
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

626

 Abstract—Decision Support System (DSS) are interactive
software systems that are built to assist the management of an
organization in the decision making process when faced with non-
routine problems in a specific application domain. Non-functional
requirements (NFRs) for a DSS deal with the desirable qualities and
restrictions that the DSS functionalities must satisfy. Unlike the
functional requirements, which are tangible functionalities provided
by the DSS, NFRs are often hidden and transparent to DSS users but
affect the quality of the provided functionalities. NFRs are often
overlooked or added later to the system in an ad hoc manner, leading
to a poor overall quality of the system. In this paper, we discuss the
development of NFRs as part of the requirements engineering phase
of the system development life cycle of DSSs. To help eliciting
NFRs, we provide a comprehensive taxonomy of NFRs for DSSs.

Keywords—Decision support system, Development, Elicitation,

Non-functional requirements, Taxonomy

I. INTRODUCTION

ITH the increasing growth of enterprise information and
the complexity of systems to be managed, the demand

and need for Decision Support Systems (DSSs) assisting the
management in the process of decision making is growing [1].

NFRs are requirements that are related to the quality aspects
of the system being developed or the functionalities provided
by the system [2]. The quality-based requirements cover all
levels and phases of the DSS life cycle including, pre-
development and development, operations, and maintenance
and evolution phases. While eliciting the functional
requirements using the use case modeling approach [3,4], the
analyst must also elicit the NFRs that are associated with each
use case. In addition to use case-specific NFRs, the analyst
must also identify and elicit generic DSS-wide NFRs. Generic
NFRs are use case independent and apply to the entire DSS.
For example, security requirements can be either use case-
specific or generic. However, cultural, political, and standards
conformity requirements are mainly generic requirements
since they normally apply to the DSS as a whole. NFRs can be
either technical or non-technical. Technical NFRs, such as
performance requirements, are quantifiable and possibly
automatically verifiable requirements [7]. These types of
requirements affect the whole software architecture and can
impose or limit the possible design or architectural choices.

Non-technical NFRs, such as standards conformity
requirements, are mostly non-quantifiable and only verifiable
using a non-automated review process. The proper elicitation
of NFRs is critical. The types of requirements can conflict or
affect each other; in addition, they can affect other functional
requirements. For example, a security requirement can affect
the performance of the DSS negatively, requiring, for
example, the additional exchange of messages.

Kassem Saleh is with Kuwait University, Dept. of Information Science,

Box 5969, 13060 Safat (phone: 965-6649-8883; e-mail:
kassem.saleh@ku.edu.kw).

Moreover, a security requirement can require additional

functional requirements. NFRs can also be a main concern
either to the users or to the developers. For example,
testability is a NFR that affects the maintenance
predominantly because it requires that the developer makes
some additional effort to make the DSS testable. However,
making the DSS testable has a positive and indirect effect on
the reliability of the DSS. Reliability is a technical NFR of
particular interest to the users. On the other hand, performance
is a NFR that mainly affects the user because response time
delays and lack of memory are noticed by the user. However,
the developer is also affected because meeting performance
requirements must be dealt with at various phases of the
software development process.

Normally, non-technical NFRs are generic ones. However,
technical NFRs can be either system-specific or use case-
specific. For example, various performance requirements can
be attached to multiple use cases, unlike, for example,
standards conformity requirements that are typical system-
wide requirements. Some of the NFRs can also be considered
DSS quality attributes that are mainly of interest to the
developer but can have a tangible impact on the users. NFRs
must not attempt to prescribe or impose a technical solution.
They are essentially technology independent. The types of
NFRs that might be needed to constrain the DSS under
development and its environment are introduced in the
following sections. In [2], non-functional properties in service-
oriented architectures for web services were identified and
assessed based on a questionnaire filled by web service users.

In this work, we place the NFRs under three categories
related to the DSS life cycle, starting from DSS development
NFRs, to DSS operations NFRs and ending with DSS
maintenance and evolution NFRs. Non-technical NFRs are
mainly constraints that must be considered when the DSS as a
product is being developed.

