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Detection of Bias in GPS satellites’ Measurements
for Enhanced Measurement Integrity

Mamoun F. Abdel-Hafez

Abstract—In this paper, the detection of a fault in the Global
Positioning System (GPS) measurement is addressed. The class of
faults considered is a bias in the GPS pseudorange measurements.
This bias is modeled as an unknown constant. The fault could
be the result of a receiver fault or signal fault such as multipath
error. A bias bank is constructed based on set of possible fault
hypotheses. Initially, there is equal probability of occurrence for any
of the biases in the bank. Subsequently, as the measurements are
processed, the probability of occurrence for each of the biases is
sequentially updated. The fault with a probability approaching unity
will be declared as the current fault in the GPS measurement. The
residual formed from the GPS and Inertial Measurement Unit (IMU)
measurements is used to update the probability of each fault. Results
will be presented to show the performance of the presented algorithm.

Keywords—Estimation and filtering; Statistical data analysis; Fault
detection and identification.

I. INTRODUCTION

With the increase in the number of integrated sensors used
in current engineering applications, sensor fusion research is
ongoing to increase the accuracy of obtaining high-accuracy
estimates from sensors’ measurements. Systems that are ex-
pected to work autonomously need to be designed carefully to
ensure accurate operation under changing operational environ-
ments. Also, sensors might degrade in performance over time.
Sensors’ quality becomes an important issue for such systems.
The designer has the option of selecting sophisticated and
accurate sensors on the expense of cost. Alternatively, he can
adapt less expensive sensors and design his fusion algorithm
to account for the less-accurate measurements [1].

One of the widely used sensors for autonomous applications
is the GPS and IMU sensors, [2], [3], [4]. In this paper,
the problem of detecting and identifying bias in the GPS
pseudorange measurements is addressed. A probabilistic ap-
proach is used to identify bias error on the GPS pseudorange
measurements. A number of hypotheses of possible bias errors,
including a zero bias hypothesis, in the measurements are
first constructed. At the beginning, the GPS measurements
can have any of these bias hypotheses. As measurements are
sampled, the probability of each hypothesis is updated and the
hypothesis for which the probability approach unity is declared
the true bias in the GPS measurements. The probabilistic fault
detection filter makes use of the GPS/IMU measurements in
constructing the residual used to update the probability.

The problem of integrity monitoring of dynamic systems is
being investigated by many researchers. In references [5], [6],
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researchers try to identify possible degradation in the dynamics
and measurements noise statistics. In reference [7], the authors
approach the detection of interference/jamming and spoofing
in a DGPS-aided inertial system. Interference and jamming
are modeled as increase in GPS noise covariance. Spoofing is
modeled as a bias in the GPS measurement. A multiple model
adaptive estimator (MMAE) is used to detect the covariance
of the GPS measurements from a set of assumed failure
hypotheses. On the other hand, a moving-bank pseudoresidual
MMAE is used to detect and identify spoofing.

In this study, a baseband ultra-tightly coupled GPS/IMU
filter structure is implemented to check the performance of
the proposed algorithm in detecting and estimating different
GPS pseudorange measurements bias levels, Figure 1. In the
figure, hΔ() is the discriminator function acting on the timing
error between the received code signal and its locally generated
replica, Δ is the time spacing between early and late paths in
number of chips, Tc is the chip period, td is the true time, t̂d is
the estimated time, k is the filter gain, p is the signal amplitude,
and n′ is the additive white Gaussian noise. The output of
the navigation filter is used to control a voltage controlled
oscillator (VCO) or a numerically controlled oscillator (NCO),
which in turn controls the local Pseudo Noise (PN) code
generator. In the ultra-tight filter structure, the IMU measures
the receiver motion and helps isolate the GPS measurement
noise from the true measurement. To estimate the state of the
receiver accurately, there is a need to know the bias in the GPS
pseudorange measurements. This bias might be due to many
factors such as receiver fault, GPS signal fault, and/or signal
multipath. This motivated the need for estimation methods
applied to GPS measurements bias detection and identification.

Fig. 1. Ultra-Tightly Coupled GPS/IMU fusion Structure

The GPS/IMU measurements are described next.
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II. GPS/IMU MEASUREMENTS

The GPS measurements include the C/A code measure-
ments, the carrier phase measurements, and the range rate
measurements. These measurements can be acquired on two
wave frequencies L1 and L2. The proposed algorithm can
be used to estimate the measurement noise statistics of any
of these measurements. Nevertheless, in this study, the C/A
pseudorange measurements are used and their measurement
noise statistics are estimated.

