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Tool for Optimizing Port Authorities Resources

Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract—Port authorities have many challenges in congested
ports to allocate their resources to provide a safe and secure
loading/unloading procedure for cargo vessels. Selecting a destination
port is the decision of a vessel master based on many factors such
as weather, wavelength and changes of priorities. Having access
to a tool which leverages Automatic Identification System (AIS)
messages to monitor vessel’s movements and accurately predict their
next destination port promotes an effective resource allocation process
for port authorities. In this research, we propose a method, namely,
Reference Route of Trajectory (RRoT) to assist port authorities in
predicting inflow and outflow traffic in their local environment by
monitoring AIS messages. Our RRo method creates a reference
route based on historical AIS messages. It utilizes some of the best
trajectory similarity measures to identify the destination of a vessel
using their recent movement. We evaluated five different similarity
measures such as Discrete Fréchet Distance (DFD), Dynamic Time
Warping (DTW), Partial Curve Mapping (PCM), Area between two
curves (Area) and Curve length (CL). Our experiments show that our
method identifies the destination port with an accuracy of 98.97%
and an f-measure of 99.08% using Dynamic Time Warping (DTW)
similarity measure.

Keywords—Spatial temporal data mining, trajectory mining,
trajectory similarity, resource optimization.

I. INTRODUCTION

DUE to the advancement in information and

communications technologies present in maritime

transportation, a massive amount of vessel trajectory data can

be captured and processed [1]. Analysis of these trajectories

reveals typical mobility patterns of vessels and provides

an overview of the maritime traffic [2], [3]. Such analysis

facilitates more advanced tasks on trajectory mining, such

as path planning for autonomous vessels [4]. Detecting the

destination port is a piece of focal information for path

planning and simulation of vessel movements. By early

detection of the destination port, port authorities could

allocate their resources more efficiently and effectively. This

early detection could lower the waiting time for each vessel

to load/unload in ports, and assist the port authorities to

decrease their cost by optimizing their resource usage.

AIS is an automated tracking system installed onboard to

record vessels’ trajectories and provide unique identification

for a specific vessel, such as timestamp, position, course,

speed, AIS message 5, etc. The AIS message 5 includes

the vessel’s destination port and Estimate Time of Arrival
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(ETA) [5]. The AIS text field for destination allows for ”free

text” up to 20 characters, resulting in numerous variations

in the spelling of the same port [6]. However, the manually

filled fields of destination in AIS message 5 are not always

available or filled with mistakes [6]. The erroneously entered

information affects the accuracy rate in ascertaining the

correctness of destination reports observed in AIS data. The

lack of accurate information of vessels’ destinations would

subject port authorities to challenges like arranging port

activities for safe and efficient vessel operations and guiding

traffic routes to ensure the safety and efficiency of the maritime

traffic environment. Therefore, the research to predict vessels’

destinations would be of great value for port authorities to

automatize and to make timely and efficient decisions to

allocate their resources and ensure a safe and secure maritime

traffic environment. In summary, our approach can be utilized

in scenarios where a system is going to generate some events

based on the changes in the destination for each vessel and

they do not require any human intervention.

Detecting the destination port can be seen from the

trajectory path that normally traversed using AIS historical

data, then compared to traveling trajectories to predict

the destination. Thus, the similarities between traveling

and historical trajectories can be measured and utilized to

classify and predict the vessel’s destination. Similarity analysis

plays a significant role in solving many movement patterns

recognition problems such as classification, clustering and

anomaly detection. Vries et al. [7] proposed a similarity

measure based on edit distance and applied this measure in

a classification task to predict the type of vessel. Alizadeh

et al. [8] suggested a point-based model for vessel location

and traffic predictions. The location prediction procedure was

setup based on similarity analysis of historical AIS data. Zhen

et al. [9] offered an anomaly detection method for vessel’s

behaviour based on similarity analysis. A similarity measure

between vessel trajectories is designed based on the spatial

and directional features in their work. Then they applied

this measure in clustering and classification tasks to detect

anomalous vessel sailing behaviour [9].

