
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1412


Abstract—Cloud computing is the innovative and leading

information technology model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal
management effort. In this paper, we aim at the development of
workflow management system for cloud computing platforms based
on our previous research on the dynamic allocation of the cloud
computing resources and its workflow process. We took advantage of
the HTML5 technology and developed web-based workflow interface.
In order to enable the combination of many tasks running on the cloud
platform in sequence, we designed a mechanism and developed an
execution engine for workflow management on clouds. We also
established a prediction model which was integrated with job queuing
system to estimate the waiting time and cost of the individual tasks on
different computing nodes, therefore helping users achieve maximum
performance at lowest payment. This proposed effort has the potential
to positively provide an efficient, resilience and elastic environment
for cloud computing platform. This development also helps boost user
productivity by promoting a flexible workflow interface that lets users
design and control their tasks' flow from anywhere.

Keywords—Web-based, workflow, HTML5, Cloud Computing,
Queuing System.

I. INTRODUCTION

LOUD computing [1] is becoming more and more matured
over the last few years and consequently the demands for

better cloud services is increasing rapidly. As proposed by [2]
and shared by many researchers and practitioners, compared
with conventional computing paradigms, cloud computing can
provide "a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services are
delivered on demand to external customers over the Internet". It
has to be a highly elastic environment which provides stable
services to users. In which services are delivered according to
external users’ needs via internet. Users can have access from a
set of web interfaces that manage and monitor a pool of
computing resources at any time and at any place in different
economic, commercial and scientific fields and obviate or
decrease costs related to storage and computation in their sites.

The numbers of cloud computing services are growing very
fast; which also increase the cloud users. With this increase
there is a need to manage all those cloud computing tasks from
cloud users. One of the research topics to improve cloud
services is the flexible allocation and automation of running

This work is supported by National Science Council, R.O.C., under the

contract number of MOST-103-2221-E-492-027
S.T. Wang, Y.C. Lin and H.Y. Chang are with the National Center for

High-Performance Computing, Taiwan, R.O.C. (e-mail: stwang@nchc.org.tw,
1203043@nchc.org.tw, jerry@nchc.org.tw).

and management for cloud computing tasks by adapting
workflow system concept [3], [4]. Workflow systems are
designed to support the process automation of large scale
sequential or parallel applications, in whole or in part, during
which applications are passed from one participant to another
for action, according to a set of procedural rules. A workflow
models a process as consisting of a series of steps that simplify
the complexity of execution and management of applications
[5]. On the other hand, task scheduling is an important part
when to manage and control the computing tasks in a
computing platform. Kamer [6] presented an approach to
scheduling sequential tasks in a distributed system in which the
only relationship between tasks is the need to access to
common files and there is no dependence between tasks. So the
workflow scheduling can be defined as the automation in
workload scheduling where the workload is the requests and
tasks generated by number of user s or clients in cloud.

The goal of this paper is to run a user-defined service
workflow. We aim at the development of workflow
management system for cloud computing platforms based on
our previous research on the dynamic allocation of the cloud
computing resources and its workflow process. We developed
an execution engine for workflow management which allows
an entire computation is partitioned by user and distributed over
several computing nodes with a result of being able to process
many computing tasks. We implemented an abstraction and
designed mechanisms for workload scheduling in which
independent jobs gets scheduled among various available
processors of distributed computing for optimization. So all
information is known in advance by the workflow engine and
tasks are allocated according to the prior knowledge and will
not be affected by the state of the system.

In difference to other workflow implementations, our system
also targets on a unified interface. We implemented a sketch of
clientless web-based interface that seeks to enable
manageability among tasks, which is efficient, resilience and
independent of the operating system. This workflow interface
can be accessed from any OS platform through any HTML5
compliant browser like Internet Explorer, Mozilla Firefox,
Google Chrome, Safari, Opera, etc. So our implementation can
make such a service is simple and easy to use and allow users to
access the workflow management from anywhere, any devices
and without requiring the installation of special clients.

The rest of this paper is organized as follows. Section II lists
the related works. Section III gives descriptions of architecture
and platform. Section IV gives some details of the development.
Section V discusses future work and concludes.

Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Developing a Web-Based Workflow Management
System in Cloud Computing Platforms

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1413

II. RELATED WORKS

Currently, many research communities have realized the
concept of task workflow management. Scheduling the tasks at
the back-end servers is very difficult, because the compute jobs
requesting is very large in number which required different
resources to execute. The workflow has to optimal and good
enough so that each request by the user gets response in time.
There are various task workflow system developed to solve this
problem. Following three implementations provide the good
framework for scientific workflow.

A. Cloudbus Toolkit

Cloudbus Toolkit [7] is a well-known project that defines a
complete architecture for creating market-oriented Clouds. A
workflow engine is also mentioned in the designed architecture.
This project realized the requirement and changes needed to be
incorporated when moving scientific workflows to Clouds. It
aims at a prototypical implementation of a workflow engine
that executes a workflow composed of different Cloud services.
The three key components of this architecture are a Cloud
Broker, a Market Maker and an InterCloud. The Cloud Broker
schedules applications on behalf of the user by specifying the
desired quality of service requirements, whereas the
Market-Maker acts as a mediator bringing together Cloud
providers and customers. It aggregates infrastructure demands
from the Cloud Broker and matches them against the available
resources published by the Cloud providers. The Inter Cloud
provides a scalable federated computing environment
composed of heterogeneous interconnected Clouds enabling
the Inter Cloud resource sharing. The goal of Cloudbus Toolkit
is to simply provide a new functionality rather than to
investigate a comprehensive solution. The architectural
framework of this project is still under development.

B. CloudAnalyst

CloudAnalyst [8] is a graphical simulation tool built on top
of the CloudSim Toolkit [9], developed at the University of
Melbourne whose goal is to model and analyze the behavior of
large social network applications according to geographic
distribution of users and data centers. In this tool, communities
of users and data centers supporting the social networks are
characterized and, based on their location; parameters such as
user experience while using the social network application and
load on the data center are obtained. The Internet traffic routing
between the user bases located in different geographic locations
and the datacenters, is controlled in CloudAnalyst by a service
broker that decides which datacenter should serve the requests
from each user base based on different routing policies. The
current version of CloudAnalyst implements three different
routing policies, which are network-latency-based routing,
response-time-based routing and dynamic-load-based routing.
A CloudAnalyst simulation case study of the social network
application proved how load balancing managed by a service
broker optimizes the performance and cost of large scale Cloud
applications.

C. Swin De W-C

SwinDeW-C (Swinburne Decentralized Workflow for
Cloud) [10], is a peer to peer based Cloud workflow system for
managing large scale workflow applications. SwinDeW-C is
not built from the scratch but based on our existing
SwinDeW-G. The general cloud architecture of SwinDeW-C
includes four basic layers from top to bottom: application layer
(user applications), platform layer (middleware cloud services
to facilitate the development/deployment of user applications),
unified resource layer (abstracted/encapsulated resources by
virtualization) and fabric layer (physical hardware resources).
In order to support large scale workflow applications, a novel
Swin DeW-C architecture is also presented where the original
fabric layer of SwinDeW-G is inherited with the extension of
external commercial cloud service providers. Meanwhile,
significant modifications are made and some functional
components are enhanced at the platform layer to support the
management of large scale workflow applications; the user
interface is modified to support Web browser based access.

Fig. 1 System architecture

III. ARCHITECTURE

A. System Architecture

Fig. 1 provides an overview of the logical architecture for a
standard, three tiers implementation. The framework
architecture is composed of three main parts: the Client, the
Service Broker and Resource Provider. The internal
components of every architecture part and their provided
functionalities are discussed in the following:
1) Client: the Client provides Cloud users with an interactive

user interface to submit their service requests to the broker
by describing the functional computing job requirements.
While our web-based interface is built using a
Model-View-Controller based Google Web Toolkit [11]
framework. The user is able to manage and monitor the
service after its deployment through a single management
console. If the requested service requires the involvement
of other services, the workflow engine could be deployed
to assist users in building and executing complex Cloud
services.