The IMU measures the angular velocity, ωB
EB , and the linear

acceleration, fB , of the platform in three perpendicular direc-
tions. The IMU is used to construct the dynamics equation
that defines the time propagation of the platform state. By
measuring the dynamics of the vehicle, the IMU assist the
code-tracking loop in keeping track of the GPS code signal.

The state of the vehicle at any time is defined in terms
of its position, velocity, and attitude. The position, PE , and
velocity, V E , are represented in terms of the Earth Centered,
Earth Fixed (ECEF) coordinate system while the attitude, QE

B

is represented in quaternion format and describes the body
frame orientation relative to the ECEF frame. The dynamics
of this state is obtained by differentiating the state variables
and is represented as:

ṖE = V E (1)
V̇ E = CE

B fB − 2ωE
IE × V E + GE (2)

Q̇E
B =

1
2
ΩB

EBQE
B (3)

where, CE
B is the cosine rotation matrix from the body frame to

the ECEF frame, ωE
IE is the angular velocity of earth relative

to the inertial frame represented in the ECEF frame, and GE

is the gravity vector in the ECEF frame. fB is the specific
force of the vehicle represented in the body frame and ωB

EB

is the angular velocity of the body frame relative to the ECEF
frame represented in the body frame. These two vectors define
the evolution of the state of the vehicle. ΩB

EB is defined as:

ΩB
EB =

⎡

⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤

⎥⎥⎦

where: ωB
EB = [ ωx ωy ωz ]

Equations 1 to 3 are linearized to obtain the dynamic
equation of the vehicle [8], [9], [10].

III. SEQUENTIAL RESIDUAL PROCESSING AND FAULT
DETECTION

In this section, a sequential bias detection technique is
proposed for identifying a possible GPS pseudorange mea-
surements bias fault. The formulation of the method for the
time-varying GPS/IMU system is described. Given that the
GPS/IMU system is represented in the time-varying system
model [8], [9], [10]:

xk+1 = φkxk + Bkwk (4)
zk = Hkxk + vk (5)

The linear state estimator is given as:

x̄k+1 = φkx̂k

x̂k = x̄k + Kk [zk − h(x̄k)]

where x̄k+1 denotes the estimate of the error state given all
the measurements up to time k, x̂k is the posteriori error state
estimate given all the measurements up to time k, Kk is the
filter gain, h(x̄k) = ||P̄E − PK ||. Defining the estimation
error as: εk = xk − x̄k, the measurement residual is defined
as:

rk = zk −Hkx̄k (6)

It is assumed that a bias in satellite pseudorange measurement
j is written as μj . It is assumed that a bias will occur in one
satellite at a time. Furthermore, it is assumed that this bias will
be detected and corrected before the occurrence of other faults
in the satellite’s or other satellites’ measurements. Therefore,
the measurement vector zk is written as:

zk = Hkxk + vk + μ (7)

where the measurement error vector μ is defined as:

μ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
μj

0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(8)

The residual process can be written as:

rk = Hkεk + vk + μ (9)

A projector N is defined as:

N = I −Hk(HT
k Hk)−1HT

k (10)

The projector is in the null space of Hk and is multiplied
by rk to get a sequential residual that is only a function of
the measurement error and the possible bias fault. It can be
seen that:

Nrk = N(vk + μ) (11)

The singular value decomposition of the projector N is used
to characterize the statistics of the modified residual process:

N =
[

U1 U2

] [
I 0
0 0

] [
V 1

V 2

]
(12)

where U1 is full column rank with UT
1 U1 = I and V 1 is

full raw rank with V 1V
T
1 = I . Therefore,

Nrk =
[

U1 U2

] [
I 0
0 0

] [
V 1

V 2

]
(vk + μ)

=
[

U1 0
] [

V 1

V 2

]
(vk + μ) (13)

This can be rewritten as:

U1V 1rk = U1V 1(vk + μ) (14)
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Premultiplying equation 14 by UT
1 we get:

r̃k = V 1rk = V 1(vk + μ) (15)