Meaningful sailing patterns can be extracted from semantic

trajectories [10]. A semantic trajectory of a vessel is generated

by integrating some background datasets such as maps and

geographical layers [11]. However, analyzing these trajectories

of moving vessels is challenging because the volume of

data to be processed is very large and the computation is

complex [12]. The movement of a vessel can be identified

based on the characteristics of the surrounding environment

and underlying landscape such as anchoring areas, sea lanes
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and harbours. Adding this geographical domain information to

the trajectories can be used as a discriminator and incorporate

it with the trajectory data in similarity measure allows more

complex analysis and a better understanding of vessel routes

and changes in movement behaviour [7], [8], [12], [13].

Trajectory segmentation methods provide basics for

detecting changes in vessel movement behaviour [14].

There are many approaches such as SWS, WSII,

CBSMoT, GRASP-UTS, and SPD available for trajectory

segmentation [15]–[18]. The segmentation process partitions

trajectories into segments that enable us to discover different

underlying patterns.

In this work, we propose to combine vessel trajectory data

with geographical knowledge to identify the ports where the

vessel stops. Then, we perform trajectory segmentation based

on the defined ports. The trajectory segmentation facilitates

an understanding of the purpose of the trip. Also, enables

tracking in large water area to identify vessels activities. Once

the segmentation of trajectories is completed, some semantic

labels are added to each segment such as the path number, to

distinguish the routes with the same start and end ports, and

segment identifier, a unique number for each segment. Once

the segmentation is completed and annotations are applied, the

resulted data will be incorporated in the similarity measure

and reference route construction. We studied five different

similarity measures and investigated which measure is the best

similarity measure for comparing routes in vessel navigation.

Then, we utilized the trajectory segments to generate a

summarized reference trajectory. After that, we implemented

the selected similarity measures as classification techniques

to predict the destination port of vessel routes and find

the best similarity measure performance of estimating the

similarity between short segments and reference routes. The

contributions of this work are summarized below:

• We proposed a geographical knowledge annotation for

the generated segments to distinguish trajectories by their

spatial feature and their context.

• A method to generate a reference route of trajectory

(RRoT) is proposed that summarizes a set of segments

with the same source and destination into a summarized

reference trajectory.

• We compared five different similarity measures to

understand the best similarity measure for comparing

vessel trajectories.

• We suggested a method to predict the destination of a

vessel by processing a short and recent segment.

The remainder of this work is structured as follows.

In Section II, we provide definitions revolving around

trajectory data mining. Section III presents previous work in

related domains. Section IV explains the four steps of our

proposed methodology, i.e. data preparations, reference route

construction, comparing the proposed similarity measures

and destination port prediction. The experimental results are

reviewed in Section V. Finally, we conclude our discussion in

section VI and share some future work.

II. DEFINITIONS

Definition 1. A trajectory point, li, is a geolocation of

object o at time i, and is defined as, loi = 〈xo
i , y

o
i 〉, where

xo
i represents the longitude of the location which varies from

0◦ to ±180◦, and yoi represents the latitude of the location that

varies from 0◦ to ±90◦.

Definition 2. A raw trajectory, or simply trajectory, τ , is a

time-ordered sequence of trajectory points of a moving object

o,

τo = 〈lo0, lo1, .., lon〉 (1)

Because the trajectory data is from AIS, the trajectory points

could be provided with additional information, including

vessel identity, course/speed over ground, ship type which are

considered as segment features.

Definition 3. A Port [19] is a polygon defining a circular

area of radius r centered on the geographical coordinates of a

sea port.

Definition 4. Partitioning Position is the last trajectory

point of a trajectory segment where the segment movement

behaviour changes.

Definition 5. Trajectory Segment si is a set of consecutive

trajectory points belonging to a raw trajectory τo =
〈lo0, lo1, .., lon〉,
so = 〈loj , · · · , lok〉, j ≥ 0, k ≤ n and so is a subsequence of τo

(2)

The process of generating segments from a trajectory is

called trajectory segmentation.

Definition 6. Origin and Destination. The nearest Port to

the first trajectory point in a segment is the Origin Port and

the nearest Port to the last trajectory point of a segment is the

Destination Port.

Definition 7. A reference route of trajectory A reference

route of trajectory between point A and B is a trajectory

segment that shows the average behaviour of all trajectory

segments starting from point A and ending at point B. There

can be various way of calculating this reference route of

trajectory. We explains the calculation of route of trajectory

for this paper in Algorithm .1.

Definition 8. Segment Label or Segment Feature A Segment

Label or Segment Feature is an annotation given to a

segment to define the shipping lanes with different origin and

destination ports and we use segment label or Segment feature

for ground truth in our work [20].