To elicit the NFRs, the appropriate stakeholder must
consider each type of requirement thoroughly. Depending on
the type of DSS being developed, it is determined whether the
requirements are mostly DSS-wide or not. In the first case, the
DSS-wide constraints and requirements must be considered
first. Then, when considering each use case of the DSS
separately, it is decided whether to relax or modify the DSS-
wide requirements. In another approach, we first consider the
types of requirements that are mostly DSS wide requirements,
such as usability and maintainability requirements. Then, we
proceed to those requirements types that can be partly use case
dependent, such as security and performance. In this way we
attempt to minimize the rework of the requirements from
generic to specific ones. NFRs can be documented separately
in the DSS requirement document if they are generic.
However, if they are specific to a particular use case, they can
be attached closer to the use case description. The constraints
section of the use case can include specific NFRs applicable to
that use case. Further work on automating the capturing and
management of NFR is needed.

Development of Non-functional Requirements
for Decision Support Systems

W

Kassem Saleh

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

627

The development of a DSS follows the same development
process of a typical software product starting from
requirements specifications, design, to implementation, testing
and deployment. The stakeholders in the development process
for DSSs in general and their functional and non-functional
requirements in particular, include: (1) the DSS users
including the manager as a decision maker and the DSS
manager responsible for the system management and
maintenance, (2) the representative of the institution
requesting and financing the development of the DSS, (3) the
DSS analyst representing the DSS development team, and (4)
legal, regulatory, professional and standard authorities related
to the application domain. The rest of the paper is organized
as follows. Section II presents the DSS development and pre-
development NFRs. Section III presents the DSS operations
NFRs. Section IV presents the DSS maintenance and
evolution NFRs. Finally, Section V concludes the paper and
provides directions for future work.

II. DEVELOPMENT AND PRE-DEVELOPMENT NFRS

To elicit the NFRs that are most relevant prior and during
the development of the DSS, the appropriate stakeholders such
as the client, developer and user representatives must consider
each of the following requirement types thoroughly. In the
following, we describe each type of development and pre-
development requirements. Requirements are listed in
alphabetical order.

Accessibility requirements impose access related features of
the DSS, such as web based intranet access, or limited closed
system access.

Cost and budget requirements are typical pre-development
requirements needed for the initial planning for the DSS
development. These requirements constraint the number and
quality of the features provided by the DSS.

Cultural and political requirements address the cultural and
political constraints that have to be considered when
developing the DSS. The analyst and client must be aware of
the cultural sensitivities of the countries in which the DSS will
be deployed and used. These could include language use
issues, use of symbols, and politically offensive contents,
among others. Failure to properly elicit the requirements can
affect its acceptability and market penetration. Should the
requirements conflict in other countries or societies, several
versions of the DSS might have to be developed and deployed.

Design and implementation requirements impose
constraints on some design and implementation features of the
DSS, like the algorithms and architectural and design patterns
used, the programming language and development
environment used, and the operating systems and hardware
platform used.

Documentation requirements address the documents needed
as deliverables of the DSS development process. These
documents are either internal technical documents needed as
part of the adopted development life cycle process, or user-
related documents such as user and installation manuals.

Interface requirements identify all the external interfaces of
the DSS such as external information sources, and other
hardware systems, like sensors, devices among others.

Legal and regulatory requirements address the legal and
regulatory issues related to the DSS. Adherence to local and
international laws and regulations have to be observed by the
DSS and the process by which it is developed. For example,
for national security concerns, the development team must not
include people that have resided in certain countries. Other
requirements related to the DSS itself can require that the DSS
is in line with copyright laws and regulations. If overlooked,
the requirements can lead to lawsuits and criminal
investigations affecting the economic feasibility and
reputation of the development company.

Look and Feel requirements provide the general guidelines
and constraints related to the user experience. The look and
feel could be a novel approach to the user interface
interactions or could be an adaptation of an existing and
proven look and feel used by the software industry.

Personnel requirements are pre-development requirements
providing some constraints related to the personnel engaged
on the DSS development project. These requirements include
personnel security procedures and recruitment requirements in
terms of qualifications and experiences of the personnel.

