)T-statistics 
T-statistics for feature F and data divided into two classes 
(plus, minus) is defined as follows:  
 

us

us

plus

plus

usplus

nn

FTstat

min

2
min

2

min ||
)(

σσ

μμ

+

−
=  

where μplus mean value calculated for vector from class plus,  
μminus

 mean value for vectors from class minus, σplus standard 
deviation for data in plus class, nplus number of vectors in plus 
class, and σminus standard deviation for data in minus class, 
nminus number of vectors in minus class. In our case we have 
multi class problems,  Tstat has been calculated for each of the 
class separately (particular class versus others) and summed 
over all classes. 
 

3)Principle component analysis 
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PCA is a linear transform widely used in data analysis and 
compression. It transforms input data X (matrix mxn, where n 
number of features, m number of vectors) into new feature 
space that is build based on eigenvectors of covariance matrix 
C derived from the data X.  
 

XPY =  
 
where, P nxn eigenvectors of covariance matrix C (each 
eigenvector is in the column of P), Y representation of data X 
in new coordinate system. 
 This projection assures that the top components (associated 
with the largest eigenvalues) capture most of the variance of 
the input data. Level of variance for each dimension of the 
transformed system is determined by eigenvalue of covariance 
matrix C. Removing dimensions with the smallest eigenvalues 
(smallest contribution to variance) leads to dimensionality 
reductions. Level of dimensionality reduction depends on the 
problem and must be found empirically.  

III.RESULTS 
 PSSM applied for solvent accessibility and secondary 
structure prediction is represented by sliding window of 
sequence amino acids what leads in our case to 220 features. 
To check similarity between features we calculated Pearson 
correlation coefficient for each feature pair, derived from 
PSSM, in the training data. Although there is 220 features for 
correlation analysis we used only 20 features from the middle 
of the window, because correlations between features from 
different positions in the window (each position in the 
window is represented by 20 features) are very small (on the 
level of 0.1). The highest correlation that we observed was 
0.82 between feature that is representing substitution by valine 
(V) and isoleucine (I), the next one is 0.74 between isoleucine 
and leucine (L). Correlations between features are represented 
in the right panel in , low correlation (less the 0.5) is marked 
by black color, all others are marked by gray scale. The higher 
lightness of the gray scale the higher correlation, correlation 1 
is marked by white color and it appears only on the diagonal 
position. There are eight features that are not highly correlated 
to any other feature A, C, G, H, P, S, T, W. To see overall 
similarity average correlation over all features in PSSM matrix 
has been calculated and its profile is presented on the left 
panel in . The smallest similarity is observed for alanine, small 
values have also proline, threonine, tryptophan and cysteine. 
Because features in PSSM are so highly correlated 
dimensionality reduction based on PCA, that leads to 
uncorrelated feature space, should work well on this data. We 
test this hypothesis specifically in the case of secondary 
structure prediction [12].  
 To assess the importance of each of the 220 features for 
secondary structure and solvent accessibility predictions we 
calculated information gain, and the results are presented in 
Figure 3. Since information gain can be calculated for 
classification problems only, we converted relative solvent 
accessibility values into 10 classes, dividing the overall range 
of RSAa from [0,1] into 10 equally sized bins with the width 
of 0.1. We tested other number of classes using bins with 0.05 

and 0.2 width, concluding that the results were largely 
insensitive to this choice. 
 

 Both graphs in Figure 3 confirms well known facts that 
solvent accessibility prediction depends mostly on the signal 
from the middle residue in the window (middle 20 features) 
[22], and in case of secondary structure signal is spread in the 
neighborhood of the middle amino acid. There is one 
characteristic that can be seen on both graphs - periodicity for 
every 20 features. Because of that we  created two different 
strategies for feature selection: based on scoring for all 220 
features and based on sum of all scores for each amino acid 
substitution over positions in the window of particular amino 
acid what irrespective of the window size gives always 20 
features (these features we call substitution columns, graphical 
representation of substitution columns is depicted on the ). For 
scoring substitution columns we used information gain and t-
statistics. Profiles of PSSM columns for secondary structure 
and relative solvent accessibility are presented on  Figure 4 
and  Figure 5 accordingly.  

A.Secondary structure prediction 
Feature selection of PSSM matrix for sequence to structure 
step has been made based on profiles depicted on Figure 3 and 

Fig. 3: Plots represents value of information gain for PSSM features 
obtained for window 11, left panel for secondary structure classes, 
right for relative solvent accessibility mapped into 10 classes. 

