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Abstract—Owning to the high-speed feed rate and ultra spindle 

speed have been used in modern machine tools, the tool-path 
generation plays a key role in the successful application of a 
High-Speed Machining (HSM) system. Because of its importance in 
both high-speed machining and tool-path generation, approximating a 
contour by NURBS format is a potential function in CAD/CAM/CNC 
systems. It is much more convenient to represent an ellipse by 
parametric form than to connect points laboriously determined in a 
CNC system. A new approximating method based on optimum 
processes and NURBS curves of any degree to the ellipses is presented 
in this study. Such operations can be the foundation of tool-radius 
compensation interpolator of NURBS curves in CNC system. All 
operating processes for a CAD tool is presented and demonstrated by 
practical models.  

 
Keywords—Ellipse, Approximation, NURBS, Optimum.   

I. INTRODUCTION 
UE to the widespread use of NURBS-based curve 
representation and motion control, the demand of 

High-Speed Machining (HSM) is increasing. In the application 
of HSM, one of the important components which are often 
neglected is the tool-path formed strategy. The successful 
application of HSM can only be realized in associating with 
proper CAM functions. There are many methods of drawing an 
ellipse, including foci, trammel, concentric-circle, 
oblique-circle, parallelogram [1], two-circle and four-center [2] 
methods. The ellipses may be regarded as a distortion of a circle 
by unequal scale factors in two directions. It is simple but not 
efficient for traditional tools to deal with, like scale and offset. 
It is much more convenient to represent an ellipse by 
parametric form than to connect points laboriously determined 
in a CNC system. Recently, Rosin [3] has made an impressive 
survey and comparison on four-arc approximation to ellipses. 
Qians [4] proposed an analytical function to find optimum arcs 
to approximate an ellipse by maximum error function. It has 
been widely used in CAD field for many years and is gradually 
applied in CAM area with the prevalence of NURBS 
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interpolators equipped in CNC controllers. With NURBS 
interpolation, the machining of sculptured surfaces is carried 
out on a series of NURBS curves rather than a large number of 
short lines or arcs, which is the case of CNC controllers 
equipped with linear and circular interpolators only. This 
results in more fluid tool paths, makes the tool change its 
moving direction more smoothly and maintains a higher 
average feed rate. 

Although approximations to circular arcs and full circles by 
parametric forms have been investigated [5-9], there has been 
very little work published on ellipses approximation using 
NURBS format. A real elliptic part can be made by the 
corresponding cutting paths guided by tool-radius 
compensation interpolator. In addition, these operations based 
on parametric curves offset algorithms [10-16].  

Fig. 1 illustrates the cutting task of NURBS-based CNC 
machining [17]. In modern CAD/CAM systems, more and 
more profiles are represented in parametric forms to meet the 
requirement of HSM. Many researchers have developed real 
time parametric interpolators for curve generation using 
NURBS basis function [18-22]. Some major commercial 
controller manufacturers have brought NURBS operations into 
industry, such as Fanuc 15M/16M [23] and Siemens 840D [24]. 
Once the spline format is sent to the controller, the processor 
directly interpolates the segments at extremely tiny intervals. 
The architecture of the controller has look-ahead features that 
will change the feed-rate dynamically to adapt the spindle to 
rapid changes in direction.  

This report tells a method based on optimum processes and 
NURBS curves of any degree to represent ellipses. By 
implementing the proposed algorithm on approximations for 
ellipses and ellipses offset, the results show accurate 
performances evidently. It can be made as comprehensive as 
one can image, the larger the number of control points is, the 
higher the quality of effectiveness is.  

The organization of the chapter is as follows. In section 2 the 
procedures for acquiring initial conditions are described. 
Section 3 discusses and builds global error functions and 
section 4 optimizes locations and weights of all control points. 
Examples and comparisons are illustrated in section 5. In 
section 6, the generated tool paths are verified through NURBS 
machining and close this study.  
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Fig. 1 Machining system for NURBS curves 

II. ESTABLISH THE INITIAL CONDITIONS 

A.  Equivalent Approximating Curve 
A n  sides open shape consist of )1( +n  control points, thus 

)1( +n  control points can form a B-spline curve which is 
defined by the following equation:  
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A NURBS curve is defined by the following equation:  
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Where iP  are vectors composed of x and y coordinates of the 

control points, iw  are weights for each point, )(, tN ki
 are 

B-spline basis functions. k  ( 1+= pk , p  is the degree of 
basis function. For example, when order is 3, then rank in the 
definition of NURBS is 2, i.e. the NURBS expression is 
expressed by 2t , t  and constant.) is the order of a B-spline 
curve. The basis function is expressed by de Boor-Cox as 
follows:  
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)(~0],[ kniti += , 1+≤ ii tt , is the knot vector. 