Standards conformity requirements indicate the standards
that must be followed while developing the DSS. There are
different types and levels of standards. Internal standards that
are developed by the DSS development company can include
coding, testing, and documentation standards and templates.
Specific country standards might have to be followed and the
developer and client must be aware of them. Military
standards exist and need to be followed if the military is one
of the DSS stakeholders. Industry standards have to be
considered. Specific standards exist for the health, finance,
banking, and education sectors, among others. Professional
standards can also be referred to in this type of requirements.
Finally, international standards, such as those developed by
the International Standardization Organization (ISO) and the
International Telecommunications Union (ITU), can also be
used as part of the standards conformity requirements. The
DSS analyst representing the developer and the client
representing the users must be aware of the standards related
to the application domain of the DSS under development.
Non-adherence to known and relevant standards and the
failure to meet them can lead to unusable DSS or a delayed
release of the DSS. Therefore, the requirements must be
elicited carefully.

III. OPERATIONS NFRS

To elicit the NFRs that are most relevant during the DSS
operation, the appropriate stakeholders such as the client,
developer and user representatives must consider each of the
following requirement types thoroughly. Requirements are
listed in alphabetical order.

Auditability requirements impose constraints on the type
and granularity of the audit logs recorded during the DSS
operation for accountability reasons among others.

Availability requirements are used to impose an upper limit
on the downtime of the DSS, indicating an acceptable level of
failures. Availability requirements are also considered part of
the security requirements are discussed later.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

628

Deployability requirements impose constraints on the way
the DSS is deployed. Installability and configurability
requirements, referring to the ease of installation and
configuration, can also be related to deployment constraints.

Interoperability requirements impose constraints on the
types of systems with which the DSS has to interface. A DSS
might have to interface and communicate with other DSSs,
software systems and hardware devices. This type of
requirements may impose some dependability requirements on
the proper specification and implementation of the DSS
interfaces. Consequently, the requirements are indicative of
some potential external risks to the development process.

Operational requirements impose constraints and capacity
requirements on the environments in which the DSS under
development will operate. The constraints can include the
characteristics in which the servers are physically located,
minimum speed of the network connections, the year-to-year
growth in the number of DSS users, specific quality of service
parameters, the operating systems that are compatible, and the
hardware devices with which the software interfaces.

Performance and efficiency requirements impose some
technical constraints on the response time delays, startup and
shutdown times, throughput of the system, and memory
requirements. Response time delays can be either system-wide
or use case specific. For example, putting an upper limit on the
maximum response time delay for all system functions is a
system-wide performance requirement. However, we can also
require different upper limits, depending on the individual
function or use case. Response time-related performance
requirements can also be stated as throughput requirements,
putting upper and lower bounds on the acceptable rate of
completed transactions.

Reliability requirements impose some values related to the
reliability of the DSS under development. Typical values
include the mean time between failures or the maximum time
allowed for failures over a period of time, in addition to some
quality of service requirements.

Robustness requirements impose constraints related to the
way the DSS handles abnormal and erroneous inputs and
operational conditions. The requirements address the DSS
behavior with respect to error recoverability and fault
tolerance and can be system-wide or use case-specific
requirements. Robustness requirements should not state how
to achieve DSS robustness or suggest a particular
technological solution to do it.

Safety requirements are needed when the DSS being
developed deals with safety-critical issues such as an DSS
controlling a chemical production plant. The safety
requirements must address and require the enforcement of
safety standards that are known in the particular application
domain. Eliciting safety requirements requires some expertise
in the domain of the safety-critical application to avoid costly
legal consequences should any of the requirements be omitted.

Scalability requirements impose constraints on how the
DSS should scale up to a high user input load, i.e., concurrent
number of users, at all its interfaces. This requirement can
force specific architectural design choices on the development
team. Ideally, scalability requirements are quantifiable and are
normally verified during load and stress testing.

Security requirements are critical for a successful DSS and
need to be identified early in the DSS development process. A
security requirement can be either a system-wide or use case-
specific requirement. Security requirements address four main
security concerns: (1) confidentiality, (2) integrity, (3)
availability, and (4) accountability. The concerns are dealt
with by imposing and adhering to identification,
authentication, authorization, integrity, immunity, privacy,
non-repudiation, survivability, physical protection, and
security standards conformity requirements.

Access control-related requirements, including
identification, authentication, and authorization are used to
address confidentiality concerns. Also, physical protection
requirements can be useful in addressing confidentiality
concerns at the physical level. Identification, authentication,
and authorization requirements can be system-wide or use
case specific. The client can require that certain functionalities
are only accessible by identified, authenticated, and authorized
users, and different access rights can be assigned based on the
user’s role in the organization.

