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Abstract—For decades, the defense business has been plagued by 

not having a reliable, deterministic method to know when the Kalman 
filter solution for passive ranging application is reliable for use by the 
fighter pilot.  This has made it hard to accurately assess when the 
ranging solution can be used for situation awareness and weapons 
use.  To date, we have used ad hoc rules-of-thumb to assess when we 
think the estimate of the Kalman filter standard deviation on range is 
reliable.  A reliable algorithm has been developed at BAE Systems 
Electronics & Integrated Solutions that monitors the Kalman gain 
matrix elements – and a patent is pending.  The “settling” of the gain 
matrix elements relates directly to when we can assess the time when 
the passive ranging solution is within the 10 percent-of-truth value.  
The focus of the paper is on surface-based passive ranging – but the 
method is applicable to airborne targets as well. 
 

Keywords—Electronic warfare, extended Kalman filter (EKF), 
fighter aircraft, passive ranging, track convergence.  

I. INTRODUCTION 
HE use of passive sensor angle measurements to compute 
the location of surface and airborne radio frequency (RF) 

emitters (also called targets in this paper) for low observable 
fighter aircraft is vital to ensure mission success and pilot 
survivability [1].  The onboard electronic warfare (EW) sensor 
suite consists of multiple short baseline interferometers (SBI) 
that detect the radar emissions from the emitters in the battle 
space.  The angle measurement accuracy is a function of 
emitter frequency, emitter angle-off-array-boresight, SBI array 
length, the signal-to-noise ratio, the number of RF pulses 
processed by the EW system, and overall array phase error.  
The SBI parameters consequently yield different 1-sigma 
values over time.  Because the EW system has no control over 
the emitters, the measurements come arrive either 
synchronously or asynchronously.  The sensor may also be on 
unmanned aerial vehicles (UAV). 

The fighter aircraft flies straight-and-level with pre-planned, 
coordinated heading changes at way points in the mission.  In 
the course of a mission, the pilot will encounter unexpected 
pop-up surface or airborne emitters that he needs to either 
avoid or respond to quickly.  Pilot responses may include the 
use of defensive or offensive weapons – or a simple change in 
aircraft orientation with respect to the emitter (weapon 
system).  In both cases, the EW system processes SBI 
measurements.  Sometimes the EW system will be able to 
regulate the measurement update rate – and this can assist 
convergence in the passive ranging solution. 

The methodology to analyze extended Kalman filter (EKF) 
tracking performance is to define a scenario.  A scenario is 
defined using the initial range and azimuth angle to the surface 
emitter, as well as the fighter platform speed and heading, 
total scenario time, and measurement update rate.  The 
analysis can be extended to the slow-moving surface emitter, 
as well as the airborne emitter.  The past effort used fixed-gain 
alpha-beta filters – with stored gains.  The use of the 1-sigma 
value from the Kalman filter was used next for years – where 
a fudge factor is multiplied by the 1-sigma value (like 3 or 3.5) 
and this has always been like the throw of the dice in actuality.  
This ad hoc approach was used for over a decade and proven 
unreliable for the end-user.  The next section summarizes 
previous related work we examined.  