2) Service Broker: the Service Broker builds the heart part of
our implemented architecture. It includes a Workflow
Engine. The engine is a software service that provides the
run-time environment in order to create, manage and
execute workflow instances. The engine handles the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1414

representation of a workflow process in a form which
supports automated manipulation, and interfaces to support
interoperability between different workflow systems. This
broker also provides the system monitoring and metric
functions to facilitate the management of composite
workflow application environments. Its main task is to find
the most suitable computing resource provider while
satisfying the users’ service requirements.

3) Resource Provider: Provider is a pool of computing
resources including machines, network, storage, operating
system, application programs and development
environments. When granted workflow requests, a part of
the computing resources in the pool is dedicated to the
requesting user until those resources are released. For
providing computing resource, we employed virtualization
technology. Virtualization [12] acts as a central component
that can achieve the purpose of cloud platforms and
services, and it is a promising approach to consolidating
multiple services onto a smaller number of computing
resources. A virtualized server environment allows
computing resources to be shared among multiple
performance-isolated platforms called virtual machines
[13]. A virtual machine is a software implementation of a
machine that executes related programs like a physical
machine. Each virtual machine includes its own system
kernel, OS, supporting libraries and applications. Users are
allowed to customize their process workflow to support the
dynamic resource allocation.

B. Software Architecture

Fig. 2 illustrates the software stack of our workflow
management system. Our system is entirely web-based that
way the end user doesn’t need to download and install any tools
or plugins on his/her computer. In particular, this enables
accessing our interface from a wide range of devices, including
mobile devices such as Smartphone or Pad. The key
components are as follows:
1) Hardware: There are many physical devices including

CPU, memory, hard disk, NIC (Network Interface Card),
etc.

2) Hypervisor: We adopt KVM [14] to attain virtualization
aim. KVM consists of a loadable kernel module that
provides the core virtualization infrastructure and a
processor specific module. KVM also requires a modified
QEMU although work is underway to get the required
changes upstream. Using KVM, we can run multiple
virtual machines running unmodified Linux or Windows
images.

3) Libvirt APIs: Libvirt [15] is an open source API, daemon
and management tool for managing platform virtualization.
It can work with a variety of hypervisors in the
development of a cloud based solution. Thus, we employ
these APIs to control and manage our KVM, and we can
switch the underlying hypervisor technology at a later
stage with minimal efforts.

4) PHP: We adopt the PHP program language to build all web
pages. PHP is an open source server-side scripting

language designed for Web development to produce.
5) MySQL: MySQL is the world's most used open source

relational database management system (RDBMS) that run
as a server providing multi-user access to a number of
databases.

6) Google Web Toolkit: Our web based interface is built
using a Model-View-Controller (MVC) based Google
Web Toolkit (GWT) framework. GWT is a development
toolkit for building and optimizing complex browser-based
applications. The GWT SDK provides a set of core Java
APIs and Widgets. These allow us to write AJAX
applications in Java and then compile the source to highly
optimized JavaScript that runs across all browsers.

7) jsPlumb: jsPlumb is a JavaScript library that provides a
mean for a developer to visually connect elements on their
web pages. It provides a way to connect elements of a UI
into a nice graph. It uses a canvas stage to drag graphs,
charts or different elements showing the way GUI
elements or other objects interact with each other.

Fig. 2 Software architecture

TABLE I
FORMOSA 3 CLOUD CLUSTER SPECIFICATION

CPU Intel Xeon x5660 six cores 2.8GHz

Hard Disk 80GB SSD

Memory 48GB DDR3 Registered ECC SDRAM

Network 4x QDR 40Gb Infiniband and Gigabit Ethernet

Operating System CentOS 6.3

Hypervisor Kernel-based Virtual Machine

C. Cloud Platform

Table I shows the specification information of our cloud
platform named Formosa 3. Formosa 3 [16] is a 64bits
high-performance Beowulf cluster located within Southern
Business Unit of the National Center for High Performance
Computing (NCHC) [17]. It consists of 76 IBM X3550M3
servers as its compute nodes. This self-made cluster was
designed and constructed by the 'HPC Cluster Group' at NCHC
for cloud service and came online in 2012. Each node has two
Six-Core Intel Xeon x5660 2.8GHz processors and 48GB of
DDR3 registered ECC SDRAM. All nodes were connected on

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1415

the InfiniBand high speed network and a private subnet with
1000 Mbits/s Gigabit Ethernet. An additional 4 nodes are used
as front ends to interface with cluster, and 4 nodes as storage for
the user file systems by Parallel File System.