Integrity concerns are addressed using integrity, immunity,
and privacy requirements. An integrity requirement can be
system-wide or use case specific.

Availability issues are dealt with using the survivability and
physical protection requirements. A survivability requirement
can be applicable system-wide. It can also be function- or use
case-specific.

Accountability concerns are dealt with using the non-
repudiation and standards conformity requirements.
Accountability requirements can be either system-wide or
applicable to specific functions or use cases of the system and
are dealt with at different levels of granulatities (see
auditability requirements). However, standards conformity
requirements are normally system-wide. Although security
requirements are considered to be NFRs, some of them must
be implemented by first identifying the appropriate security-
related functional requirements. For example, identification,
authentication, and authorization requirements are considered
by introducing a logon use case as a functional requirement.
These use cases are called security use cases.

Supportability requirements are related to constraints on the
available support of the DSS after its deployment. User
training requirements and user documentation requirements
can be included in the supportability requirements.

Usability and understandability requirements address the
constraints imposed by the client in its representation of the
user community. The objective for the constraints is to make
the DSS easy to use by the various users interacting with it.
The usability requirements are normally elicited by first
knowing the intended users and their backgrounds and
characteristics. This step would be the first to undertake in a
usability engineering process. Look and feel requirements
imposing a standard look of the user interface of the DSS can
be included in the usability requirements.

User-friendliness requirements impose some constraints on
the user experiences when interacting with the DSS. The
constraints can have implications on the functional
requirements and the graphical user interface design decisions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

629

The availability of context-sensitive help versus generic
help, a forgiving and courteous interface, and the ease of
navigability are examples of user-friendliness requirements.
Usability and user-friendliness requirements complement each
other and are often seen as equivalent. A system can be easy to
use but might not be friendly. Ideally, a highly-usable system
is normally a user-friendly system.

IV. MAINTENANCE AND EVOLUTION NFRS

To elicit the NFRs that are most relevant during the DSS
maintenance and evolution, the appropriate stakeholders such
as the client and developer representatives must consider each
of the following requirement types thoroughly. Requirements
are listed in alphabetical order.

Maintainability and modifiability requirements impose
constraints related to the ease with which the DSS can be
modified, fixed, adapted to new environments and
technologies, or expanded. To meet the requirements, there
can be various technical and managerial measures that need to
be taken. Technical measures can be related to the
development environment and tools used as well as the
development methodologies and models adopted. Managerial
measures include hiring decisions and appropriate developers
training programs. Technical documentation requirements and
understandability requirements can be part of the
maintainability requirements. Similarly, adaptability
requirements for customization, personalization,
internationalization and localization should be considered for
DSSs operating in various cultural, social and political
contexts.

Portability requirements impose some conditions related to
the future deployment of the DSS. DSS portability is defined
as the ease with which the DSS can be modified to run on a
different hardware platform or software environments. To
meet this requirement, many constraints related to the
development environment, design and implementation
methodologies used have to be imposed.

Retirement requirements impose some conditions related to
the decision and processes needed for retiring or
decommissioning the DSS, such as the procedure to inform
the users and the disposition of the collected personal user
information and audit logs.

Reusability requirements impose constraints on the
development of the system related to the degree of reuse.
There are two types of reuse: development with reuse and
development for reuse. Development with reuse aims at
producing the DSS faster by using existing software
components. A development with reuse requirement helps the
reliability of the overall system provided we are reusing good
quality components. Development for reuse aims at producing
highly maintainable DSS that is typically made of reusable
components. The components can be reused in future projects
by the same team or other development teams. A development
for reuse requirement helps the maintainability of the DSS and
imposes specific decisions related to the software development
methodologies used.

Testability requirements impose constraints on the future
testing of the DSS during development and maintenance.
Testability is defined as the ease with which testing can be

performed. Observability, controllability and diagnosability
requirements are normally part of the testability requirements.
Testability requirements are somehow related to the
maintainability requirements and the ease of DSS maintenance
activities. Traceability requirements impose some constraints
on the ease with which the DSS is traceable. This requirement
can be related to the traceability of the different parts of the
software development process deliverables or related to the
traceability of the DSS during its execution. In the first type of
traceability, the requirement refers to the ability to link every
aspect of the DSS deliverables forward and backward. For
example, each module in the DSS design can be traced
backward to a requirement specification element, or forward
to a particular piece of code or test cases, hence, enhancing the
DSS maintainability and meeting the maintainability
requirements. In the second type of traceability, traces
collected during the execution of the DSS can be needed. DSS
execution traces are normally used for testing and debugging
purposes, thus, enhancing the DSS testability to meet the DSS
testability requirements. In addition, this aspect of traceability
helps to meet the auditability and non-repudiation aspects of
security requirements.

