
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1682


Abstract—This paper focuses on I/O optimizations of N-hybrid

(New-Form of hybrid), which provides a hybrid file system space
constructed on SSD and HDD. Although the promising potentials of
SSD, such as the absence of mechanical moving overhead and high
random I/O throughput, have drawn a lot of attentions from IT
enterprises, its high ratio of cost/capacity makes it less desirable to
build a large-scale data storage subsystem composed of only SSDs. In
this paper, we present N-hybrid that attempts to integrate the strengths
of SSD and HDD, to offer a single, large hybrid file system space.
Several experiments were conducted to verify the performance of
N-hybrid.

Keywords—SSD, data section, I/O optimizations.

I. INTRODUCTION

S the advantages of SSD have been recognized, such as
high I/O performance, reliability and low-power usage,

adopting SSD to IT products is rapidly increasing, from mobile
electronics to high-end storage subsystems [1]-[4].

The most attractive feature of SSD is that SSD does not
generate mechanical overhead, such as seek time of HDD, in
accessing data due to its flash memory components. Such
promising storage characteristics become the driving force of
numerous researches related to SSD, with the expectation of
achieving high I/O performance in various environments.

However, there are several serious constraints in building
storage subsystems solely composed of SSDs. One of such
constraints is that, because of SSD’s internal flash memory
components, developing a file system for the SSD storage
subsystem evokes some issues that have never occurred in the
HDD storage subsystem, such as erasure behavior [5], [6] and
wear-leveling [10], [11].

The second constraint is SSD’s high cost per unit capacity,
compared to HDD. Although the first constraint could be
solved by using FTL [7]-[9], high SSD cost still makes it
difficult to build large-scale storage subsystems using only
SSD devices. An alternative is to build a hybrid storage
subsystem where both HDD and SSD devices are incorporated
in an economic manner, while utilizing the strengths of both
devices to the maximum extent possible.

In this paper, we introduce N-hybrid (New-Form of hybrid)
file system, which is capable of generating comparable
performance with the storage subsystem solely composed of
SSD devices, by combining vast, low-cost HDD storage space
with a small portion of SSD space. This is achieved by taking

Jaechun No is with college of Electronics and Information Engineering,

Sejong University, Seoul, Rep. of Korea (phone: +82-2-3408-3747; fax:
+82-2-3408-4321; e-mail: jano@ sejong.ac.kr).

advantages of SSD’s high I/O performance, while providing a
flexible internal structure, to integrate excellent sequential
performance of existing file systems on HDD devices.

The rest of paper is organized as follows: In Section II, we
describe the background works for SSD and in Section III, we
present the implementation details of N-hybrid. The
performance results of N-hybrid are shows in Section IV. In
Section V, we conclude our paper.

II. BACKGROUND WORKS

On top of ext2, we conducted two kinds of experiments to
obtain intuitive knowledge of I/O behavior on both HDD and
SSD devices. In this experiment, we used Bonnie++ benchmark
for measuring the bandwidth ratio of sequential file operations
between two devices and also used our I/O template for
measuring the bandwidth ratio of randomized file operations.

All the ratio values were obtained by dividing SSD
bandwidth of each file size into the corresponding HDD
bandwidth. Our template performs file operations, creating
10,000 random files. The following code segment shows how a
file is randomly created in our template:

 while (number_of_files_to_be_tested) {
 choose random numbers for a, b, c, srv, m;
 trail_uid++;
 sprintf(path,“/mnt/dev_mount/disk%d/test/%c/%c/

%c/%c/%c-%d-%c@paran.com/mbox%d.dat”, srv, a, b, c, a, b,
trail_uid, c, m);

perform I/O operations using a file named path;
}

The experimental platform has Intel Xeon 3GHz CPU, 16GB
of RAM, 750GB of SATA HDD and 80GB of fusion-io SSD.
Figs. 1 and 2 demonstrate sequential and random performance
ratios between two devices. There are several interesting points
worthy of observation.

In case of sequential and random write operations, there
exists large performance difference between HDD and SSD
devices, with less than or equal to 4KB of file size. This
difference demonstrates that, with small-size files, the overhead
of HDD moving parts is more significant than that of SSD
semiconductor properties.

Sequential read performance differs little between two
devices, irrespective of file sizes. On the contrary, the
performance ratio of random reads between two devices is
higher than that of sequential reads. This is because HDD's
random seek significantly deteriorates random read
performance.

Developing NAND Flash-Memory SSD-Based File
System Design

Jaechun No

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1683

Fig. 1 Sequential comparison as a function of file size

Fig. 2 Random comparison as a function of file size

Based on the results, we can assume that, for the applications
where considerable I/O operations are sequential reads, HDD
can generate comparable I/O performance to SSD. However,
with applications generating large number of random I/O
operations, using SSD as a file cache can effectively serve to
speed improvement.