II. REVIEW OF PREVIOUSLY RELATED WORK 
The author’s personal experience in developing passive, 

angle-only target tracking began at General Electric 
Company’s Aerospace & Electronic Systems Department 
(AESD) in Utica, New York in the late 1970s using the 
infrared search and track (IRST) sensor intensity and angle 
data on F-15 aircraft; electronic warfare sensors that provide 
RF parameters and angle data; and cooperative aircraft angle-
based tracking.  Stealthy operation was a principal driver.  The 
Kalman filter was the basic algorithm building block – which 
we discuss in more detail in this paper.  Thousands of papers 
on Kalman filtering exist.  The first available books used were 
by Arthur Gelb (copyright 1974) on Kalman filtering and 
Harry Van Trees (1968) on the Cramer-Rao lower bound 
(CRB) [2, 3].  Principal former technical papers we explored 
are given in references [4-6].  These papers review 
“observability” from an estimation view (vs. fighter aircraft 
stealth radar-cross-section “observability”) and the CRB.  The 
CRB is the theoretical estimation performance for the 
scenario, independent of the implementation used by the 
designer to process the noisy measurements.  The procedure 
involves writing the equations for the N measurements as 
functions of the M state variables to be estimated.  The partial 
derivatives of each measurement equation are computed w.r.t. 
the M state variables to be estimated.  These partial derivatives 
of the measured parameters with respect to the state variables 
are placed into the H matrix with N rows and M columns.  If 
the measurement errors are jointly Gaussian and if the 
estimation error distribution can be approximated by a joint 
Gaussian function, then the CRB can be determined by C = 
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(HTR-1H)-1. In this expression, R is the N-by-N covariance 
matrix for the measurement errors.  The standard deviation of 
the Mth parameter to estimated is the square root of the (M,M) 
entry in C.  The inverse of the matrix C is referred to as the 
Fisher Information Matrix. If the measurement errors are 
uncorrelated, jointly Gaussian, and have the same variance, 
then C = R(HTH)-1.  A simulation involves constructing the H 
matrix over the cumulative number of measurements for the 
scenario using the true state variables and the measurement 
error covariance matrix, R, to compute C, and then using the 
square root of the appropriate diagonal element to determine 
its standard deviation.  All simulation and modeling of 
algorithms included the CRB and the algorithm-under-test 1-
sigma range estimates for passive ranging.  The CRB is a 
benchmark to see if the algorithm has the ability to reach 
theoretical estimation performance.  Real systems are the 
proof-of-the-pudding; and often the 1-sigma range value 
provided by different algorithms was rarely “representative” 
of the true value.  This has remained a big concern for our 
customers – especially current customers – until recent 
research in 2005 that explored the Kalman filter gain 
elements. 

III. SAMPLE TRACKING SCENARIO REVIEW STAGE 
The six inputs to a Monte Carlo MATLAB m-file are: 

D(1) - initial slant range in nautical miles (R_slant) 
D(2) - initial azimuth angle in degrees (AZ) 
D(3) - ownship height in kilo-feet (H) 
D(4) - ownship speed in knots (V) 
D(5) - scenario duration in seconds (t) 
D(6) - sample interval in seconds (d_t) 

The user completes the line below with the six parameters 
in brackets [R_slant, AZ, H, V, t, d_t] to create a data vector. 

Parameters within the m-file the user selects include: angle 
measurement accuracy for the elevation and azimuth cone 
angle; the seeded initial range and the corresponding sigma 
range.  The user can experiment with other EKF internal 
matrix components, like the process noise error covariance 
matrix (Q), initial state vector error covariance matrix (P_init), 
and initial state vector (X_init).  The m-file provides the 
following plots listed in Table 1.  The four plots are presented 
below.  In this example, the SBI azimuth 1-sigma value is 1 
degree and 1-sigma elevation is 1 degree. 

 
 TABLE I 

PLOTS THE DESIGNER ANALYZES 
PLOT PARAMETER(S) 

1 horizontal range, slant range, spherical azimuth, spherical 
elevation 

2 spherical and SBI cone angle; cone angle rate, spherical AZ and 
elevation (EL) angle rate 

3 true and estimate cone angle from the EKF 
3 measurement residual in the cone angle (estimated minus true 

cone angle) 
3 single Monte Carlo plot of true and estimated range from the EKF 
4 Monte Carlo results of true and EKF-based percent range error 

(PRE) — overlaid with the Cramer-Rao lower bound 
 

 
Fig. 1 Scenario horizontal range, slant range, spherical AZ and EL 

 

 
Fig. 2 Spherical and SBI cone angle; cone angle rate, spherical AZ 

and EL angle rate 
 

 
Fig. 3 True/estimated cone angle, cone angle residual, single Monte 

Carlo true/estimated range 
 

Examining the figures produced by the m-file, the designer 
can get a feel for the EKF performance.  The standard 
deviation of range, expressed as a percentage of the final value 
of the final range, is given by 100 times the square root of the 
(M,M) entry corresponding to the range parameter in C, 
divided by the final range.  The designer would like tracker 
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performance to be close to the CRB value.  Based on 3rd and 
4th plots, the designer historically developed ad hoc rule-based 
algorithms to quantify when they felt the EKF could be 
confident in its 1-sigma range estimate.  This usually was very 
scenario dependent and many times like the roll-of-dice! 
 