Fig. 2 Left panel represents features profile of average correlation 
coefficients for particular amino acids over all columns in PSSM 
matrix, the right panel presents correlation matrix for PSSM columns, 
black color means regions with low correlations (less then 0.5), 
lightness of the gray scale higher correlations, the highest correlations 
is depicted by white color. 
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Figure 4 in case of substitution columns. Figure 4 presents 
averaged over window t-statistics profile (left panel) and 
information gain profile (right panel).  Information gain and t-
statistics profiles are very similar, in both cases the highest 
values is getting by proline and glycine substitution column, 
the worst six columns, with slightly different order, is the 
same (W, Y, C, F, H, T). Because of that we decided to use 
only information gain for further calculations. 

We checked importance of the best substitution columns by 
removing one column from the PSSM matrix. The highest 
accuracy dropping in CV was observed for proline - 2%, 
alanine – 1% and valine – 0.5%. What is interesting we did 
not notice accuracy dropping in case of glycine, although it is 
not highly correlated to the other columns. Removing the 
worst features, we were able to decrease by 11 (W, Y, C, F, H, 
T, S, M, R, I, N) number of columns in PSSM matrix having 
better accuracy in CV compared to predictor without feature 
selection. Next feature according to information gain was L 
but removing it decreased accuracy in CV. We checked all 
remaining features and finally reduced PSSM matrix to 5 
substitution columns  P, A, V, E, L (predictor S1_PAVEL). 
This means 55 features out of 220 and reduction by 75%. To 
bind founded substitution columns with secondary structure 
we looked at positive values in PSSM matrices generated for 
each query in training set. We observed that substitution by P 
appears mostly in coils – 65% of all occurrence of positive 
values for this class,  by A in helices - 53%, by V in beta 
strands 43%, by E in helices - 51% and by L in helices – 48%. 
We have to add that V is the only one amino acid substitution 
column that has higher occurrence of positive values in beta 

strands compared to other classes. 
 The second strategy of feature selection was to use regular 
features. Because we were able to decrease dimensionality of 
PSSM matrix to 5 substitution columns, we tried to use 55 
features with the best information gain. In cross validation 
results were much worse then using 5 substitution columns 
(by 0.5%).   
 Comparison of our predictors have been made based on Q3, 
percentage of residues correctly predicted in a sequence and 
averaged over all sequences (EVA - EValuation of Automatic 
protein structure prediction, like methodology [23]), and SOV 
measures [24]. Results on four test sets, obtained by averaging 

accuracy from 10 neural networks generated in cross 
validation, are presented in Table 1. The worst generalization 
is obtained for networks without feature selection (S1_SSR), 
the best for predictor that was using feature extraction of 
PSSM matrix obtained by PCA. 
 
TABLE I  SECONDARY STRUCTURE PREDICTION RESULTS FOR SEQUENCE TO 
STRUCTURE PHASE, OBTAINED BY AVERAGING ACCURACY FROM 10 NEURAL 
NETWORKS GENERATED IN CROSS VALIDATION. FOR EACH Q3 AND SOV 
MEASURES STANDARD DEVIATION IS GIVEN. FOLLOWING PREDICTORS HAVE 
BEEN COMPARED: S1_SSR – PREDICTOR WITH FULL FEATURE SPACE, 
S1_PAVEL - PREDICTOR WITH 5 BEST SUBSTITUTION COLUMNS, S1_SSF – 
PREDICTOR WITH 55 BEST FEATURES ACCORDING TO INFORMATION GAIN. PCA 
ABBREVIATION MEANS THAT FOR PARTICULAR FEATURE SPACE PRINCIPLE 
COMPONENT ANALYSIS HAS BEEN APPLIED. 
 