Definition 9. Trajectory Similarity is a path distance function

δ, that measures a distance between pair of trajectories P , Q.

δ is zero when P equals Q and grows positively as the curves

become more dissimilar.

III. RELATED WORK

In this section, we review related state-of-the-art trajectory

data preparations and trajectory similarity measures. In

trajectory data preparations, stop-points are required to be

identified first. Then, trajectories are segmented to measure

the similarity.
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A. Trajectory Segmentation

There are many trajectory segmentation algorithms available

for segmenting trajectory in different situations. We selected

SPD, CBSMoT, and SWS to review here for the following

reasons. SPD is the simplest basic algorithm for trajectory

segmentation and has been provided reasonable results for

segmentation [14]. CBSMoT is an approach that reported

reasonable results in the vessel navigation domain. We

also selected SWS which is the most recent and simple

trajectory segmentation algorithm based on detecting changes

in the behaviour of movement. Li et al. [21] propose stay

Point Detection (SPD) algorithm that detects stay points

by observing a moving object stay within a certain spatial

region for a period exceeding a certain threshold. Palma

et al. [22] propose a spatiotemporal clustering method

based on the DB-SCAN algorithm, is called the CB-SMoT

(Clustering-Based Stops and Moves of Trajectories). CBSMoT

discovers the stops and moves based on the speed variation

of the moving object. In this method, stops are considered

the most important part of the trajectory. The stops are

clustered where the trajectory speed is lower than a given

threshold for a minimal period, then match the clusters with

relevant geographic places [22]. Etemad et al. [16] proposed

Sliding Window Segmentation (SWS). It is the most recent

algorithm for trajectory segmentation. This algorithm produces

segments based on the position of trajectory point where

the moving object changes its behaviour. This algorithm has

some extensions such as WSII benefiting from using machine

learning approaches to detect segments [15].

In summary, we applied trajectory segmentation for

the pre-processing of the trajectories of vessels. The

differences between the trajectory segmentation algorithms

were insignificant since we calculated the nearest Port as an

origin and destination for the segments. Therefore, we decided

to apply SPD in our research. Future work can be carried

on to investigate the difference between using SPD and other

approaches in the port detection scenario.

B. Trajectory Similarity

Generally, the similarity of trajectories is evaluated using

the distance between their points. A review of the literature

reveals that with the plethora of trajectory similarity measures

available for movement data, there are several measures that

are used frequently. Popular measures of trajectory similarity

include: Euclidean distance, Dynamic Time Warping [23],

Fréchet Distance [24], Discrete Fréchet Distance [25]. Due to

the widespread use of these popular measures, functions for

calculating these measures have already been implemented in

commonly used statistical software, such as R and Python [26].

In this work we utilize the Python similarity measures library

developed by Jekel et al. [27]. This library includes five

methods: (i) Discrete Fréchet Distance, (ii) Dynamic Time

Warping, (iii) Partial Curve Mapping, (iv) Area between two

curves and (v) Curve length.

The Python similarity measures library is selected for

the following reasons: it is the most recent python library

for measuring the similarity of trajectories and the included

similarity measures can be used on trajectories of different

length, as vessels trajectories are typically different in temporal

length, distance traveled and the number of data points. Also,

these similarity measures can handle the non-linearity of vessel

movement. Furthermore, the Discrete Fréchet Distance and the

Dynamic Time Warping are of the most common methods used

for measuring the similarity of trajectories. The Partial Curve

Mapping, the Area between two curves and the Curve length

methods are used for the first time to measure the similarity of

vessels trajectories. These five methods will be compared and

evaluated to find the best similarity measure for port detection

problem.

IV. METHODOLOGY

In this section, we introduce our proposed approach for

destination port prediction. We present the sequence of steps

used in this work to predict the destination port of the vessel

route (Fig. 1). This framework has four main steps: 1- Data

preparation, 2- Reference route construction, 3- Similarity

measurements, 4- Destination port prediction. We describe

these steps in detail in the following sections.

Fig. 1 Framework of vessel destination port prediction

A. Data Preparation

The data preparation first step is to form the vessel

trajectory by sorting a set of trajectory points collected from

AIS messages based on date and time of collection. Then

we utilize semantic layer information that contains the related

ports data (Fig. 2) to annotate the trajectory points. Annotating

the trajectory points provides a more detailed description of

the sailing behaviour of vessels. The trajectory points are

annotated according to the defined ports; each trajectory point

is checked whether or not it is located within the region of

one of the defined ports. If the trajectory point locates in a

port area, it is annotated as a stop trajectory point. If it locates

outside of a port area it is annotated as a move trajectory point.