The derivative of a B-spline curve is:  
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The derivative of a NURBS curve is:  
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If a series of control points exist, one can refine the shape of 
such a curve in the following different ways. They offer a wide 
range of tools to design and analyze shape deformation. They 
are:  
Moving of the control points 

iP . 
Increasing or decreasing the number of control points.  
Multiple locating of the control points.  
Changing the order k  of the basis functions.  
Modifying the weights iw  for each control point.  
Replacing the basis function. (closed uniform, open uniform, 
non-uniform)  

Rearranging the knot vector ][ it . 
Using multiple knot values in knot vector.  
Changing the relative spacing of the knots.  
 

An ellipse can be represented parametrically by the equations 

⎩
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θ
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ax             (5)  

Where a and b are major and minor axes, ba > . x and y are 
the rectangular coordinates of any point on the ellipse, and the 
parameter θ  is the angle at the center measured from the x-axis 
anticlockwise. First, the initial point-sequenced curve )(tC  is 
sampled based on equation (5). The proposed method is shown 
in the following steps. By using this method, one can find the 
initial curve control points.  
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The procedure using the proposed algorithm to obtain the 
initial condition is as follows:  

 
1. Form a matrix equation to represent the curve using the 

NURBS format.  
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2. From step 1, if [N] is a Square Matrix then 

][][][ 1 DNP −=                 (7) 

3. If [N] is a Non-Square Matrix then 
]][[][ PND =       

][][]][][[][ 1 DNNNP TT −=         (8) 

[P]: unknown, [D]: known.  
 
4. In order to get [N], determine the parameters it , 
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5. Solve the above equations to find [P] 

Repeat the above process, two NURBS curves )(tCa  and 

)(tCb  are obtained by specifying two different numbers of 
control points. In order to acquire a precise approximating 
curve, a bigger control point number is provided to )(tCa . The 
other one is provided a reasonable control point number to 
acquire a implementing curve )(tCb , which is expected to store 
fewer control points. This control point number depend on the 
major/minor ratio. Two NURBS curves are obtained to be the 
initial conditions. If there is no pressing reason for doing 
otherwise, here B-Spline should be defined as: No multiple 
control points. Open uniform knot vector. The format can be 
accepted by every CAD/CAM/CNC system presently in use. 
All default weights iw  are assigned one to each control point 
of the NURBS curve, which is the same as B-spline curve. By 

using the evaluating bound error function, the implementing 
curve )(tCb  will be modified to optimum conditions in section 
3.  

 
Fig. 2 Illustration of tangent and normal vectors of ( )tC  

 
B.  Approximating Offset Curve 
Second, the initial offset point-sequenced curve is sampled 

based on normal direction of the original curve, as shown in 
Fig. 2. Sampled points can be obtained by 

 

)()()( tndtCtCd ⋅+=         (10) 
where )(tn  is the unit normal vector of )(tC , d is the offset 
distance.  
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Repeat the same procedures as described in previous section, 
an approximating offset curve ( )tCd  can be obtained. A 
corresponding NURBS curve )(tCe  is formed by ( )tCd . This 
offset NURBS curve also can be acquired by equation (4). 
Same as above, by using the evaluating bound error function, 
the implementing curve )(tCe  will be modified to optimum 
conditions in section 3. It seems the simplest way is to set 
parameter ][ it  spread the curve regularly.  

III. BUILD EVALUATING BOUND ERROR FUNCTIONS  

Equivalent Approximating Curves 
There were two popular approximating error measures at 

finite sample points along )(tC  by computing equations (13) 
and (15) in earlier studies.  

