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Development of an Elastic Functionally Graded
Interphase Model for the Micromechanics Response

of Composites
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Abstract—A new micromechanics framework is developed for
long fibre reinforced composites using a single fibre surrounded by
a functionally graded interphase and matrix as a representative unit
cell. The unit cell is formulated to represent any number of aligned
fibres by a single fibre. Using this model the elastic response of long
fibre composites is predicted in all directions. The model is calibrated
to experimental results and shows very good agreement in the elastic
regime. The differences between the proposed model and existing
models are discussed.
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I. INTRODUCTION

IN order to expand the use of composite materials within

the automotive industry, predictive material models are

required to facilitate product development. Researchers are

interested in the use of composite materials for use in

automotive structure for energy absorption [1], [2]. The largest

issues with current composite material models is that none

are able to predict all composite failure modes [3]. Failure

in long fibre reinforced composite materials can be broken

down into three generalized categories: fibre failure, matrix

failure and interface failure. To predict these three generalized

failure modes a material needs to be based on a micro scale

approach to separate the material responses of the fibre matrix

and interface between the two.

Aboudi’s method of cells is one of the most prevalent

composite micromechanics models, where two isotropic

materials are combined in a repeating unit cell to predict

the overall response of the composite material [4]. Recently

the use of cohesive elements to predict the onset of

interface failure between the fibre and matrix, which are

modeled separately [5], [6]. These models are computationally

expensive as they use contact algorithms and many elements

to model a single fibre.

A new framework to model composite materials based off

a micromechanics approach has been developed by Sabiston
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et al. [7]. The model uses a functionally graded interphase

surrounding a representative fibre to capture the stress transfer

between the fibre and matrix. The model is compared to

experimental results from Kyriakides et al. and Hsiao and

Daniel [8], [9].

II. METHODOLOGY

A three dimensional unit cell model is developed containing

a single representative fibre. This unit cell is used to

account for the material response of composites through

implementation in a finite element software. A model is

developed where the properties of the fibre and matrix are

used to calculate the stress in each constituent, then combined

to find the overall response of the material.

A. Unit Cell Development

Ideally the unit cell should be representative regardless of

the physical quantity of fibres within the domain of the unit

cell. Considering the cross section of a region of interest

containing fibres, the volume fraction of fibres within that area

is equivalent to the cross sectional area of the fibres. Assuming

that the fibres are round the cross sectional area of a fibre is

Af = πr2f . (1)

With the region of interest being one unit in area, the

number of fibres within the region is given by

nf =
Vf

Af
. (2)

It is assumed that the fibre radius (rf ) is constant.

Using an interface to represent the force transfer between

the fibre and matrix is a very common approach. In our

arbitrary unit cell the quantity of interface is equivalent to

the surface area of the fibres which is equivalent to the

circumference of the fibre multiplied by the length. Given

that the unit cell has one unit of volume and dimensions on

one unit in each direction, the surface area of a fibre is its

circumference. Therefore, multiplying the surface area of the

fibres by the number of fibres in the unit cell and simplifying,

the area of interface in the unit cell is

Ai =
2Vf

rf
. (3)

The quantity of interface is dependent on the radius of

the fibres in the composite. Therefore, the fibres need to be
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Fig. 1 Unit Cell Configuration

included at a one to one scale to correctly account for the

interaction between the fibre and matrix.

Another approach to account for the interaction between

the fibre and matrix is to assume that an interphase surrounds

the fibre. The interphase has it’s own material properties and

occupies a volume surrounding the fibre. It is assumed that

the outer boundary on this interphase is proportional to the

fibre radius. Using a proportionality constant p multiplied by

the fibre radius to define the boundary of the interphase, the

volume of interphase surrounding one fibre is

Vint = (p− 1)r2f . (4)

Multiplying (4) by the number of fibres yields the volume

of interphase within the unit cell which is given by

Vi =
(p− 1)Vf

π
. (5)

In the case of an interphase the quantity of interphase

is only a function of the volume fraction and not the fibre

radius. Therefore through the use of an interphase a single

representative fibre is capable of representing any number of

actual fibres, and a region of interest can be modeled as only

having one fibre.

The unit cell model contains a single fibre aligned with the

x1 direction of the unit cell. The faces of the unit cell are

located at one unit in each direction. A diagram of the unit

cell is given in Fig. 1.

The radius of the representative fibre in unit cell coordinates

is

rrf =

√
4Vf

π
. (6)

The interphase zone starts inside the fibre and continues

outside the fibre. The start and finish radii of the interphase

zone are proportional to the representative fibre radius and are

given by (7) and (8) respectively.

ris =krrf 0 < k < 1 (7)

rif =lrrf l ≥ 1 (8)

The material paring parameters k and l are assumed to be

constant for a given material pairing and are dependent on the

fibre and matrix in the composite.

