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 
Abstract—This paper presents a combination of both robust 

nonlinear controller and nonlinear controller for a class of nonlinear 
4Y Octorotor UAV using Back-stepping and sliding mode controller. 
The robustness against internal and external disturbance and 
decoupling control are the merits of the proposed paper. The 
proposed controller decouples the Octorotor dynamical system. The 
controller is then applied to a 4Y Octortor UAV and its feature will 
be shown. 
 

Keywords—Backstepping, Decoupling, Octorotor UAV, sliding 
mode. 

I. INTRODUCTION 

TODAY, UAVs are very popular. UAVs are used in 
civilian field for aerial drones and Traffic control. Most 

UAVs are based on piloted configurations, but Quadrotors are 
different. Unlike conventional helicopters, it has fixed pitch-
propellers. Thus control is achieved by varying the speed of 
rotors [1], [4]. Because of such configurations, it is capable of 
vertical take-off and landing and it is highly maneuverable. It 
can be used for monitoring important points of interest, aerial 
mapping, search and rescue operations and a lot more [2], [5], 
[9]. 

In some cases the propellers are enclosed in a cage to insure 
the safety in indoor flight and also outdoor in case of debries. 
This can improve the range of applications for these types of 
UAVs but it is ultimately limited. An important problem of 
quadrotors is its lack of redundancy. Even if failure strategies 
have been developed, the quadrotor still depends on all of 4 
rotors in order to provide full control. If even one of them is 
completely inoperative, then stabilization is impossible 
without reversing the motor or sacrifising the controllability of 
the yaw state [3], [6], [11], [12].  

In this work we will address the payload restrictions of the 
quadrotor by proposing the use of a 4Y octorotor 
configuration that an example is shown in Fig. 1. By 
introducing the additional rotors the reliability of the UAV is 
increased. That depending on the failures of the rotors and the 
vehicles configurations the UAV can tolerate 4 rotor 
malfunctions [6].  

In Section II the dynamic modelling of the octorotor UAV 
will be given. In Section III different control methods are 
given and discussed. Then in section IV a simulation of the 
UAV is described with detail and at last the conclusion is 
given in Section V. 
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II. DYNAMIC MODELING 

The dynamics of the 4Y octorotor were derived taking into 
account the work on quadrotors which is presented in [1], [2], 
[10], [14]. The following assumptions were made: 
1) The structure is rigid and symmetric 
2) The center of gravity lies at the center of the device 
3) The inertia matrix is diagonal 
4) The propellers are hard and don’t bend 
5) The thrust is proportional to the square of the speed of the 

rotor 
6) The drag is proportional to the square of the speed of the 

rotor 
The 4Y octorotor layout is presented in Fig. 1 along with 

the chosen coordinate system. The standard definition of a 
positive rotation is used, and it is defined as a counter-
clockwise rotation around the axis as seen from front of the 
axis line. Also there is two reference frame is used (a body 
axes frame B fixed at the vehicle’s center and an earth fixed 
frame E).  

 

 

Fig. 1 The 4Y Octorotor 
 

In order to obtain a configuration which is similar to the 
quadrotor the rotors are paired together two by two in the 
following design: pair A – 1 with 2 ( A 21 ), pair B – 3 

with 4 ( B 43 ), pair C–5 with 6 ( C 65 ) and pair 

D – 7 with 8 ( D 87 ). Each rotor in the same pair has 

the same speed and direction. To increase the roll angle, the 
thrust of pair B is decreased while the thrust of pair D is 
increased such that overall thrust remains the same. Obtaining 
a positive pitch angle, the thrust of pair A is decreased while 
the thrust of pair C is simultaneously increased. The control 
inputs of the system, 4321 ,, andUUUU , and the disturbance  

have the following expressions: 
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where: 

)cos( 2
 lO                                      (2) 

)sin( 2
 lo                                       (3) 

LOO '                                          (4) 
 
The outputs of the system are x, y and z , which denotes the 

position of the vehicle with respect to the earth fixed frame, 
and p, q and r , which denote the angular velocity of the 
vehicle with respect to the body fixed frame. The dynamical 
systems are as [13], [14]: 
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In order to obtain the angular velocity with respect to the 

earth fixed frame the following multiplication is performed 
[15], [16]: 
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The nominal parameters of the 4Y octorotor and the 

simplification of the dynamic equations can be found in [17]. 
Consider the state factors as follow: 
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Then with this simplification we can rewrite the dynamic 

function as follows: 
 




























)(xf
 

1

12

1

10

131

8

3524

6

3242362

4

2124164

2

1

1

1
coscos

4

U
m

U

x

U
m

U

x

U
m

xxg

x

Ubxx

x

Ubxxx

x

Ubxxx

x

y

x









                          (8) 

 
Here to don’t confuse the integers we will use the following 

parameters: 
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Fig. 2 Two subsystems and their controllers 

III. CONTROLLER DESIGN PROCEDURE 

For designing the controller we have to consider some 
assumptions in dynamic of the system:  

First it can be seen that the rotational model of the octorotor 
is separate from the Position model, so as can be seen in the 
Fig. 2 we can consider two sub systems for the model. For the 
first subsystem we have the Rotational Dynamics, and its 
controller. And for the second subsystem, i.e. the Position 
dynamics, we can see from the model that transition on x and 
y axis depends on 1U , and 1U is the total thrust of all the 

motors. Now if we consider xu and yu  the orientations of 

1U that is responsible for the motion through x and y axis, we 

can compute the pitch and roll angles necessary to control xu  , 
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and yu [8]. 