 
Fig. 4 Monte Carlo RMS True PRE and EKF Estimated PRE 

 
The dilemma the designer faced in the past was looking at 

plots of percent range error (PRE) – Figure 4 – where he/she 
tries to conjure up a rule for declaring when they felt the EKF 
was producing a reliable result.  The Cramer-Rao lower bound 
is the theoretical bound on passive ranging performance 
independent of the algorithm mechanization used.  This has 
been an endless effort.  Next we look at the five basic Kalman 
filter equations and focus on the EKF matrix that provides the 
probe we need. 

IV. KALMAN FILTER DESCRIPTION 
The Kalman filter equations are as follows [2] 

))X~f(K(zX~X̂

KRKKH)(IP~KH)(IP̂

R)HP~(HHP~K

QΦP̂ΦP~
OwnshipX̂ΦX

~̂

TT

1TT

T

−+=

+−−=

+=

+=

+=

−  

(1) 

(2) 

(3) 

(4) 

(5) 

 
The Kalman filter is a recursive computational algorithm 

that processes measurements (z) to deduce a minimum 
variance, unbiased error estimate of the state ( X̂ ) of a system 
by utilizing knowledge of system (i.e., the state equation, and 
state transition matrix (Φ) and measurement (functional – 
f( X~ ) dynamics, assumed statistics of the system noises (Q-
matrix) and measurement errors (R-matrix), and initial 
condition information ( X̂  and P̂ ).  The Ownship vector 
accounts for the fighter aircraft motion over the measurement 
interval; I is the identity matrix; K is the Kalman gain matrix; 
and ( )( )Xfz ~

−  is the residual.   

The Ownship vector accounts for the fighter aircraft motion 
over the measurement interval; I is the identity matrix; K is the 
Kalman gain matrix; and ( )( )Xfz ~

−  is the residual.  The 
expression for P̂  is the Joseph form for the error covariance 
update. 

The Kalman filter stability (robustness) can be understood 
by the Table II.  This becomes very important when we 
process combined AZ/EL measurements for estimating 
parameters for constant speed, constant heading airborne 
targets passively using passive ranging fighter maneuvers.  
Under this mode of operation we use a patent-pending 
algorithm that exploits the interacting multiple model (IMM).  
See U.S. Patents and Trademarks website (patent filing # 
20050110661).  In the IMM, the residuals automatically adapt 
the tracker to handle non-maneuvering and maneuvering 
airborne targets. 
 

TABLE II 
KALMAN FILTER STABILITY/ROBUSTNESS RELATIONSHIPS 

EIGENVALUES 
(DISCRETE TIME) −  

[Z-PLANE] 
COMMENT 

POLE LOCATIONS 
(CONTINUOUS-TIME) −  

[S-PLANE] 

λ(Φ - KH) < 1 stable left-half plane poles 

λ(Φ - KH) = 1 marginally stable jω-axis poles 

λ(Φ - KH) > 1 unstable right-half plane poles 

• K is a function of the time-extrapolated error 
covariance matrix – P~  

• P_tilda is a function of the process noise error 
covariance matrix – Q 

• Filter transient response varies with the system pole 
locations 

• The deterministic input to the Kalman filter which 
gives an indication that the target is maneuvering (i.e., 
deviating from a prescribed flight path) are the 
measurement residuals 

• Therefore the measurement residuals can be used to 
regulate Q, and Q regulates the Kalman filter 
bandwidth/robustness/stability 

 
For passive ranging against surface emitters, we have 

excellent knowledge of the target dynamics model – namely it 
is a constant speed, constant heading target with zero speed 
and zero heading – so the 3-by-3 process noise covariance 
matrix (Q) is “zero” and the state transition matrix (Φ) is the 
3-by-3 identity matrix.  Not given in this paper are the specific 
initial state vector and companion initial error covariance 
matrix – and this does not detract from the algorithm being 
addressed in this paper – namely the deterministic assessment 
of when the EKF range estimate is reliable. 

The number of state variables is n and measurements m, so 
we have dimensions for the various Kalman filter parameters 
as summarized in Table III.  We use n=3 states [x, y, z] to 
address slow-moving and stationary targets and n=6 states 
[ zzyyxx &&& ,,,,, ] to address airborne targets. 
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TABLE III 
EKF MATRIX DIMENSIONS 