On top of SSD device, the performance ratio of random and
sequential rewrite operations becomes comparable with more
than or equal to 256KB of file size. However, with less than
256KB of file size, random rewrite operations present higher
performance ratio than sequential rewrite operations. This
means that as file size increases, file access pattern affects little
to performance ratio between two devices. In general, the
rewrite performance on SSD device is higher than that on HDD
device, irrespective of file access patterns.

File creation on SSD device is effected by file access
patterns, meaning that creating sequential files is faster than
creating random files. We believe that ext2 strategy for creating
metadata might alleviate SSD overhead in the sequential file
allocation.

III. IMPLEMENTATION DETAILS

A. Disk Layout

The primary objective of N-hybrid is to take potential
benefits of HDD and SSD storage mediums. To utilize SSD's
high-speed I/O bandwidth, N-hybrid uses SSD as a
write-through persistent cache. The HDD partition of N-hybrid
uses a similar allocation method to ext2/3.

Fig. 3 Disk layout of N-hybrid: The shadowed box indicates the
partially occupied data

The data structure of the file system to be built on top of

HDD partition needs not significantly be modified to use SSD
cache; thereby most existing kernel modules can be used
without major changes to integrate SSD cache. We believe that
such an N-hybrid internal structure contributes to improve
portability, by minimizing manpower to switch the file system
of HDD partition to another.

The N-hybrid takes different block allocation policy for both
partitions. The efficiency of SSD cache depends on how
effectively SSD's limited space capacity can be managed. This
involves the consideration for the allocation cost of new files
and for the hit ratio of most demanding files. In order to
alleviate the allocation cost, N-hybrid eliminated indirectness
in SSD block allocation. In other words, there is no indirect
block need to be addressed. Also, to allocate SSD blocks as
sequentially as possible, file creation is performed on
per-extent.

Finally, N-hybrid allows defining multiple data sections in
which the extent size of each section differs from each other. In
N-hybrid, allocating new files can be done in two ways. First,
with selective file mapping enabled, new files belonging to a
directory are allocated in the data section that has been mapped
to the directory at file system creation time. If no selective
mapping is specified, a new file is then allocated in the data
section whose extent size is most suitable for the file.

Fig. 3 illustrates the disk layout of N-hybrid. The file
allocation in HDD partition is performed by using ext2/3
allocation modules. On the other hand, allocating files in SSD
partition follows the different process. As shown in Fig. 3, SSD
partition is divided into multiple data sections, with each
section defining its own extent size. The first data section, D0,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1684

uses the extent composed of four blocks, whereas each extent of
the second and third data sections, D1 and D2, is consisted of u
and v blocks, respectively, where u > 4 and v > u. Providing
multiple extent sizes gives an opportunity for space
optimization, such as allocating large files in the data section
with large extent size and allocating small files in the data
section with small extent size.

The beginning of SSD partition contains the information
about data sections, such as the number of data sections, section
size, and pre-determined extent size of each data section. These
configuration parameters are defined at file system creation.
The default value for the number of data sections is one, and in
such a case, an extent is composed of four blocks.

The configuration parameters are immediately followed by
the extent bitmaps and headers. Each data section maintains its
own bitmap and header. Each bit of the extent bitmap indicates
the allocation status of the associated extent. The bit is set to
one only when the whole blocks of an extent are free. The
allocation status of the partially occupied extents (partial
extents) is indicated by the extent header.

Fig. 4 shows the memory image of extent header of data
section D1, with extent size of u. The N-hybrid reuses only the
partial extents whose remaining number of free blocks is more
than half of total blocks in an extent, to prevent widespread file
allocation across partial extents.

Fig. 4 Extent header of data section D1 where the extent size is u

The extent header is organized with log(u/2)+1 number of
header entries such that each entry points to the linked list of
partial extents with u-2i number of free blocks, where
0≤i≤log(u/2). Each header entry consists of three attributes.
The number of partial extents linked at the header position
leads and the starting and current extent addresses of the
associated linked list follow. In the first header entry, the
insertion to the list occurs at the current extent address, (e1
curOfu-1, b1), and the deletion due to extent reuse occurs at the
starting extent address, (e1

stOfu-1, b1).

B. Algorithm for SSD Extent Allocation

When a new file with size of f is created in SSD partition,
N-hybrid first chooses a data section Di in such a way that
minimum number of extents are needed to allocate the file.
After determining the appropriate data section, N-hybrid
checks the extent bitmap of the data section to allocate clean
extents.

