
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:10, 2012

862

 

 

  

Abstract—A novel and versatile numerical technique to solve a 

self-stress equilibrium state is adopted herein as a form-finding 

procedure for an irregular tensegrity structure.  The numerical 

form-finding scheme of a tensegrity structure uses only the 

connectivity matrix and prototype tension coefficient vector as the 

initial guess solution.  Any information on the symmetrical geometry 

or other predefined initial structural conditions is not necessary to get 

the solution in the form-finding process.  An eight-node initial 

condition example is presented to demonstrate the efficiency and 

robustness of the proposed method in the form-finding of an irregular 

tensegrity structure.  Based on the conception from the form-finding of 

an eight-node irregular tensegrity structure, a monumental object is 

designed by considering the real world situation such as self-weight, 

wind and earthquake loadings. 

Keywords—Tensegrity; Form-finding; Design; Irregular; 

Self-stress; Force density method. 

I. INTRODUCTION 

INCE the invention of tensegrity structures by Snelson, 

Fuller and Emmerich [1], the ingenious forms, simplicity 

conception, light weight and deployability of tensegrity 

structures were brought to a rapid development stage in civil 

structures [2-3], space structures [4-5], mechanical cells [6-8] 

and robotics [9].  As a result, analytical methods and numerical 

techniques based on mathematical principles and theories have 

been developed [10-11].  However, most of the form-finding 

methods are still limited to simple and regular tensegrity 

structures. 

Form-finding of a tensegrity structure is a process to decide 

structural configurations which give self-stress equilibrium 

states of the tensegrity structure. The form-finding of tensegrity 

structures is one of the fundamental objectives in the design of 

any statically indeterminate structures including tensegrity 

structures.  The work of Schek [12] in force density method was 

establishing an introduction to the form-finding of network 

tensile structures. 

In the form-finding process, some initial conditions or 

assumptions of structural configurations are usually made on 

the mathematical and mechanical models such as a twisting 

angle, a strut to cable length ratio, or a force to length ratio.  A 

vast amount of researches in form-finding of tensegrity  
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structures have resulted in reliable techniques; however there 

has been relatively few research on design procedures by using 

less assumption as the initial conditions. 

In this paper, a novel iterative numerical form-finding 

procedure developed by Estrada et al. [13] is adopted as a 

tensegrity structure form-finding tool used in the genetic 

algorithm proposed.  The formulation was based on the force 

density formulation with less design variables such as 

connectivity information and prototype tension coefficient.  

Since the iterative procedure will result in one particular 

structural configuration of tensegrity structure in self-stress 

equilibrium state. 

II. TENSEGRITY STRUCTURE 

A tensegrity structure consists of a set of continuous cables 

in tension and a set of discontinuous struts in compression.  

Tensegrity structures are usually associated with pin-jointed 

mechanism which is stabilized by the action of pre-stress.  The 

tensegrity structure can be classified into self-stress and 

pre-stressed structures.  Present paper interest is in the 

self-stress tensegrity structures, since they can free standing 

without any support while maintaining their self-stress 

equilibrium states.  Tensegrity structures exist only in a 

self-stress equilibrium state which requires the calculation of 

member forces in a particular spatial arrangement.  Without 

application of external forces at nodes, the associated 

mathematical models and numerical algorithms have to 

represent nontrivial solutions for the member forces of 

tensegrity structures which are in equilibrium state in space. 

A. Equilibrium Equation of Tensegrity Structure 

Fig. 1 is used to illustrate the equations of static equilibrium 

of a reference node a which is connected to nodes b and c by 

members a-b and a-c, respectively. 

 

Fig. 1 Equilibrium at a reference node a 
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Neglecting the self weight of each member, the equilibrium 

equations at the node a in Fig. 1 are given in the three 

dimensional axis directions by 
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The so called tension coefficient [14], or force density 

coefficients [12] is often used to simplify the equilibrium 

equations which can be written as  
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where all the notations in Eqs. (1-3) are given in Fig. 1. 