S135 S149 S156 S163  

Q3 SOV Q3 SOV Q3 SOV Q3 SOV 

S1_SSR 75.9+
/-0.3 

72.3+
/-0.4 

74+/-
0.2 

70+/-
0.3 

74.1+
/-0.3 

70.5+
/-0.4 

75.1+
/-0.2 

70.7+
/-0.2 

S1_SSR_PC
A 

77.1+
/-0.2 

73.2+
/-0.5 

75+/-
0.2 

70.6+
/-0.3 

75.4+
/-0.4 

71.6+
/-0.4 

76.1+
/-0.2 

72+/-
0.3 

S1_PAVEL 76.5+
/-0.3 

72.6+
/-0.4 

74.5+
/-0.2 

70+/-
0.2 

75.0+
/-0.3 

71.3+
/-0.2 

75.5+
/-0.2 

71.3+
/-0.4 

S1_PAVEL_
PCA 

76.8+
/-0.2 

73.1+
/-0.3 

74.7+
/-0.2 

70+/-
0.3 

75.3+
/-0.3 

71.3+
/-0.6 

75.7+
/-0.2 

71.5+
/-0.5 

S1_SSF 76.6+
/-0.1 

72+/-
0.3 

74.4+
/-0.1 

70+/-
0.4 

74.7+
/-0.3 

70+/-
0.4 

75.5+
/-0.2 

71.1+
/-0.3 

  
   Similar results have been obtained for structure to structure 
networks, predictors with applied dimensionality reduction are 
better and PCA is giving the best results. Situation changed 
for our final predictors, committee of networks, although 
predictors with dimensionality reduction are still better 
differences between dimensionality reduction methods 
vanished. Committee of structure to structure networks, 
derived from sequence to structure networks, are obtained by 
summing probabilities for each of the class from all committee 
networks. Class with the highest probability was the output of 
the committee. Because results for all dimensionality 
reduction methods are the same we decided to use, for further 
comparison, the one with the smallest number of substitution 
columns in PSSM matrix - S2_PAVEL that was build on the 
top of S1_PAVEL method mentioned above. S2_PAVEL 
consists of 10 networks obtained from cross validation. We 
compared results of S2_PAVEL predictor with one of the 
state of the art method – Sable that has been evaluated by 
EVA web based server. Sable has two secondary structure 
prediction methods Sable1 and Sable2, the only differences 
between these two methods is that in Sable2 for training 
structure to structure networks predicted solvent accessibility 
has been used, what is giving usually better results. To have 
fair comparison we used stand-alone version of Sable 
(downloaded from ftp://ftp.chmcc.org/pdi/jmeller/sable/) 
thanks to this we were able to use the same nr database for 
PSSM matrix generation for all predictors. Results in Table 2 
show that S2_PAVEL predictor is much worse then Sable1 
and Sable2. The strength of Sable methods comes from big 
diversity of networks in the committee that has been obtained 

Fig. 4 Left and right panel presents amino acid profiles calculated by 
using t-statistics and information gain values for each amino acid 
substitution column and secondary structure classes. 
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by applying different networks architectures and training 
algorithms. To improve generalization of our predictor we 
increased diversity of networks by using different datasets, 
applying various substitution columns in PSSM matrix, for 
training networks with the same architecture. We built new 
predictor (S2_COM) that consists of networks trained with 
following PSSM columns: PAVEL, PAVELIT, PAVGDI, 
PAGKLMN, GMTVQR, PIDVKL, AGSVLR, PHWMI, 
PAMSQR. It must be noted here that we did not optimized 
number of substitution columns that should be used to 
obtained best result for secondary structure prediction. We 
were trying to created training sets diverse as much as 
possible taking into account information gain and correlation 
between substitution columns. In most cases P, A, V has been 
used as the most important, we also arbitrary limited number 
of substitution columns between 5 and 7. 
 As can be seen in Table 2 increasing diversity of networks 
in the committee significantly improved results for S2_COM 
predictors, which are now comparable to Sable1. Moreover 
because the strategy of committee creation is very different 
then in Sable1, making combination of these two predictors, 
by taking prediction with higher probability, significantly 
improved results in Q3 and SOV. What is interesting 
Sable1+S2_COM is giving almost identical results as Sable2 
particularly in Q3 measure. We tried also to create predictor 
trained on S1_PAVEL predictions and predicted solvent 
accessibility, in the same way as it is done in Sable2, but there 
was no improvement whatsoever. Combining S2_COM and 
Sable2 gave on two datasets some small improvement in Q3 
and SOV measure.  
 
TABLE II RESULTS FOR SECONDARY STRUCTURE PREDICTIONS, S2_PAVEL – 
PREDICTOR CONSISTS OF 10 NETWORKS ALL OF THEM HAS BEEN TRAINED ON 
DATA IN WHICH PSSM MATRIX WAS REPRESENTED BY 5 SUBSTITUTION 
COLUMNS: P, A, V, E, L, S2_COM – PREDICTOR CONSISTS OF 9 NETWORKS 
TRAINED WITH THE PSSM MATRIX REPRESENTED BY FOLLOWING 
SUBSTITUTION COLUMNS: PAVEL, PAVELIT, PAVGDI, PAGKLMN, 
GMTVQR, PIDVKL, AGSVLR, PHWMI, PAMSQR, SABLE1 AND SABLE2 
PREDICTORS FROM SABLE SERVER, SABLE1+S2_COM AND SABLE2+S2_COM 
PREDICTORS OBTAINED FROM COMBINATION OF SABLE AND S2_COM 
PREDICTORS. 
 