If the entire blocks of the last extent are not used and the
remaining number of free blocks, w, is more than or equal to
u/2, then the extent descriptor of the last extent is inserted to the
ith header position such that u-2i ≤ w < u-2i-1. If there are not
enough clean extents available, then N-hybrid looks for the
partial extents by checking the extent header.

With a file size f that needs less than or equal to u-1 number
of free blocks, N-hybrid reuses a partial extent whose unused
free space is closest to f. With a file size larger than (u-1)*b,
N-hybrid checks from the first header position until enough
number of partial extents are obtained for the file.

The file metadata and data in SSD and HDD partitions are
connected by SSD associated attributes in the inode. The
SSD_active indicates whether the corresponding data are
available in SSD partition. This flag is turned off when the
cached data are evicted from SSD address space by the extent
replacement algorithm.

The SSD_wr_done indicates the atomic write between HDD
and SSD address spaces. The flag is enabled only when the file
is safely stored in both address spaces. The SSD_section
contains the ID of SSD data section where the associated file is
allocated and the SSD_address is a sequence of extent
addresses consisted of extent number, starting block address
and block count.

C. File I/O Operation

The selective file mapping enables to assign files to a
specific data section where I/O cost related to those files can be
optimized, such as assigning large files to a data section with
large-size extent. The selective file mapping between directory
hierarchy and a specific SSD data section is defined in the
configuration file.

When N-hybrid is mounted, the in-core map table is
constructed to index the associated data section. This map table
contains the map information specified in the configuration file
and returns the section descriptor which will be stored in the
corresponding directory inode. The section descriptor is
inherited to all the descendants of the mapped directory.

The file creation is initiated by allocating the necessary file
metadata in HDD address space. The file write operation on
both HDD and SSD address spaces is simultaneously
performed. As stated earlier, new files are allocated in the
appropriate SSD data section, by referring the extent bitmap
and header. Simultaneously, allocating files to HDD address
space is performed by using ext2/3 allocation modules which
are performed based on block group [12].

After the file allocation in SSD address space is completed, a
sequence of extent addresses are assigned to file inode, and
SSD_active and SSD_wr_done are enabled to indicate available
cached data. The file read operation is started by checking

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1685

SSD_active to see if the associated file is cached in SSD
partition. In case that SSD_active and SSD_wr_done are both
enabled, the cached data stored in SSD_address are brought
into memory. Otherwise, the file stored in HDD address space
is brought into memory and also is updated to SSD address
space.

The N-hybrid provides a circular, multilevel LRU queue per
data section for SSD extent replacement. In the circular LRU
queue, the hotness of a file is determined by file access time,
meaning that file inode is linked to the queue, according to the
increasing order of access time. The queue pointed to by
current_level contains hot files and the queue pointed to by
flush_level contains cold files to be flushed out, in case that
there are insufficient free extents available. In the current
implementation, each queue links 1K number of accessed
inodes.

Once ith queue is full, the recently accessed inode is inserted
to the beginning of ((i+1) mod n)th queue. The re-referenced
inodes are moved to the queue pointed to by current_level, with
their indices being modified to reflect the movement between
queues.

When available SSD memory in a data section drops below a
threshold, the files starting from the queue pointed to by
flush_level are flushed out from SSD partition until sufficient
free SSD extents are obtained. In such a case, because their
copies are available in HDD partition, only thing to be done for
SSD flush is to turn off SSD_active and SSD_wr_done in the
corresponding inodes.

IV. PERFORMANCE EVALUATION

By using Bonnie++ file system benchmark, we compared I/O
performance of N-hybrid with that of two file systems: ext2 [12]
and xfs [13].

For the evaluation of small files, we changed the chunk size
from 1Kbytes to 16Kbytes. Fig. 5 shows I/O performance of
sequential write operations. As can be seen in the Fig. 5, in case
of 16Kbytes of chunk size, N-hybrid outperforms other file
systems, even better than the other file systems installed on the
SSD device. This shows that the variable-length of extent size
works well on small-sized files.

In both ext2 and xfs, the performance on the SSD device is
much better than that on the HDD device. It is noted that, due to
the limited storage capacity and high cost, it is not reasonable to
store a large amount of data, on top of ext2 or xfs file systems
installed on the SSD device.

Fig. 6 shows I/O performance of sequential rewrite
operations. In case of sequential rewrite operations, the
performance of N-hybrid is almost similar to xfs, but is much
higher than ext2. This is because, in case of rewrite operations,
the file metadata operations which need to access the HDD
partition of N-hybrid does not occur frequently. In other words,
most accesses in N-hybrid take place in the SSD partition.