)()()( tCtCt ab −=ε                     (12) 
Minimize maximum Euclidean distance:  

))()(max())(max(1 tCtCtE ab −== ε         (13) 

or 
2)()()( tCtCt ab −=ε          (14) 

Minimize maximum squares distance:  
))()(max())(max( 2

2 tCtCtE ab −== ε         (15) 

 
The above measuring errors represent local variations. They 

need to be transformed to measure global variations throughout 
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the curve )(tCa . Assuming two parametric curves ( )ia tC  and 

( )jb tC  with similar orientation knot vectors ][ it , one can 

normalize these two knot vectors ][ it  and ][ jt  into one knot 

vector, i.e. 0]min[ =it , 1]max[ =it , 0]min[ =jt  and 

1]max[ =jt , then ttt ji == . ( ]1,0[, ∈ji tt ) 

Extend the Euclidean distance function (13) and (15) 
between )(tCa and )(tCb  to global difference functions:  
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where m  is the sampling number.  
 
The above global error functions are perhaps the simplest 

ways to measure error for the approximate curves ( )tCb  to set 

ttt ji == . After comparing these two error functions, 1E  

performs better than 2E . This article uses 1E  as the EBE 
function.  

 
B.  Approximating Offset Curves 
In this section, a very different method to previous ones is 

used to offset a NURBS curve. The following are the major 
steps:  

1.  Build an Evaluating Bound Error function.  
2. Sample an offset point-sequenced curve based on the 

original curve’s first derivatives.  
3.  Use sampling points and pre-specified parameters (such as 

number of control points, degree iteration number) to form a 
new offset curve as described in the previous section.  

4. Relocate the first and last control points to the exact 
positions, i.e., constraints of endpoint 0C  continuity.  

5.  During each iteration, optimize the other control points by 
using a web-like search algorithm.  

 
In order to find a better solution, build an estimating function 

is indispensable to this work to measure errors. Earlier studies 
measured approximate errors, in general, at finite sample points 
along )(tCa  by computing:  
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where )(1 tε  is the offset distance variation. Elber and Cohen 
[25] proposed another measuring criterion to improve the offset 
performance by computing:  
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The above measuring error represents local variations. They 
need to be transformed to measure global variations throughout 
the curve )(tCa . Assuming two parametric curves ( )ia tC  and 

( )je tC  with similar orientation knot vectors ][ it , one can 

normalize these two knot vectors ][ it  and ][ jt  into one knot 

vector, i.e. 0]min[ =it , 1]max[ =it , 0]min[ =jt  and 

1]max[ =jt , then ttt ji == . ( ]1,0[, ∈ji tt ) 

Extend the offset distance variation function to area 
difference function:  
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where m  is the sampling number.  
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The above area error functions are perhaps the simplest ways 
to measure error for the approximate offset curve ( )tCe  to set 

ttt ji == , and compare distances between points on equal 

parameters value with the offset distance d . However, the 
point ( )tCe  may not lie on the normal direction at the point 

)(tCa  [26]. In order to conquer this directional error-prone, in 
this paper, we proposed a new criterion to evaluate variation 
throughout the curve. After comparing these two error 
functions, 1E  perform better then 2E . This article uses 1E  as 
our error function. This Evaluating Bound Error (EBE) 
function consists of offset distance d  and angle variation δ , it 
was defined as:  
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where m  is the sampling number. 
The average Evaluating Bound Error per unit length 

percentage is defined as:  
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EBE equals to zero if orthogonality and exact distance are 
preserved.  

One purpose of this EBE function tries to maintain a constant 
distance d  between offset and base curves. The other more 
significant purpose can rectify these two curves approaching in 
the same direction.  

 

 
Fig. 3 Regularize the parameters of it  and jt  

The average Evaluating Bound Error EBEE  equals to zero if 
orthogonality and exact distance are preserved. Due to the 
convenience of comparing both base and offset curves, this 
study regularizes the parameters it  uniformly at finite m  
segments. The illustration of related curve’s phenomenon is 
shown in Fig. 3. There are two intentions of this error function, 
as shown in Fig. 3, one purpose of this EBE function tries to 
maintain a constant distance d  between offset and base curves. 
The other more significant purpose can rectify these two curves 
approaching same direction.  

IV. LOCATIONS AND WEIGHTS OPTIMIZATION 
This study used a radiating web-like search algorithm to 

detect optimum positions. In this method, optimum parameters 
should be defined first, i.e. radius step stepr , angle step stepθ  

and convergence mind . 
A program algorithm is offered below to help current control 

points to find the current optimum locations during each 
iteration.  