In the end, we can design the controller input as follows: 

A. Sliding Controller for the Angular Rotational Dynamics 

Consider a nonlinear system: 
 

 wwuXfX n ,)()(                            (12) 

 

where f is a known nonlinear part, w is a bounded 

uncertainty,   TnxxxX )1(   is system state and u is the 

control input. Then sliding variable is 
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where   is a strictly positive constant,  
dXXX ˆ   and dX  is 

the desired state. Tracking dXX  of system is equivalent to 

0S . Conventional SMC makes S equal to zero in finite time 
and then maintain that condition. This controller consists of a 
reaching mode and a sliding mode, and then we have: 
 

reacheq uuu  , )tanh(Sureach             (14) 

 

In this controller equ cancels the known terms of the sliding 

dynamics, and if the uncertainties exist use the Lyapunov 
stability theorem to get the necessary conditions, as follow: 
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where   is a positive constant, which implies that [1], [6], [7]: 
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This algorithm has a problem. By introducing linear sliding 

variable as shown in (4), in sliding phase we have asymptotic 
stability. In next section we use both terminal sliding mode 
ideas to cope with these problems. As can be seen in this 
algorithm tanh(.) is used to eliminate the chattering in 
reaching phase. Thus tanh(.) is an approximation of sign(.) so 
deliver a much smoother ending to the system. So now we 
consider conventional sliding mode, then we have the 
following equations for both sliding surfaces and also the 
controller as follow [16], [17]: 
 

112 xxS                                  (17) 

324 xxS                                 (18) 

536 xxS                                 (19) 

 
and then we have: 
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So with this the angular position of the Octorotor can be 

controlled. 

B. Backstepping Sliding Controller for the Transitional 
Dynamics 

Now for this we consider the second subsystem.  For the 
altitude controller 1U , we use the same sliding controller 

method to design the controller, therefore we have: 
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We can see from the model that transition on x and y axis 

depends on
1U , and 

1U is the total thrust of all the motors. Now 

if we consider xu and yu the orientations of 
1U that is 

responsible for the motion through x and y axis, we can 

compute the pitch and roll angles necessary to control xu  and 

yu . In the end from back stepping we have the following 

equations: First consider the tracking error below: 
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Now consider the following Lyapunov function: 
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By considering the following input the stabilization can be 
obtained: 
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Then, we have: 
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now we make another variable change: 
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then, the Lyapunov function is: 
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and its derivative is: 
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Then to satisfy the Lyapunov function   0, 21 zzV , the 

control input xu  is extracted, and we have: 
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Also to design yu we follow the same method and we have: 
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C. Decoupling of Position Dynamics 

Now to have an Innovation in the system of the Octorotor, 
we can see the Dynamic models that in the altitude dynamics 
the term 31 coscos xx  is present. This term represents the 

dependence of the z state with the ,  states. To fix this issue 

we will use the following: 
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This will give us a controller that is not dependent on other 

state so we have: 
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Now for a much better result we will see the following: 
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And in this case 1 , then we have:   
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In the next section all the mentioned controllers will be 

simulated and the results will be shown. 
 

 

Fig. 3 A Type of 4Y Octorotor 

IV. SIMULATION RESULTS 

We apply the proposed controller on dynamical systems 
mentioned in (8) on a dynamics of the following Octorotor 
shown in Fig. 3.  

Fig. 4 shows the Rotational Dynamics of the Octorotor 
states that has been controlled. 
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Fig. 4 Output of system   
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Fig. 5 Output of system   
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Fig. 6 Output of system   

 
As can be seen the states goes to the desired values with 

precision. Now we will see the position Dynamics of the 
Octorotor: 
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Fig. 7 Output of system x 
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Fig. 8 Output of system y 
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Fig. 9 Output of system z 
 

As it can be seen the system is fully controlled and all the 
state goes to the desired value. Now here we will see the 
results for the decoupling controller: 
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Fig. 10 Output with dependent altitude and independent altitude 
Also if we consider the for the controller we can see a 

considerable change in the controller: 
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Fig. 11 Output with independent altitude and the   integare 
 

As can be seen the latest equation have a much faster 
reaction. This change doesn’t affect the x or y state, but it can 
be seen that the system is much faster and goes to the desired 
states much quicker. 

V. CONCLUSION 

The designing robust nonlinear controller is developed in 
this paper. The combination of both sliding mode and 
nonlinear controller show the favorable execution. The good 
response, robustness against uncertainty and disturbance are 
the main advantages of the proposed controller. The 
simulation results show the promising performance. 
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