 

B. Connectivity Matrix of Tensegrity Structure 

A tensegrity structure in a self-stressed means that there is no 

external load applied.  Therefore, the equilibrium equations in 

(2) can be written as 
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where A is the equilibrium matrix, diag(*) is a square matrix 

with the vector (*) filling diagonal of the matrix, 

{ }T

nb21 qqq ,...,,=t is the tension coefficient vector and C is the 

connectivity matrix of nb×nn matrix which defined by 
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where nb is the number of members and nn is number of nodes.  

Eq. (4) relates the projected lengths to the tension coefficients 

along each axis direction. 

The simplest triplex tensegrity structure shown in Fig. 2 is 

used to illustrate the creation of matrix C in which the structure 

consists of twelve members (nb=12, nine cables and three 

struts) and six nodes.  The connectivity matrix C for the 

tensegrity is shown in Fig. 2.  The rows of the matrix C specify 

the connectivity information between two nodes connecting a 

member; hence the columns of the matrix C indicate the 

sequence of nodal number information. 

 

Fig. 2 Connectivity matrix of a triplex tensegrity example 

The matrix representation of Eq. (3) relates a symmetric 

matrix D, known as the force density matrix (FDM) and the 

nodal coordinates as 
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The matrix components ijd of matrix D can be expressed as 
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where baq −  is a tension coefficient between two nodes a and 

b. 

C. Rank conditions of Tensegrity Structure 

For a tensegrity structure in a self-stress equilibrium state, 

two necessary but not sufficient rank conditions have to be 

satisfied in a d-dimensional space [1].  The deficiency of the 

rank conditions is to ensure the existence of at least one 

self-stress equilibrium state, if 

 nbArankr <= )( . (8) 

In [15], Calladine and Pellegrino gave a full description on 

the first order infinitesimal mechanisms where inextensional 

mechanisms, m, and of self-stress equilibrium states, s, which 

are necessary for a nontrivial solution of Eq. (4).  This rank 

deficiency provides the number of independent self-stress 

equilibrium states as 

 1rnbs ≥−= , (9) 
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where the total number of infinitesimal mechanisms, m, is 

given by 

 rnndm −×= , (10) 

for a structure in d-dimensional space with number of node nn 

[16]. 

Tensegrity structures are not only statically, but often 

kinematically, indeterminate structures. Table I shows the 

classification of pin-jointed structures based on the values of s 

and m (Refer to Pellegrino [17-18] for a comprehensive 

description on the classification of pin-jointed structures). 

 
TABLE I 

CLASSIFICATION OF PIN-JOINTED STRUCTURES 

Category 
s and m 

values Type of Structure 

I 
s=0; 

m=0 

Statically determinate and 

kinematically determinate 

II 
s=0; 

m>0 

Statically determinate and 

kinematically indeterminate 

III 
s>0; 

m=0 

Statically indeterminate and 

kinematically determinate 

IV 
s>0; 

m>0 

Statically indeterminate and 

kinematically indeterminate 

 

The second rank condition is related to the positive 

semi-definite matrix D in Eq. (6) as follows: 

 dnnDrank −=)( . (11) 

The nullity of the tensegrity structure is (d+1) as the largest 

possible rank condition of matrix D in order to find a tensegrity 

structure [19-20]. 

III. NUMERICAL FORM-FINDING OF TENSEGRITY STRUCTURE 

The numerically form-finding method of tensegrity 

presented herein is in a similar procedure proposed by Estrada 

et al. [13], but a genetically algorithm is used for form-finding 

of an irregular tensegrity structure instead.  A full description 

on the iterative numerical procedures and formulations of 

form-finding of a tensegrity structure can be found in the 

reference.  Brief explanations on the procedures which used as 

a form-finding tool of a tensegrity structure are repeated 

hereafter for clarification purposes. 