For each satellite in view, a number of bias hypotheses will
be selected. One of these hypotheses is the null hypothesis
where the satellite have zero bias. Therefore, the fault hy-
pothesis Hi,j is the hypothesis that satellite i have a bias
of magnitude μj . Based on this, the mean and covariance of
tilder given a certain hypothesis can be defined as:

r̄ = E [̃r|H i,j] = μjV i
1 (16)

Γr = E [̃rr̃T|H i,j] = σ2
vV 1V T

1 (17)

where V i
1 is the ith column of V 1. Since r̃ is Gaussian, its

probability density function given a certain bias hypothesis is
given by:

fr̃|H i,j
(r̃|H i,j) =

1
(2π)n/2|Γr|1/2

exp− 1
2 (r̃−r̄)TΓ−1(r̃−r̄)

(18)

The probability that the lth hypothesis where the ith satellite
has a bias of magnitude μj can be shown to be:

Fk+1,l =
Fk,lfr̃|H l

(r̃|H l)
∑M

l=0 Fk,lfr̃|H l
(r̃|H l)

(19)

where, Fk+1,l is the probability that the lth hypothesis occurs
given all the measurements up to time k + 1, M is the total
number of hypotheses. If the number of satellites in view is
m and the number of hypothesis per satellite is p, then the
number of hypotheses M can be shown to be:

M = m ∗ (p− 1) + 1

This algorithm is used to estimate bias in the GPS pseu-
dorange measurements. The GPS/IMU EKF is given enough
time to allow the state and the covariance matrix to converge;
in this application this time is 10 seconds. A bank of possible
bias magnitudes in satellite measurements is then hypothe-
sized. These hypotheses are initialized with equal probability.
Subsequently, the proposed algorithm updates the probability
of each hypothesis in the bank of residual, see equation 19. The
hypothesis with probability that converge to one is declared
the correct bias in the GPS pseudorange measurement. Once
the GPS pseudorange bias is estimated, it is then corrected in
the GPS/IMU EKF allowing for an improved-accuracy state
estimate. The algorithm should be repeated periodically to
account for any change in the GPS receiver environment or
the instruments performance.

IV. SIMULATION RESULTS

A simulation environment was built to test the algorithms
presented in this paper, see Figure 1. The trajectory of the
vehicle was set to begin at a certain position, then input linear
acceleration and angular velocity were integrated to obtain
the true vehicle position, velocity, and attitude. Based on the
position of the vehicle, GPS satellites’ C/A code measurements
were simulated. These measurements where used as input to
our noise-estimation algorithm. The input linear acceleration is

shown in Figure 2. As seen in the figure, the vehicle was given
high acceleration to simulate a harsh environment. The vehicle
was simulated to have small angular velocity. This trajectory
profile guarantees an observable GPS/IMU system, references
[9], [11]. The ultra-tightly coupled GPS/IMU filter structure
should be able to operate in this high-dynamics environment
since the dynamics of the system are fed back to the code-
tracking loop. By estimating bias in the GPS pseudorange
measurement, the integrity and accuracy of the GPS/IMU
system is considerably enhanced.
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Fig. 2. Vehicle Acceleration Profile

The algorithm was tested for a number of GPS measurement
bias magnitudes. The bias was assumed to affect one satellite
at a time. Along with the null hypothesis of no bias error
existing on the GPS measurement, four other hypotheses were
assumed. The four hypotheses were distributed around the null
hypothesis. In practice, enough hypotheses should be assumed
to cover possible bias error levels. If the bias affecting the
GPS measurement is close to one of the hypotheses, then the
probability of that hypothesis will approach unity. Then that
hypothesis is declared the true hypothesis. Figures 3 to 10
present the performance of the proposed algorithm.

Figures 3 to 5 show the probability of three hypotheses out
of the hypothesis set. In these figures, the GPS pseudorange
measurement noise covariance matrix is set to be a unity
covariance matrix. The correct bias level is varied and the
algorithm is tested to show if it can detect this bias level.

In figure 3 the correct bias level is 10 m on the second
satellite in the measurement set. This bias level is among the
hypothesis set that is initially constructed in the filter. The
probability for this hypothesis is presented in the third plot in
figure 3. It can be seen that the probability of the hypothesis
quickly approaches unity and the algorithm therefore success-
fully detects this bias.