Fig. 2 A depiction of the ferry four terminals (ports) data

Then, the annotated data are used to partition the trajectory

of a vessel into segments. This process is called trajectory

segmentation. The main advantages of trajectory segmentation

are to facilitate an understanding of the purpose of the trip and

to track vessels across a large area to identify their activities.
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The segmentation process detects the partitioning positions

in the trajectory and uses them to divide the trajectory into

distinct segments. These segments accurately capture the

underlying movement patterns which aid in mining richer

knowledge. Then, the centers of origin and destination port are

added to the segment, which represent the start and endpoints

of the segment. Each of these segments represents movements

from the origin port to the destination port. Fig. 3 shows

segments resulting from the segmentation.

Fig. 3 Segments between stop1 and stop2. The red and green segments
represent the movement of vessel from stop1 to stop2. The Blue and

yellow segments represent the movement of vessels from stop2 to stop1

The segmentation step provides information on partitioning

positions (ports) along the trajectory, without any further

ecological context [28]. Thus, it is not possible to directly

associate an individual segment to a specific sea lane

or specific sailing behaviour. To facilitate the ecological

interpretation of the segments, we propose to assign an

identifier annotation, V ID, to each segment to distinguish the

segments. Moreover, we assign another feature to segments,

route, and annotate segments with the same origin and

destination ports with Path number to facilitate classifying

segments based on these labels. i.e. Fig. 3 shows four segments

represent trips through the area of the same shipping lane (e.g.,

stop1-stop2), but the segments are separated by routes with

different start and endpoints (e.g., The red and green segments

represent the movement of a vessel from stop1 to stop2 and

they are annotated as Path1. The Blue and yellow segments

showing the movement of a vessel from stop2 to stop1 and

they are annotated as Path2. To sum up, these segments may

appear visually similar whereas the ecological context is not

similar.

B. Reference Route Construction

After the trajectories are partitioned into segments and

these segments are labelled we construct Reference Route of
Trajectory (RRoT). The reference route is a mean segment

represents the trajectory segments between every two ports

(step 2). The reference route construction phase consists of

two steps:

Step one is to interpolate trajectory points in the segments

based on time. Linear interpolation is used with the time and

longitude/latitude data points because it is the simplest and

consumes the lowest computational power. Algorithm .1 shows

the steps of generating reference route. We interpolate the

longitude values concerning time. The input of this algorithm

is all segments that belong to the same route (segments that

have the same origin port and same destination port). For each

segment (line 1), the time is transformed to an increasing

number (line 2), then apply the spacing to create a list of

an evenly spaced sequence in the specified period of time of

required data points (line 3). Then, we pass the list of an

evenly spaced sequence created from the spacing method to

the linear interpolation method and interpolate independently

for the longitude values (line 4) and the latitude values (line

5).
In step two, each mean segment is calculated from many

segments between two ports that belong to the same route
(lines 10, 11, 12). Finally, return the mean segment as a

reference route. The interpolated reference routes result in no

missing data points, consistent and usable formatting of the

trajectory data.
Fig. 4 shows the reference routes of the vessel trajectory

that is illustrated in Fig. 6. Since ferryboats trips rarely follow

a random trajectory, these reference routes represent the travel

history and movement paths that are normally traversed by the

ferry.

Fig. 4 Depiction of the constructed reference routes of trajectory

C. Similarity Measurements
In phase three, five similarity measurements are explored

to find the best similarity measure for our trajectory data.

As mentioned in Section III, the five similarity measurements

are 1) Discrete Fréchet Distance, 2) Dynamic Time Warping,

3) Partial Curve Mapping, 4) Area between two curves and

5) Curve length. We assess the performance of these five

measurements by observing the distributions of similarity

and dissimilarity scores. It is a simple way to quantify

the difference between the similarity and dissimilarity

distributions of each method. If a method has both distributions

overlap, the method will not perform well in quantifying

the differences between the compared routes and it will be

eliminated.