------------------------------------- 
Begin 
Compute initial iniE  

Set inicurrent EE =  
Set Searching_step 1=stepd  

stepnow dr =  

Do until minddstep <  

Do i = 1 to n_ang (
step

angn
θ

π2_ = ) 

Set new location for current control point ip  

)cos( inowxix rpp θ+= , )sin( inowyiy rpp θ+=  

Compute iE  

If i=1 or inow EE >  then inow EE =  and inow pp =  
Loop i 
If nowcurrent EE >  then 

nowcurrent EE =  and stepnownow drr +=  and 

nowcurrent pp =  
Else 

stepnownow drr −=  and 5/stepstep dd =  
Endif 

Loop 
End 
------------------------------------- 
 

The default initial search-radius step 1=stepr . From the 

above algorithm, the stepd  is getting smaller and smaller, when 

it is less than convergence mind , i.e., mindrstep < , the search 

process will stop on this control point. During each evaluating 
iteration, we perturb the control points npp ~1  to evaluate the 
area error. Each control point change will affect the GBE 
function and influence the next searching iteration stage. Thus 
it may change the final convergence situation of the optimum 
solution. In order to meet 0G  continuity, the first and last 
control points were fixed at the exact positions. The second and 

thn)(  control points are restricted to locate at the tangent 
vectors of the start and end points of an ellipse, thus ensure 
NURBS curves can meet the requirement of 1G  continuity.  

A program algorithm is offered below to help current control 
points to find the current optimum weights during each 
iteration. This subroutine needs to be treated twice, one is 
positive direction, and the other is negative direction.  
------------------------------------- 
Begin 
Compute initial error iniE  
Set no_max = 5, no_err =  
Set inicurrent EE =  

Set Searching_step 1=stepd  

Do until no_err > no_max 

stepii dww +=  

Compute nowE  

If currentnow EE <  then 

nowcurrent EE =  
no_err=0 

Else 

stepii dww −=  

5/stepstep dd =  

no_err=no_err+1 
Endif 

Loop 
End 
------------------------------------- 
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Fig. 4 (a) True ellipse with a=5 and b=3. (b) Approximation by 96 straight lines. (c) Approximation by 12 circular arcs. (d) Approximation by a 
NURBS curve of degree 4 and 48 control points. (e) Approximation by a NURBS curve of degree 4 and 10 control points. (f) Approximation by 
a NURBS curve of degree 4 and 12 control points. (g) Approximation by a NURBS curve of degree 5 and 12 control points. (h) Approximation 

by a NURBS curve of degree 6 and 12 control points
 

V.  ILLUSTRATION AND APPLICATIONS 

Fig. 4(a) shows a true ellipse with major radius a=5 and 
minor radius b=3. Fig. 4(b) shows an approximation to Fig. 
4(a) by 96 straight lines. Fig. 4(c) shows an approximation to 
Fig. 4(a) by 12 circular arcs. Fig. 4(d) shows an approximation 
to Fig. 4(a) by a NURBS curve of degree 4 and 48 control 
points without optimum processes. Fig. 4(e) shows an 
approximation to Fig. 4(a) by a NURBS curve of degree 4, 
uniform knot vector and 10 control points. Fig. 4(f) shows an 
approximation to Fig. 4(a) by a NURBS curve of degree 4, 
uniform knot vector and 12 control points. Fig. 4(g) shows an 
approximation to Fig. 4(a) by a NURBS curve of degree 5, 
uniform knot vector and 12 control points. Fig. 4(h) shows an 
approximation to Fig. 4(a) by a NURBS curve of degree 6, 
uniform knot vector and 12 control points. Fig. 4(e)-(g) were 
obtained with NURBS curves and treated by the proposed 
optimum processes. An error comparison is shown in Fig. 5. 
The error when using 10 control points is less than 0.16. When 
using 12 control points, all errors can control under 0.1. The 
experiment results show that no matter what degree the 
NURBS curve is more control points performs better than 
fewer control points.  

0
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Fig. 5 An error comparison 

 

 

 

 

 

 

An approximation to the above ellipse offset with a distance 
of 1 is shown in Fig. 6. It shows an approximation to Fig. 4(a) 
by a NURBS curve of degree 5, uniform knot vector and 12 
control points. An error comparison is shown in Fig. 7. The 
error after using optimum processes can control under 0.0355.  
 