B. Unit Cell Mechanics

The material properties of the interphase zone need to be

established. To obey material compatibility and equilibrium

there needs to be continuity between the stresses for a given

strain. This works if the moduli are identical between the fibre

and matrix; however, this is not generally the case in composite

materials where the advantage of the material comes from

having a large differential in stiffness between the fibre and

matrix.
To maintain equilibrium for a given strain it was devised

that the material modulus within the interphase must change

as a function of position. This function is described in terms

of cylindrical coordinates around the x1 axis of the unit cell.

The value of the two end points of the functions are known

(ris, Em) and (rif , Ef ).
Using the two end points functions describing the variation

of modulus within the interphase zone are defined, which are

known as interphase functions. They are used to calculate

the overall response of the unit cell through the use of the

known elastic constants of the fibre and matrix. This is done

by integrating the interphase functions to find a representative

radius where the properties transition between that of the fibre

and matrix.

C. Interphase Functions
Using the two end points a linear and two quadratic

functions were derived to describe the transition of Young’s

modulus between the fibre and matrix as presented in [7].

Using the two end points as values of a function, a linear

interphase function follows logically where the modulus is

described as a function of radius within the bounds of the

interphase function given in (9).

E(r) =
1

rif − ris

[
(Em − Ef )r + Efrif − Emris

]
(9)

For a quadratic equation there needs to be three points to

fully define the function. As only the values at the end points

of the function are known a third point is defined by setting

the derivative of the function to zero at one of the end points.

In general this is done by taking the derivative of a general

quadratic equation in the form

ax2 + bx+ c = 0, (10)

which has a derivative of the form
a

2
x+ b = 0. (11)

By setting the derivative to zero at one of the end points the

function is fully described. The first function describing the

radius as a function of elastic modulus within the interphase

zone has its derivative evaluated at (ris, Ef ). This function is

given in (12) [7].

r(E) =
rif − ris

(Em − Ef )2
(E − Ef )

2 + ris (12)

The second quadratic interphase function has a derivative

evaluated at the end point (rif , Em), where modulus is

described as a function of radius given in (13) [7].

E(r) =
Ef − Em

(rif − ris)2
(r − rif )

2 + Em (13)

A graph showing a comparison of the three interphase

functions is shown in Fig. 2. The boundaries on the interphase

zone were arbitrarily set at ris = 0.5 and rif = 0.8, with a

fibre modulus of 217 GPa and a matrix modulus of 3.5 GPa.
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Fig. 2 Comparison of the three interphase functions in the interphase zone

Fig. 3 Comparison between proposed model and Kyriakides et al. [8]

Fig. 4 Comparison between proposed model and Hsiao and Daniel [9]

D. Interface radii

The interphase functions are integrated in circular

cylindrical coordinates within the interphase zone to find a

volume which is equated to the volume of a tube with an outer

radius equivalent to a step transition between the modulus in

the fibre and that of the matrix. The tube has the same inner

bounds as the interphase zone start radius ris and the outer

radius is called the representative interface radius rri. This

radius is given in terms of difference in Young’s modulus and
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the interphase parameters in (14).

rri =

√
VΔE

π(Ef − Em)
+ r2is (14)

The difference in Young’s modulus is found through the

general integral

VΔE =

∫ 2π

0

∫ rif

ris

∫ E(r)

Em

rdEdrdθ, (15)

with the exception of the first quadratic interphase function

(12) where the integration is done in the order

VΔE =

∫ 2π

0

∫ Ef

Em

∫ r(E)

ris

rdrdEdθ. (16)

Using the combination of (14) and (15) or (16) and

the interphase functions the representative interface radii are

calculated. For the linear interphase function (9) the interface

radius is

rri =

√
1

3

(
r2if + rifris + r2is

)
. (17)

For the first quadratic interphase function (12) the interface

radius is

rri =

√
1

5
r2if +

4

15
rifris +

8

15
r2is. (18)

For the second quadratic interphase function (13) the

interface radius is

rri =

√
1

6
r2if +

1

3
rifris +

1

2
r2is. (19)

These three representative interface radii are then used to

combine the constitutive equations for the fibre and matrix to

predict the overall response of the composite system.

E. Material Models

The stress in each constituent is calculated using the elastic

constitutive law for the fibre or matrix Lf and Lm respectively.