In figure 4, the correct bias level is 7 m on the second satel-
lite in the measurement set. There is no hypothesis associated
with this fault level. This bias exist between a hypothesis of
5m and another of 10m. The probability associated with these
hypotheses is plot 2 and 3 of figure 4. It can be seen that
the algorithm divides the probability of one between these
two hypotheses where the algorithm gives zero probability to
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Fig. 3. Hyp. Probability, 10m-bias, Meas. Cov. = 1

other hypotheses in the hypothesis set as shown in the first
plot of figure 4.
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Fig. 4. Hyp. Probability, 7m-bias, Meas. Cov. = 1

In figure 5, the correct bias level is 20m added to the
second satellite in the measurement set. This bias level is
not one of the assumed bias hypotheses for this satellite. The
closest hypothesis is 10m. The probability associated with this
hypothesis is shown in plot 3 of figure 5. It can be seen that
the algorithm assigns a probability of one to this hypothesis
while it gives a probability of zero to the other hypotheses.

In figures 6 to 8, the algorithm was tested when the GPS
measurement noise covariance matrix is increased to 2.1
unity matrix. Again, the correct bias level is varied and the
performance of the proposed algorithm in detecting the correct
measurement bias is shown.

In figure 6, the correct bias level is 10m on the third
satellite. This bias level is one of the assumed bias levels in
the hypothesis set. The probability for this bias is shown in
the third plot in figure 6. It can be seen that the algorithm still
detects the correct bias level but in a slower speed than when
the GPS measurement noise standard deviation is smaller as
seen in figure 3.

In figure 7, the correct bias level is 7m on the third satellite.
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Fig. 6. Hyp. Probability, 10m-bias, Meas. Cov. = 2.1

This bias level is not one of the hypothesized bias levels but
falls between a hypothesis of 5m and another of 10m. It can
be seen that the algorithm distributes the sure probability of
1 between these two hypotheses which are shown in plots 2
and 3 of figure 7.
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Fig. 7. Hyp. Probability, 7m-bias, Meas. Cov. = 2.1
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In figure 8 the correct measurement bias is 20 m on the third
satellite. This bias level is not one of the hypothesized mea-
surement bias magnitudes. It can be seen that the algorithm
assigns a probability of 1 to the closest hypotheses which is
a hypothesis of 10 m bias.
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Fig. 8. Hyp. Probability, 20m-bias, Meas. Cov. = 2.1

Finally, the algorithm is tested when the GPS measurement
noise covariance matrix is set to 12.5 diagonal matrix. figures
9 and 10 tests the ability of the algorithm to detect a bias
of 10m and 20m on satellite number 3. Although that there
is a hypothesis associated with the 10m bias on satellite
3, the algorithm was not able to converge on the correct
hypothesis due to the existence of large noise magnitude on
the satellite measurement. In the case of 20m bias level, there
is no hypothesis for this bias magnitude. The algorithm did
not converge on the closest hypothesis which is the 10m
hypothesis due to large magnitude measurement noise level.
The probability of the 10m hypothesis is shown in plot 3 of
figures 9 and 10.
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Fig. 9. Hyp. Probability, 10m-bias, Meas. Cov. = 12.5

V. CONCLUSIONS

In this paper, a sequential integrity monitoring algorithm for
detecting a bias error in the GPS pseudorange measurements
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Fig. 10. Hyp. Probability, 20m-bias, Meas. Cov. = 12.5

is proposed. In the algorithm, a set of hypotheses are defined
for possible bias levels in the satellites’ measurements in view
of the receiver. It was assumed that a bias error occur in one
satellite at a time. Furthermore, the bias is detected before its
magnitude could change. The probability for each hypothesis
is then sequentially updated through the residual obtained from
the received measurements and the estimate obtained from a
GPS/IMU extended Kalman filter. The hypothesis with a prob-
ability that approaches one is declared the correct hypothesis.
Simulation results were presented to show the accuracy of the
proposed algorithm. It was seen that the algorithm successfully
detects the correct bias level in the satellite measurements if
their exists a hypothesis that is close to the existing GPS
measurement bias. If the existing measurement bias is not
among the hypothesis set, then the algorithm converges to
the hypothesis close to the existing bias level. If the existing
bias is in the middle of two hypotheses, then the algorithm, in
time, divides the sure probability between the two hypotheses.
The algorithm was seen not to converge properly on the
correct hypothesis if the measurement noise covariance is big
in comparison to the true bias in the GPS measurement. The
presented algorithm is crucial for GPS measurements integrity
monitoring.
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