PARAMETER DIMENSION PARAMETER DIMENSION 
state vectors 

(X) 
n-by-1 state transition 

matrix 
n-by-n 

Ownship 
vector 

n-by-1 functional m-by-1 

H matrices m-by-n P matrices n-by-n 
Q matrix n-by-n S matrix m-by-m 
R matrix m-by-m gain (K) matrix n-by-m 

z 
(measurement 

vector) 

m-by-1 I matrix n-by-n 

residual m-by-1 range estimate 
sigma 

1-by-1 

 
We process either single azimuthal SBI conic measurements 

or both azimuthal and elevation SBI conic measurements – 
depending on the specific EW system sensor asset selected.  
The north-west-up wander angle system is used to process the 
measurements and the results are transformed into spherical 
AZ or AZ/EL and slant range for the onboard Mission 
Systems function.  Mission Systems performs sensor fusion of 
all onboard sensor data, as well as offboard information from 
wingmen (friendly nearby aircraft), long-range surveillance 
assets, and national overhead assets.  The designer controls 
different internal EKF parameters, as summarized in Table IV. 

 
TABLE IV 

USER HAS PARAMETERS TO “ADJUST” IN THE KALMAN FILTER DESIGN 
PROCESS 

PARAMTER COMMENTS 

Initial 
State  

Vector – X 

The initial state 3-by-1 state vector can be “filled in” 
based on the initial range guess and the first azimuth 
measurement.  This uses x = R_guess*cos(AZo), y = 
R_guess*sin(AZo).  When EL measurements are made, 
we can define z = -R*sin(ELo) or simply the altitude 
difference between the sensor and earth’s surface 

Initial State 
Vector Error 
Covariance 
matrix - P 

The initial state vector error covariance matrix (P_hat) 
uses the initial range and angle measurements and their 
accuracy values (i.e., the R matrix values); the 1-sigma 
range estimate value; as well as the 1-sigma range rate 
estimate;  being able to bound these aids filter 
convergence to the true state variables; for the airborne 
application it is possible to bound the target speed 
region 

Process Noise 
Error  

Covariance 
Matrix - Q 

Process noise covariance matrix (Q) accounts for the 
uncertainty in the assumed target dynamics model (i.e., 
the state equation that defines the kinematic physics of 
the problem) with Q = 0, we say we know the assumed 
target dynamics model is correct – while a large-value 
Q matrix indicates that we are uncertain in the assumed 
target dynamics model and thus directs the Kalman 
filter to “weight” (use) the measurements heavily 

 
By analyzing the different EKF matrices, it turns out that 

the Kalman gain matrix elements provide the deterministic 
assessment as to when the EKF passive ranging solution is 
accurate to within 10 percent of the true range.  Keep in mind 
we never know the true range so we need this reliable metric 
for the pilot to base his/her actions upon.  In the next section 
we look at a spread of scenario geometries to give a feel for 

how to characterize the EKF gain matrix-based assessment. 

V. CHARACTERIZATION OF THE EKF GAIN-BASED 
ALGORITHM 

Historically, to assess track convergence, we relied on a 
fudge factor multiplier of the Kalman filter’s estimate of the 
scalar quantity sigma_range = sqrt(HPHT), where H is the 
partial derivatives of range with respect to the three position 
state variables (x, y, z) and P is the measurement updated 3-
by-3 symmetric error covariance matrix.  To date the fudge 
factor has never been reliable much of the time.  For the same 
scenario described in Section II, we plot the EKF gain matrix 
elements below in Fig. 5.  Through extensive research at BAE 
Systems, we determined that the Kalman filter “settling 
characteristics” can be captured in its gain matrix elements.  
By monitoring these gain elements for the whole span of 
tracking engagements, we exhaustively parameterized their 
behavior.  Namely, we varied the initial azimuth from [20, 80 
degrees] and initial range between [20, 100 nautical miles].  
This was performed with measurement update intervals 
between [0.5, 10 seconds].  No earlier publications were used 
in unveiling this – it was from an intuitive hunch from two 
decades of practical experience. 

 
Fig. 5 The EKF Gain Matrix Element Values 

 
We make a few observations from Fig. 5.  We then look at 

scenarios over initial AZ values between 10 to 80 degrees. 
1. the x-component and y-component of the gain “follow” 

each other very closely in shape and closely in value.  
This occurs identically when the initial AZ for the 
scenario is 45 degrees 

2. the EKF gain matrix element “settling” occurs at around 
60 seconds – and this corresponds to when the true and 
EKF estimated percent range error (PRE) are within 10 
percent of each other. 