D. Destination Port Prediction
Finally, the best similarity measurements are implemented

as pattern classification techniques that measure the similarity
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Algorithm .1 Reference Route Algorithm

Require: Segments of the same route {All segments

that has the same origin and destination ports}
Ensure: Reference Route {An average segment represents

the mean of Segments of the same route)}
1: for segment inSegments of the same route do
2: tm ← segment[’Time’] converted to increasing

numbers;

/*create an evenly spaced sequence in the specified

period of tm*/

3: interp time ← linspace(tm[0], tm[-1], num points);
/*functions return one-dimensional piecewise linear

interpolated lon/lat with given discrete data points (tm,

lon/lat points), evaluated at interp time */

4: interp longitude ← interpolate (interp time, tm,
Longitude points);

5: interp latitude ← interpolate (interp time, tm,
Latitude points);
/*sum the time and coordinates values of the segments*/

6: sum interp time;
7: sum interp longitud;
8: sum interp latitude;
9: end for

/*compute the average time and average coordinates*/)

10: avg time ← mean(sum interp time)
11: avg longitude ← mean(sum interp longitude)
12: avg latitude ← mean(sum interp latitude)

/*Concatenate the averages and store the results in

Reference Route*/

13: Reference Route ← (avg time, avg longitude,
avg latitude, label, route)

14: return Reference Route

between the input tracking data and the stored reference routes

data (Algorithm.1) in phase four. The tested segments will

be assigned to a reference route according to the minimum

similarity score. Then the destination port of the reference

route will be the result of the prediction.

V. EXPERIMENTS

This section provides the details of our experiments and the

experimental results of our proposed method. The experiments

are performed in the sequence of three steps: 1) data and data

preparation, 2) selecting the best similarity measure, and 3)

measuring the accuracy of destination prediction.

First, we do an experiment on the distribution of destination

ports in AIS message 5 in order to see how much the data

embedded in this field is useful. So, it is practical for port

authorities to be able to use this data efficiently. Fig. 5 shows

a distribution of the destination field of AIS message 5 in

the AIS data. The majority of distribution shows that the

destination port is not entered, or the destination port field

is unknown where the name of a small town, bay, anchorage,

or shipyard is entered. All these variations cause ambiguity

in destination reports and leading to confusion and data

interchange inefficiency.

Fig. 5 The distribution of destination ports in AIS message 5 shows most of
the data submitted in this field is not accurate and not a representation of

the real world

A. Data and Data Preparation

The data used for this work cover the AIS messages

captured in the Halifax harbour area in Nova Scotia province

in Canada. For our experiments, we explore trajectories of two

transit ferries navigating in the Halifax area. The first vessel,

V1, trajectory points were collected from 18-March-2019

to 10-July-2019. The dataset has 27,028 trajectory points.

The second vessel, V2, trajectory points were collected from

05-March-2019 to 12-July-2019 including 103,161 trajectory

points.

As shown in Fig. 6 a ferry can sail to different destination

ports. Therefore, if we have the last trajectory points of a

segment (sub-segment) that are near to the destination port,

we can calculate the similarity with the constructed reference

routes (algorithm.1) and predict the destination port.

Understanding the context of the dataset is the key part

of any research in ecology and Geographical Information

Science (GIScience). GIS is one of the available tools that

have some application to analyze spatial locations and organize

information into visualizations using graphical maps, which

reveal deeper insights into data. For this work we use the QGIS

application to compose a semantic layer from OpenStreetMap

and polygons represent the related ports for visualization.

Fig. 6 depicts the integration of a vessel raw trajectory with

a semantic layer using QGIS application. The geographical

context makes it easier for users to identify the sailing

behaviour of a vessel.

The trajectory points are ordered based on date and time

and defined its semantic information by:

• Define Label feature that represents which trajectory

point is a stopping point and which one is not. Check each
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Fig. 6 An overview of a vessel trajectory of 27028 trajectory points
generated by transit ferry voyaging in Halifax water and a semantic layer
representing the Halifax-Dartmouth ports that the transit ferry voyaging in

between

trajectory point, if it locates in one of the four port areas

assign: stop1 or stop2 or stop3 or stop4 to the Label.

If the trajectory point locates outside the port areas, we

assign move to the Label feature.

• Pass the labelled trajectory data to the segmentation

function where the trajectory of a vessel is partitioned

into segments based on partitioning positions. Then, the

centers of origin and destination ports are added as the

start and endpoints of the segment.