IV. DEVELOPMENT

We implemented the proposed workflow architecture as a
Web-based interface, written in Java. Currently we adopt GWT
to allow the use of existing Java knowledge and tools to build
high performance, desktop web applications. GWT abstracts
away many complexities of web application development by
not requiring us to learn Javascript and HTML. It rests on
today's web standards: AJAX, JSON and HTML5 as well.
While implementing our cloud platform for integrating with
workflow system, we came across several issues that have
previously not been addressed. For example: how to build the
cloud virtualization environment? Currently we adopt the
Kernel-based Virtual Machine. By using KVM, we can run
multiple virtual machines running unmodified Linux or
Windows images. Each virtual machine has private virtualized
hardware devices. A virtualized server environment allows
computing resources to be used by workflow system among
multiple performance-isolated platforms. This section aims to
explain the details of development involved with Workflow
Designer, Translator, Workflow Engine and Session
Controller.

A. Workflow Designer

The Workflow Designer provides intuitive user-friendly
interface for users to design workflows as well as specify
workflow parameters. It is a web-based GUI allowing users to
compose, edit and submit workflows. As shown in Fig. 3, it
consists of a working pool and component palette. The working
pool is a HTML5 canvas, users can drag and drop components
and input data parameters onto it and connect them to the
workflow. User can press the setting button to launch a specific
dialog to define settings, included: among the available
resource providers, the number of computing nodes, which
instance type for each computing node, estimated running time
of the workflow, etc. Once resources are chosen, the user
presses the 'Submit' button which sends a request to the
Workflow Engine to run the workflow.

Fig. 3 Workflow Designer

B. Translator

Once workflow is composed and submitted, the workflow
request will be sent to the Translator. The Translator module is
responsible for producing executable representations of
workflows from the specifications written in our XML-based
format. These specifications are stored in the Workflow
Repository. Fig. 4 illustrates example of workflow XML
representation.

<workflow>
 <status>
 <state value="Active">
 <queue>n4p16</queue>
 <queue>n8p32</queue>
 <queue>n16p64</queue>
 </state>
 <state value="Closed">
 <queue>n128</queue>
 </state>
 </status>
 <flow>
 <unit>
 <job serial="1" queue="n4p16" speed="T1">
 <name>simKernel</name>
 <path>/home/ct01/oldpast/kely.math</path>
 <time>5</time>
 <parent>NULL</parent>
 <child>VASP</child>
 </unit>
 <unit>
 <job serial="2" queue="n4p16" speed="A2">
 <name>VASP</name>
 <path>/home/ct01/vasp/vasp_x86_proversion</path>
 <time>5</time>
 <parent>NULL</parent>
 <child>VASP</child>
 </unit>
 </flow>
</workflow>

Fig. 4 Workflow XML representation

C. Workflow Engine

The Workflow Engine is the heart of a workflow system and
responsible for creating and executing workflow tasks
accounting to the executable representations. It acts as a bridge
between the Client and the backend Resource Provider. It
supports the following functionalities: workflow xml
compilation, workflow scheduling, resource acquisition,
process scheme generation, serialization and saving of
parameters, pre-execution of process. The workflow process
scheme include: verification of the current status, determine the
authority of users executing condition script. Fig. 5 shows the
monitoring page which generated by Workflow Engine. The
Workflow Engine keeps track of the statuses of individual tasks
such as initialized, executing, finished, error.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:6, 2015

1416

Fig. 5 Workflow monitoring page

D. Session Controller

 For controlling the user's session, our workflow system has a
session server to perform the role of workflow controller, and to
manage user’s connection and accounting information. The
session controller also communicates with service broker to
deliver the status. Besides, the session controller is deployed on
the GWT to provide the single web-based portal for user login.
It also enhances the system security and elasticity by applying
the centralized control of applications and files. While
implementing our cloud platform for workflow, we came
across several issues that have previously not been addressed.
For example, for accessing the computing resource, due to the
virtual machine may execute on different physical machines
every time. This can be troublesome if we provide a fixed
public IP address and port for connecting to the client’s desktop.
So, we use iptables and thus setup port forwarding connections
to the virtual machine that user launched in the workflow. Our
system will allocate a mapping port dynamically which allows
users' workflow can connect to the backend physical machine
with the dedicated IP address of and the port which will be
forwarded to the appropriate physical machine which is
currently hosting the user's virtual machine.
 Fig. 6 illustrates the web-based workflow interface. Users
can drag/drop components, input data parameters, set the timer
conditions, specify the actions, etc. And then connect them to
build the relation of workflow.