3. when the EKF gain matrix elements hit their minimum, 
the EKF “observability” kicks in – namely the filter has 
reached the point where a solution is definitely being 
converged on 

Figs. 6 through 12 replicate the above scenario we exercised 
with the initial azimuth value, AZ = 10, 20, 30, 45, 60, 70, and 
80 degrees.  We make further observations: 
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4. the EKF z-component of the gain matrix plays a minimal 
part for very small fighter (sensor) altitude-to-slant-range 
ratios (i.e., long-range emitters).  For all the scenarios of 
immediate interest to the fighter aircraft applications we 
are interested in the target is greater than or equal to 20 
nautical miles 

5. when the target initial AZ is close to the fighter nose, the 
x-component of the gain matrix is required to pull in the 
slant range estimate to a usable (low) error.  The 
estimation system is said to be Kx-dominant 

6. as the target initial AZ is close to the fighter right wing, 
the stronger the y-component of the gain matrix is 
required to pull in the slant range estimate to a usable 
(low) error.  The estimation system is said to be Ky-
dominant.  This scenario is also defined as the case where 
the emitter is near the point-of-closest-approach (PCA) 

7. the more accurate the angle measurement, the faster the 
minimum occurs for the appropriate Kx or Ky element – 
or both when the initial AZ in near the 45 degree region 

8. passive ranging solution convergence is accelerated near 
the PCA, as the traversed-bearing-spread (TBS) per unit 
time is greater than the near-nose target geometry 

 

 
Fig. 6  [R,AZ,H,V,t,dt] = [50 10 20 480 180 1] 

 

 
Fig. 7  [R,AZ,H,V,t,dt] = [50 20 20 480 180 1] 

 
Fig. 8  [R,AZ,H,V,t,dt] = [50 30 20 480 180 1] 

 

 
Fig. 9  [R,AZ,H,V,t,dt] = [50 45 20 480 180 1] 

 

 
Fig. 10  [R,AZ,H,V,t,dt] = [50 60 20 480 180 1] 
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Fig. 11  [R,AZ,H,V,t,dt] = [50 70 20 480 180 1] 

 

 
Fig. 12  [R,AZ,H,V,t,dt] = [50 80 20 480 180 1] 

 
Algorithms are used to (1) analyze the EKF gain matrix Kx 

and Ky elements in real time via curve-fit routines to detect 
their absolute minimum values, and (2) assess the amount of 
“settling” of these elements to deterministically alert the pilot 
when the EKF passive ranging solution is within 10 percent of 
the true range.  Typically a useful settling value is 1/16 for the 
desired 10 percent PRE indicator.  This means the absolute 
value of the minimum dominant gain element (Kx, Ky, or 
either when the target AZ is close to 45 degrees) is multiplied 
by 1/16, and the time this result occurs is the desired cue time 
for the pilot. 

BAE Systems is also developing algorithms that will back-
fit the gain matrix element curve from the 10 percent time 
point to provide the pilot higher (less accurate) PRE values 
earlier that he/she can use for situation awareness and to book-
mark emitters on the earth – for when it egresses and to 
forward the information to other assets (wingmen, Mission 
Systems, and national assets).  What this means is if the 10 
percent time is 60 seconds, the 20 through 50 percent time 
points can also be provided to the pilot earlier. 

VI. CONCLUSION 
We learned over the years, through several defense 

programs, that the sole use of the Kalman filter’s derived 1-
sigma value for the range estimate is unreliable most of the 
time based on algorithms we’ve developed.  Ad hoc rules 
never sufficed either.  In some applications where the end-user 
needed a reliable indication that the filter’s estimate was 
“accurate,” they turned the system ‘off’ when it did not 
provide this indication reliably.  No a priori research 
documented that we are aware of presented a solution.  Our 
research showed that the deterministic method to accurately 
assess EKF track convergence for an azimuth-only system, 
prosecuting a fixed or slowly moving surface emitter target, is 
to monitor the gain matrix elements in real time.  This entails 
curve-fitting the gain elements separately (Kx, Ky) over time, 
determining their individual minimum, and using a fraction of 
the ‘dominant’ gain element’s minimum (like 1/16 in our 
application) to search for the desired gain element “settling” 
time.  The gain elements are equal for the case AZo = 45 
degrees – in which case either of the gain elements can be 
used.  When the individual gain value reaches this attenuated 
value, then the range estimate will be within 10 percent of the 
true value.  The method is very well prescribed – once the user 
has the complete set of sensor-target geometries to work 
against. 
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