The matrix is assumed to be isotropic elastic with two elastic

constants and the fibre is assumed to be transversely isotropic

with five elastic constants. The strain in each material is

assumed to be the same. The stresses are combined through

volumetric averaging to find the overall stress. The volume

of material which acts like the fibre is found using the

representative interface radius.

Vrf =
π

4
r2ri (20)

The stress from each constituent are combined to calculate

the overall stress in the unit cell as

σ = (1− Vrf )σm + Vrfσf , (21)

where σm and σf are the stresses in the matrix and the fibre

respectively. The overall stress can also be calculated from the

strain and combining the constitutive laws as

σ = [(1− Vrf )Lm + VrfLf ]ε (22)

TABLE I
MATERIAL PROPERTIES AND CALIBRATION DATA

Parameter Kyriakides et al. [8] Hsiao and Daniel [9]
Fibre Axial Modulus (GPa) 214 279

Fibre Transverse Modulus (GPa) 13.8 13.8
Fibre Transverse Poisson’s Ratio 0.2 0.3

Fibre Transverse Axial Poisson’s Ratio 0.28 0.3
Fibre Shear Modulus (GPa) 13.8 13.8

Matrix Modulus (GPa) 4.10 2.31
Matrix Poisson’s Ratio 0.356 0.35

Interphase Function Quadratic 2 Quadratic 2
Interphase Parameter k 0.71 0.70
Interphase Parameter l 1.0 1.0

F. Implementation

The model was implemented into the explicit dynamic

finite element code LS-DYNA through a user defined material

model. The inputs to the model are: the interphase function

either linear or one of the quadratic functions along with

parameters k and l. Seven material parameters are input for

the elastic properties of the fibre and matrix. A displacement

control boundary condition is used to deform one element to

replicate experimental results.

III. RESULTS AND DISCUSSION

Experimental results from Kyriakides et al. [8] and Hsiao

and Daniel [9] where used for comparison with the proposed

model. The material properties used for the calibration of the

model are given in Table I, where the material properties not

given from the papers were found from the work of Chamis

[10]. Both of these sets of experimental data were selected for

having stress strain results in multiple directions allowing a

proper calibration and validation of the proposed model.

The simulation results for the data from Kyriakides is given

in Fig. 3 where the experimental results are given by dashed

lines and the simulation results in the solid lines.

As is demonstrated the simulation matches very closely to

the experimental data for the elastic region of the stress strain

curve. The simulation is only run to 1% strain as above these

strain levels there is separation in the stress strain response due

to plasticity in the matrix material and the onset of failure.

The simulation results compared to the data from Hsiao

and Daniel is shown in Fig. 4 where as with the previous

the experimental results are shown in the dashed line and the

simulation results are in the solid line.

As with the results from Kyriakides the model shows very

good predictive capabilities for predicting the axial, transverse

and shear stress strain response of the composite. There are

deviations from linear in the experimental results at strains

nearing 1% this is especially true in the axial direction. These

results are for compression and as a result there is likely fibre

micro buckling occurring under axial compression.

In the current implementation it is assumed that the strain

is equal in the fibre and the matrix. This has been shown

to be a decent approximation from the results as there are

not large disparities in the transverse behaviour of the model.

This can be attributed to the use of the transversely isotropic

fibre material model, which allows for a reduced modulus in

the transverse direction. In general it is known that due to

the difference in modulus between the fibre and matrix there

must be some accommodation of strain where the amount of
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strain in the fibre and matrix is different. This behaviour has

been described by Eshelby for an inclusion within isotropic

materials [11].

As the average stress in the fibre and matrix can be separated

from this model it allows for the implementation of a stress

based failure criterion for the fibre and matrix separately. This

offers an improvement over existing theories which account

for failure through the generalized stress state such as the

theory proposed by Hashin [12]. The separation of the stress

strain response for strains above 1% needs to be accounted

for in future work. A model for the matrix accounting for

plasticity is required to improve these predictive capabilities

for larger strains. The addition of failure into the model will

also contribute to the predictive capabilities.

IV. CONCLUSION

A new frame work is developed using a functionally graded

interphase to account for the micromechanics interaction of

a fibre and matrix. The model allows a single fibre to be

representative of any number of aligned fibres in a composite

material. This model is capable of separating the stress in the

fibre and matrix allowing for implementation of failure models

based on the stress in the constituents. This model offers the

advantage of simplicity and efficiency over existing models.

The proposed model is capable of accurately predicting

the elastic stress strain response of composite materials

using established elastic constants for the material and

two interphase parameters k and l. This model provides a

framework to develop a complete three dimensional composite

failure model as demonstrated through its elastic capability.
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