S135 S149 S156 S163  

Q3 SOV Q3 SOV Q3 SOV Q3 SOV 

S2_PAVEL 77.9 75 76.7 73.6 75.9 72.8 77.5 74.6 

S2_COM 78.7 75.6 77.6 74.6 76.5 73.8 78.4 75.4 

Sable1 78.6 76.2 77 74.2 77.3 75.1 78.2 75.2 

SABLE1+S2
_COM 

79.1 76.5 77.6 74.6 77.4 75.3 78.8 75.8 

Sable2 79.1 76.6 77.6 75.1 77.4 74.4 79.5 76.3 

SABLE2+S2
_COM 

79.1 75.9 78 75 77.7 75.1 79.5 76.7 

B.Solvent accessibility prediction 
 Profiles obtained using measure of correlation and 
information gain Figure 5 are very similar, even more then in 
secondary structure case, especially in the region of best and 
worst features. As in secondary structure case we decided to 
use only information gain. Right graph in Figure 3 shows 

strong signal from the middle position in the window. 
Removing any feature, substitution column, from this position 
led to dropping accuracy. We decided to keep middle position 
untouched and remove features from other 10 window 
positions. Features were removed according to the lowest 
value of information gain obtained as a sum over 10 positions 
for each amino acids. In each step we checked results in 10 
fold cross validation. In this way we were able to remove 10 
features W, Y, T, C, F, M, A, V, I, L. After removing features 
we applied also PCA. Optimal number of eigenvectors has 
been determined in cross validation, highest accuracy in case 
of predictor with full feature space (SAR) has been obtained 
for 50 eigenvectors and in case of predictor with selected 
substitution columns in PSSM (SAF) 40. Final predictors are 
calculated by averaging predictions from 10 networks 
obtained from cross validation. Evaluations were made using 
following measures: correlation coefficient CC, mean absolute 
error MAE. Results for solvent accessibility predictions for 
different methods are presented in Table 3. 

We compared our predictors with Sable method. The 
differences between different predictors are very small, but 
there is one dataset (149) where Sable results are much better 
then the others. Because SAR predictor is also worst for this 
dataset we belief that the difference comes from more diverse 
neural network used by Sable. 

 

TABLE III COMPARISON OF SOLVENT ACCESSIBILITY PREDICTION, SAR - 
PREDICTOR WITH FULL FEATURE SPACE, SAF - PREDICTOR WITH 10 
SUBSTITUTION COLUMNS, PCA ABBREVIATION MEANS THAT FOR PARTICULAR 
FEATURE SPACE PRINCIPLE COMPONENT ANALYSIS HAS BEEN APPLIED 
 

S135 S149 S156 S163  

CC MAE CC MAE CC MAE CC MAE 

SAR 0.67 15.0 0.64 15.8 0.66 15.4 0.66 15.3 

SARPCA 0.68 14.9 0.63 15.9 0.66 15.3 0.66 15.3 

SAF 0.68 15.0 0.62 16.0 0.67 15.4 0.66 15.4 

SAFPCA 0.68 14.9 0.63 15.9 0.66 15.4 0.67 15.3 

Sable  0.67 15.0 0.66 15.5 0.66 15.4 0.67 15.3 

IV.CONCLUSIONS 
 In this paper we proposed application of feature selection to 
secondary structure and solvent accessibility predictions. 
Although proposed feature selection does not lead directly to 
best predictions it helped to understand the data and allowed 

Fig. 5 Left and right panel presents amino acid profiles calculated by 
using t-statistics and information gain values  for each amino acids 
and 10 solvent accessibility classes. 
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to change typical strategy used in building best predictors. It 
has been especially useful in secondary structure prediction 
were best methods are based on committee of predictors. The 
usually strategy is to create ensemble of predictors obtained 
by training  on different datasets produced by some kind of 
cross validation or by using different training algorithms. The 
goal of this strategy is to create predictors that are highly 
accurate and at the same time are diverse because only in that 
case committee will work well. Proposed feature selection 
allowed to build different training sets using different 
substitution columns in PSSM matrix. We found that the most 
important substitution columns are P, A and V, moreover 
using additional E and L we were able to build very accurate 
individual predictor. Using some of those substitution 
columns and adding some other that are not highly correlated 
to the existing ones we were able to build committee, from 9 
networks trained with the same training algorithm and using 
the same architecture, results of which are comparable to the 
one of the state of the art method – Sable1. Furthermore, 
thanks to different strategy in creating predictors for 
committee, combination of newly created predictor and 
Sable1 significantly improved results. 
 Feature selection for solvent accessibility problem is much 
harder to make, mostly because  almost all information comes 
from middle position in the window, other positions have very 
small influence on solvent accessibility prediction. 
Nevertheless we were able to decrease dimensionality of 
PSSM matrix by 45% in case of feature selection and by 80% 
using PCA. 
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