Fig. 6 Web-based workflow interface

V. CONCLUSION

In this paper, we aim at the development of workflow
management system for cloud computing platforms based on
our previous research on the dynamic allocation of the cloud
computing resources and its workflow process. We developed
an execution engine for workflow management which allows
an entire computation is partitioned by user and distributed over
several computing nodes with a result of being able to process
many computing tasks. We implemented an abstraction and
designed mechanisms for workload scheduling in which
independent jobs gets scheduled among various available
processors of distributed computing for optimization. We also
developed a sketch of clientless web-based interface that seeks
to enable manageability among tasks from workflow, which is
efficient, resilience and independent of the operating system.

In the future, we will adopt the new task scheduling and data
placement for execution of applications including a sequence of
tasks in distributed platforms. We plan to design an approach to
mapping workflow’s data and tasks between different cloud
platforms for decreasing the network traffic and improvement
in quality of providing service and reliability.

REFERENCES
[1] Fox, Armando, et al. "Above the clouds: A Berkeley view of cloud

computing." Dept. Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Rep. UCB/EECS 28 (2009): 13.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu. "Cloud Computing and Grid
Computing 360-Degree Compared," IEEE Grid Computing
Environments Workshop, pp. 1-10, 2008.

[3] A. Tsalgatidou, et al., "Developing scientific workflows from
heterogeneous services," SIGMOD Record, vol. 35, no. 2, pp. 22-28,
2006.

[4] C. Hoffa, et al., "On the use of cloud computing for scientific workflows,"
eScience, pp. 640-645, 2008.

[5] Buyya, Rajkumar, James Broberg, and Andrzej M. Goscinski, eds. Cloud
computing: Principles and paradigms. Vol. 87. John Wiley & Sons, 2010.

[6] Kaya, Kamer, and Cevdet Aykanat. "Iterative-improvement-based
heuristics for adaptive scheduling of tasks sharing files on heterogeneous
master-slave environments." Parallel and Distributed Systems, IEEE
Transactions on 17.8 (2006): 883-896.

[7] Buyya, Rajkumar, Suraj Pandey, and Christian Vecchiola. "Cloudbus
toolkit for market-oriented cloud computing." Cloud Computing.
Springer Berlin Heidelberg, 2009. 24-44.

[8] Wickremasinghe, Bhathiya, Rodrigo N. Calheiros, and Rajkumar Buyya.
"Cloudanalyst: A cloudsim-based visual modeller for analysing cloud
computing environments and applications." Advanced Information
Networking and Applications (AINA), 2010 24th IEEE International
Conference on. IEEE, 2010.

[9] Calheiros, Rodrigo N., et al. "CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms." Software: Practice and Experience 41.1 (2011):
23-50.

[10] Liu, Xiao, et al. "SwinDeW-C: a peer-to-peer based cloud workflow
system." Handbook of Cloud Computing. Springer US, 2010. 309-332.

[11] P. Chaganti , "Google Web Toolkit: GWT Java AJAX Programming,"
Packt Publishing, 2007.

[12] Goth, Greg. "Virtualization: Old technology offers huge new potential."
IEEE Distributed Systems Online 8.2 (2007): 3-3.

[13] R. A. Meyer and L. H. Seawright, “A Virtual Machine Time-Sharing
System,” IBM Systems Journal, vol. 9, no. 3, 1970.

[14] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “kvm: the
Linux Virtual Machine Monitor,” In Proceedings of the Linux
Symposium, vol. 1, pp. 225-230, 2007.

[15] Libvirt - The virtualization API. http://libvirt.org/
[16] NCHC Formosa 3 Cloud Cluster. http://formosa3.nchc.org.tw/
[17] NCHC, National Center for High-performance Computing.

http://www.nchc.org.tw/