• Define route feature so similar segments with the same

origin and destination ports will be given a distinct value.

For example, a segment from stop1 to stop2 is annotated

with Path1, a segment from stop2 to stop1 is annotated

with Path2 etc.

The output data that are used to investigate the best

similarity measure, 1186 segments are produced by V1 and

4263 segments are produced by V2. The 1186 segments of

V1 are used to construct the reference routes by using our

proposed Reference Route Algorithm (algorithm .1). While

the 4263 segments of V2 are used as test data for route

classification and destination port prediction.

B. Best Similarity Measure

The five similarity measurements we examine are: 1)

Discrete Fréchet Distance (DFD), 2) Dynamic Time Warping

(DTW), 3) Partial Curve Mapping (PCM), 4) Area between

two curves (Area) and 5) Curve length (CL). We investigate the

similarity measurements’ performance using the distribution

of the quantified differences between all segments of V1. For

similar segments that have the same origin and destination

ports, we calculate their similarity differences and make a

distribution of the acquired scores. For the dissimilar segments,

we choose a segment that represents one route and compare

it with segments representing other routes and make a

distribution of the acquired dissimilarity scores.

We visualize both the similarity and dissimilarity

distributions side-by-side to infer each method performance

as shown in Fig. 7. It is obvious from the plots that in the

plot (c) PCM and the plot (d) Area methods, their similarity

and dissimilarity distributions are overlapped. This means

the proposed models using these methods will have a poor

performance in the classification and prediction of destination

ports. Therefore, these two methods are eliminated.

Discrete Fréchet Distance (DFD), Dynamic Time Warping

(DTW) and Curve Length (CL) performed the best across our

simulation in terms of being able to distinguish the different

distributions of the similarity and dissimilarity scores. These

results guiding which similarity measure is the ’best’ similarity

measure to use with this AIS data among similarity measures

that are studied.

C. The Accuracy of Destination Prediction

As vessel trips rarely follow a random trajectory,

the prediction of destination port could be considered

as a classification problem. We use the 4263 segments

of V2 as test data. First, We create a list of actual

labels (i.e. path1, path2, path3, path4, path5, path6) which

represents the actual routes of the 4263 segments. Each

segment’s route feature is compared to the constructed

reference routes and the corresponding route id is appended to

the list. Then, We choose the last six trajectory points of each

segment (sub-segment) before the destination port. Based on

the capturing rate, six trajectory points provide the minimum

information we need to calculate the similarity. Then, we

calculate the similarity between these six trajectory points and

the reference routes.

Each reference route consists of 300 trajectory points.

Using the three selected similarity measurements: Discrete

Fréchet Distance (DFD), Dynamic Time Warping (DTW)

and Curve Length (CL). The sub-segment will be classified

according to the minimum similarity score with one of the

constructed reference routes. The destination port will be

predicted according to the selected reference route destination

port. Therefore, we first visualize the performance of each

method using the multi-class confusion matrix. Then, to

evaluate the performance of the three selected similarity

measures we used the Accuracy and the F1 measure.

Fig. 8 demonstrates a visual interpretation of the confusion

matrices where the prediction output for the similarity

measurements models have six routes: path1, path2, path3,

path4, path5, path6. The diagonal elements represent the

correct predictions per route, the lighter the color the greater

the number. While off-diagonal elements are those that are

mislabelled. These matrices show the percentage prediction

of each destination port made by each model for the actual

routes. As shown in Fig. 8, confusion matrix in (a) represents

the percentage prediction of each destination port made by

the model using Discrete Fréchet Distance (DFD) similarity

measure for the actual routes. Diagonal elements for path1,

path2, path4, path5, path6 are perfectly predicted, but it

performs comparatively not good for the path3, all true

destination ports for path3, it only predicts 55% of them

correctly.

Confusion matrix in (b) represents the percentage prediction

of each destination port made by the model using Dynamic

Time Warping (DTW) similarity measure for the actual routes.

Diagonal elements for path1, path2,path5, path6 are perfectly
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(a) Discrete Fréchet Distance (b) Dynamic Time Warping (c) Partial Curve Mapping

(d) Area between two curves (e) Curve Length

Fig. 7 A depiction of similarity and dissimilarity distributions of the five selected methods

(a) Destination port prediction
performance using Discrete

Fréchet Distance

(b) Destination port prediction
performance using Dynamic Time

Warping

(c) Destination port prediction
performance using Curve Length

Fig. 8 A depiction of confusion matrices of destination port prediction
performance using similarity methods: (a)Discrete Fréchet Distance, (b)

Dynamic Time Warping, (C) Curve Length

predicted. Next comes path4 with 99% correct predictions.