Fig. 7 shows I/O performance of sequential read operations
with the impact of memory cache. In this evaluation, the
performance of N-hybrid is much similar to those of two other
file systems installed on both devices. Based on the evaluation,
we can conclude that reading N-hybrid file metadata from the

HDD partition does not deteriorate the entire I/O performance.
Fig. 8 shows the performance results for sequential file

creations. As can be seen in Fig. 8, the performance of xfs on
the SSD partition is much higher than the other file systems,
even higher than N-hybrid. We believe that the extent-based
file allocation using B++ tree is very effective on the SSD
device. Even though N-hybrid supports variable-length extent
allocation, it should perform the file metadata and data
operations on the HDD partition. This might lower the file
allocation performance of N-hybrid. However, storing
large-scale files on the SSD device is very costly. Therefore,
even though the performance of xfs file allocation on the SSD
device is excellent, it is not reasonable to store such a
large-scale file data, on top of xfs installed on the SSD device.

Fig. 5 Sequential write performance

Fig. 6 Sequential rewrite performance

Fig. 7 Sequential read performance

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:7, 2015

1686

Fig. 8 Sequential create performance

V. CONCLUSION

Even though many researchers recognize SSD strengths,
such as high I/O performance and reliability, SSD usage in real
products has been extremely limited to small-size memory
devices. In this paper, we proposed a way of integrating SSD
devices with HDD devices in a cost-effective manner, to build a
large-scale, virtual storage capacity. The integration of both
devices was performed by providing a flexible internal
structure which enables to utilize excellent sequential
performance of existing file systems.

The performance evaluation shows that achieving high I/O
performance by combining the potential advantages of both
SSD and HDD devices is possible. The strength of N-hybrid is
most noticeable when its write performance is compared to the
corresponding performance of both ext2 and xfs on HDD
device. Such a performance speedup is achieved by integrating
SSD write-through cache. The write experiment using
Bonnie++ benchmark indicates that the mechanical moving
overhead of HDD more affects write performance than the
semiconductor overhead of SSD. On the contrary, the read
experiment demonstrates that, in addition to the use of memory
cache, sequential data coalescing makes it possible for HDD
devices to achieve comparable read performance to SSD
devices. As a future work, we plan to evaluate N-hybrid with
real applications to verify its performance effectiveness.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
Government (MSIP) (NRF-2014R1A2A2A01002614).

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse and R.

Panigrahy, “Design Tradeoffs for SSD Performance,” In Proceedings of
USENIX Annual Technical Conference, 2008, pp.57-90.

[2] A. Rajimwale, V. Prabhakaran and J.D. Davis, “Block Management in
Solid-State Devices,” 2009 USENIX Annual Technical Conference, 2009.

[3] C. Lee, S. H. Baek, K. H. Park, “A Hybrid Flash File System Based on
NOR and NAND Flash Memories for Embedded Devices,” IEEE
Transactions on Computers, vol. 57, July 2008.

[4] G. Soundararajan, V. Prabhakaran, M. Balakrishnan and T. Wobber,
“Extending SSD Lifetimes with Disk-Based Write Caches,” In
Proceedings of 8th USENIX Conference on File and Storage
Technologies, San Jose, USA, Feb. 2010.

[5] J.-W. Hsieh, L.-P. Chang and T.-W. Kuo, “Efficient Identification of Hot
Data for Flash-Memory Storage Systems,” ACM Transactions on
Storage, vol. 2, 2006.

[6] A. Olson and D. J. Langlois, “Solid State Drives – Data Repliability and
Lifetime,” White Paper. Imation Corporation, 2008.

[7] C. Park, W. Cheon, Y. Lee, M-S. J, W. Cho and H. Yoon, “A
Re-configurable FTL (Flash Translation Layer) Architecture for NAND
Flash based Applications,” 18th IEEE/IFIP International Workshop on
Rapid System Prototyping (RSP’07), 2007.

[8] J. Kim, J-M. Kim, S-H. Noh, S-L. M and Y. Cho, “A Space-Efficient
Flash Translation Layer for Compact Flash Systems,” IEEE Transactions
on Consumer Electronics, vol. 48, May 2002.

[9] Intel Corporation, “Understanding the flash translation layer (FTL)
specification,” Technical Report, Dec. 1998.

[10] M. Saxena and M. Swift, “FlashVM: Virtual Memory Management on
Flash,” In Proceedings of USENIX Annual Technical Conference,
Boston, MA, 2010.

[11] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” ACM Computing Surveys (CSUR), vol. 37, June 2005.

[12] R. Card, T. Ts'o and S. Tweedie, “Design and Implementation of the
Second Extended Filesystem,” In Proceedings of the First Dutch
International Symposium on Linux, 1995.

[13] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto and G.
Teck, “Scalability in the XFS File System,” In Proceedings of the
USENUX 1996 Technical Conference, San Diego, USA, 1996.