V. CONCLUSIONS AND FUTURE WORK

Elicitation of non-functional requirements for DSSs will
contribute positively to the development of higher quality
DSSs and hence higher adoption of these DSSs by the users.
The types of requirements must be considered early in the
development process while the functional requirements are
also developed. In this paper, a comprehensive list of non-
functional requirement types are identified. We tried to be as
exhaustive as possible to be able to capture and identify all
these requirements. We are currently developing three specific
case studies in the e-learning, e-health and e-banking domains.
In the future, we are planning to develop tools to capture and
document these requirements.

TABLE I
THE TYPES OF NFRS AND THEIR CLASSIFICATION

Category Types of non-functional requirements
DSS
Development
and Pre-
development

Accessibility, cost, cultural, documentation,
design and implementation, interface, legal,
look and feel, personnel, political, regulatory,
standards conformity

DSS
Operation

Auditability, Availability, deployability,
efficiency, interoperability, operational,
performance, reliability, robustness, safety,
scalability, security, supportability,
understandability, usability, user friendliness

DSS
Maintenance
and Evolution

Adaptability, maintainability, modifiability,
portability, retirement, reusability testability,
traceability

ACKNOWLEDGMENT

The author would like to acknowledge the support of this
work by a Kuwait University Travel Grant.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

630

REFERENCES
[1] R. Sprague, “A framework for the development of decision support

systems”, MIS Quarterly, Vol. 4, Number 4, December 1980.
[2] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-Functional

Requirements in Software Engineering, Kluwer Academic Publishers,
Dordrecht, 2000.

[3] H. Becha and D. Amyot, “ Non-functional properties in service oriented
architecture – A consumer’s perspective”, to appear in the Journal of
Software, 2012.

[4] G. Booch, I. Jacobson and J. Rumbaugh, The UML User Guide,
Addison-Wesley, 1999.

[5] ITU-T, Recommendation Z.150, User Requirements Notation (URN) –
Language Requirements and Framework, Geneva, 2003.

[6] S. Robertson and J. Robertson, Mastering the Requirements Process,
Addison-Wesley, 1999.

[7] K. Saleh, Software Engineering, J. Ross Publishing, USA, 2009.
[8] K. Saleh and A. Al-Zarouni, “Capturing non-functional requirements

using the user requirement notation”, Proceedings of the International
Research Conference on Innovations in Information Technology (IIT
2004), Dubai, Oct 2004, pp. 222-230.

Kassem Saleh was born in Beirut, Lebanon in 1963. After completing his
technical high school in electronics in Beirut, he moved to Ottawa, Canada in
1981 where he received his BS, MS, and PhD in computer science from the

University of Ottawa in Canada in 1984, 1985 and 1991, respectively. Dr.
Saleh worked as a software design engineer at Northern Telecom in 1984 and
then as a computer systems specialist at Mediatel, Bell Canada, from 1985 to
1991. He is currently a professor in Information Sciences at Kuwait
University. Kassem was on the faculty of Concordia University during 1991-
1992, Kuwait University from 1992 to 2000, and American University of
Sharjah from 2000 to 2007. Dr. Saleh is also a Certified Information Systems
Security Professional (CISSP) since 2005. He is a senior member of IEEE and
a professional member of the ACM. The Journal of Systems and Software has
ranked Dr. Saleh among the top scholars in the field of systems and software
engineering in seven of its annual assessments published from 1996 to 2003.
His research interests include software engineering, requirements engineering,
communications protocols, and information security. Dr. Saleh has published
more than 130 refereed journal and conference papers and has presented
numerous tutorials and lectures at international conferences and universities
worldwide. Dr. Saleh is currently editor-in-chief of the Journal of Software.
Dr. Saleh founded and chaired the Kuwait Conference on e-Systems and e-
Services (www.kcess.org).