Then comes path3 with 94% correct predictions which is for

this particular route this model of DTW outperforms the model

of (DFD).

The confusion matrix in (c) represents the percentage

prediction of each destination port made by the model using

the Curve Length (CL) similarity measure for the actual routes.

Diagonal elements for path5, path6 are perfectly predicted

with 100% correct predictions. Next comes path2 with 99%

correct predictions. Then path1 with 98% correct predictions.

Then comes path3 with 95% correct predictions, which is for

this particular route this model of CL outperforms the model

of (DFD) and slightly better than the model of DTW. Then,

path4 could predict the only 78% of them correctly.

From the results of the confusion matrices, we can infer

that because the discrete Fréchet Distance (DFD) is a

max-measure; defined as the maximum distance measured at

each position. The dependence on the maximum value of

distance leads to non-robust behaviour, where some variation

in the sub-segments related to path3 distorts the distance

function by a large amount. Thus, the percentage prediction for

path3 is significantly low. Dynamic Time Warping (DTW) is

a sum-measure, defined as the sum of the distance measured at

each position. Hence, this measure smooths the distortion that

occurred in the DFD model. Thus, the percentage prediction

of the DTW model for path3 is significantly improved. Curve

Length (CL) is a measure of the ith point of the sub-segment

to the corresponding equivalent length of the curve of the

compared reference route. The ith point of the sub-segment

does not correspond to the same abscissa, as is the case in

the DFD and DTW models, where some variation in the

sub-segments can distort the distance function by some amount

as the case in path4 but notably less than the DFD model.

Table I shows the destination port accuracy and f1 measure

for Discrete Fréchet Distance, Dynamic Time Warping, and

Curve Length. The model of Dynamic Time Warping surpasses

the other two methods in both accuracy and f1. As a result,

Dynamic Time Warping is a very robust technique to compare

the peaks and troughs by taking into account the varying lags

and phases in the trajectories.
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TABLE I
ACCURACY AND F1 MEASURE OF THE THREE SELECTED MODELS: DISCRETE FRÉCHET DISTANCE, DYNAMIC TIME WARPING AND CURVE LENGTH

Discrete Fréchet Distance Dynamic Time Warping Curve Length
Acc. f1 Acc. f1 Acc. f1

95.82% 95.31% 98.97% 99.08% 89.75% 93.58%

VI. CONCLUSION

We proposed a method to predict the destination port for a

voyage using a recent trajectory segment of a vessel. This

prediction can bring economic value to a higher level of

maintenance for port authorities. The insight of future traffic in

a port can help port authorities to dedicate their resources more

effectively and efficiently. Our approach contains four major

phases: 1) data preparations, 2) reference route construction

3) similarity measurement and 4) destination port prediction.

We prepared data by extracting stop points of the trajectories

and annotating the extracted segments. Then we proposed a

RRoT method to find reference route which is the key for

our solution. After that we explored five trajectory similarity

measures (Discrete Fréchet Distance (DFD), Dynamic Time

warping (DTW), Partial curve mapping (PCM) Area between

two curves (Area) and Curve Length (CL)) to find the best

trajectory similarity method for this domain. We applied the

best similarity measures to detect the destination port.

Simulations suggested that DFD, DTW and CL performed

best on the AIS data. In contrast, PCM and Area were

generally the worst performing measures and lacked some of

the stricter time-series constraints that characterize the other

measures. By applying Dynamic Time warping (DTW) we

identified the destination ports of 4263 trajectories with an

accuracy of 98.97%. These studies suggest that the success

of effective prediction of destination port depends upon the

constructed reference route of trajectory and the distance

function of the similarity measure that is used for the

classification. The most important factor in this success is

using a sufficient number of trajectory points with a robust

similarity measure, that allows the model to better recognize

the destination of a recent trajectory segment of a vessel.

In the future, we plan to expand this study by developing

a graph for predicted traffic of vessels and identify routes

with high demand in resources. Also, we plan to advance

reference route detection to identify multiple paths with the

same source and destination and propose a visualization tool

for representing these paths on the map.
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