 
Fig. 6 An approximation to an ellipse offset 
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Fig. 7 An error comparison 

 

The application of current method to engineering problems is 
firstly shown in Fig. 8, where outer and inner profiles are 
approximated by NURBS curves. Fig. 9 shows a machining 
process of ellipses by a machine center with FANUC 16M 
controller, NURBS-based tool path, high precision contour 
control (HPCC) and linear motors [3]. Fig. 10 shows an elliptic 
box (major diameter is 180mm and minor diameter is 120mm) 
was acquired by assembling three pieces of elliptic 
MDF-boards (Medium Density Fiberboard). This study 
presents an optimum procedure to acquire an NURBS curve to 
approximate an ellipse. The NURBS-format machining codes 
of FANUC controllers, listed in Table I, are adopted in this 
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study, where code “G05 P10000” and code “G05 P0” are used 
to activate and turn off the HPCC function, respectively. In 
addition, “G06.2” is the cutting instruction, P is the order of 
NURBS, K represents knots and R represents their associated 
weights.  

 

 
Fig. 8 Tool-path generation of ellipses 

  

Fig. 9 MDF-board (Medium Density Fiberboard) machining of 
ellipses 

 
TABLE I 

MACHINING CODES FOR THE ELLIPSES USING NURBS 
Outer NURBS tool-path Inner NURBS tool-path 
G05 P10000 
P5 K0 X0. Y-66.005 R1. F30000 
K0 X-17.706 Y-66.002 R1. 
K0 X-43.677 Y-60.753 R1.047 
K0 X-103.174 Y-40.73 R1.019 
K0 X-99.535 Y40.486 R1.027 
K1 X-29.327 Y68.157 R1.027 
K2 X29.323 Y68.146 R1.027 
K3 X99.547 Y40.499 R1.027 
K4 X103.151 Y-40.746 R1.019 
K5 X43.7 Y-60.745 R1.047 
K6 X17.694 Y-66.003 R1. 
K7 X0. Y-66.005 R1. 
K8. 
K8. 
K8. 
K8. 
K8. 
G05 P0 

G05 P10000 
P5 K0 X0. Y-53.995 R1. F30000 
K0 X-15.546 Y-53.974 R1. 
K0 X-36.107 Y-49.614 R1.068 
K0 X-90.574 Y-34.851 R1.028 
K0 X-86.291 Y34.496 R1.039 
K1 X-24.236 Y55.54 R1.038 
K2 X24.219 Y55.523 R1.039 
K3 X86.344 Y34.518 R1.038 
K4 X90.476 Y-34.876 R1.027 
K5 X36.19 Y-49.601 R1.066 
K6 X15.516 Y-53.971 R1. 
K7 X0. Y-53.995 R1. 
K8. 
K8. 
K8. 
K8. 
K8. 
G05 P0 

 

   
Fig. 10 A MDF-board elliptic box 

VI. CONCLUSION 

This study introduces an accurate algorithm for ellipse 
approximation, an algorithm based on optimum processes and 
NURBS curves of any degree. In such a way, the original data 
used to define NURBS curves, which includes control points, 
weights and knots, will be transmitted into controllers as 
G-codes. The entire curve which was once described by many 
blocks of short lines or arcs now requires a single program 
block only. As a result, the size of NC programs can be greatly 
reduced. The size reduction is up to 1/10 to 1/100 relative to a 
linear-interpolation part program. This partially solved one of 
the disadvantages of applying linear and circular interpolations 
in HSM - large size of NC programs for complicated 
geometries. NURBS interpolation is one type of curve 
interpolation. To take advantage of the capability, one 
requirement is a CAM system capable of outputting NURBS 
tool paths. This method is serviceable in engineering 
applications. The proposed method detects optimum locations 
for each control point by perturbing them with a radiating 
web-like search algorithm. These control points form an 
accurate ellipse with a uniform knot vector which can be 
accepted by any modern CAD/CAM/CNC system. By 
implementing the similar processes but different error functions, 
an offset curve can be obtained with NURBS representation. 
Next stage of this research, by refining the searching 
correlation between control point positions and corresponding 
weights, the proposed operating model possibly work on 
approximation to general curves with NURBS curves. Such 
operations can be the foundation of tool-radius compensation 
interpolator of NURBS curves in CNC system.  
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