A. Form-finding of Tensegrity Using Tension Coefficient 

Prototype 

In contrast to the most existing form-finding procedures 

[1,24] which require initial assumptions on the length of 

members, geometry or the symmetry of structure, Estrada et al. 

[13] proposed a procedure using a predefined connectivity 

matrix C and a prototype of tension coefficient vector q
0
 for all 

members’ information.  To calculate the rank deficiency 

requirement of a tensegrity structure, the spatial dimension d of 

the problem is also necessary. 

The prototype tension coefficient vector q
0
 is assigned with 

coefficient of 1+  or 1-  to members that are chosen to be in 

tension or in compression, respectively as 
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Subsequently, the vector q
0
 replaces vector t to create the 

matrix D in Eq. (6) to satisfy the rank condition given in Eq. 

(11).  The procedure guides both matrices D and A to be rank 

deficient, i.e. a proper rank, by selecting the appropriate 

eigenvector(s) in each decomposition which lead to the 

existence of at least one self-stress equilibrium state. 

B. Approximation of Coordinates from Tension Coefficients 

If the matrix D is positive semi-definite of maximal rank [21], 

i.e. satisfies the rank condition Eq. (11), a Schur decomposition 

to the D matrix can be expressed by 

 
T

UVUD = , (13) 

where the first (d+1) columns of the matrix 

]...[ nn321U uuuu= , contain the basis of the nodal 

coordinates; and the diagonal matrix V has d+1=4 zero 

eigenvalues for a three dimensional problem.  The matrix U is a 

unitary matrix which has the basis for the nodal coordinates as 

columns of the null space vector which solves the 

homogeneous Eq. (6) (Refer to Meyer [22] for more 

information on the null spaces and decompositions).  The 

approximated coordinates are then, given by 

 T1d1 ]...[][ += uuzyx . (14) 

Here, a transformation matrix T is necessary to determine the 

configuration of the structure from nodal coordinates.  An 

infinite number of geometrically different self-stress 

equilibrium configurations thus can be found for a single vector 

q.  Since the tension coefficients do not change under affine 

transformations [23], the eigenvectors of the null space are used 

directly.  To pick up the first three eigenvectors of the null 

space, the T matrix proposed by Estrada et al. [13] is given as 

follow: 
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where, only the first three eigenvectors are used for computing 

the approximation of nodal coordinates. 

However, the tensegrity structures generated by a vector of 

tension coefficients
0
q in Eq. (12), unlikely satisfies Eq. (11) 

and therefore the structures are not in a self-stress equilibrium 

state.  The static equilibrium can be achieved from the 

approximation of the column vectors which do not correspond 

to the zero eigenvalues in Eq. (13) as 

 ][][ 000uuu ≈zyxD . (16) 

A full explanation how to handle the non-equilibrium of the 

Eq. (16) can be found in [13].  At this point of the form-finding 

procedure, an equilibrium configuration that fulfills Eq. (16) 

can be approximated. 

C. Approximation of Tension Coefficients from Coordinates 

By using the approximated nodal coordinates computed from 

Eq. (14), the equilibrium matrix A in Eq. (4) can be 

decomposed by using the Singular Value Decomposition [18] 

as follows: 
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where the matrices G and W have the following the null spaces 

as 

 ]...|...[ rnnd21r21G −×= mmmggg  (18) 

and 

 ]...|...[ rnb21r21W −= qqqwww , (19) 

where r is the rank of the diagonal matrix A, m is the vectors of 

infinitesimal mechanisms and the vectors q is the tension 

coefficients of self-stress at equilibrium states, each of which 

solves the homogeneous condition of Eq. (4). 

However, if the structure is not in a self-stress equilibrium 

state, the null spaces of A as defined in Eq. (17) do not exist.  

That is the case when the matrix A is calculated with an 

approximation of the nodal coordinates.  Alternatively, A can 

be modified to be rank deficient, and apply a matrix operation, 

that uses ][ zyx to compute an approximation of the tension 

coefficient vector q. 

A self-stress equilibrium state that fulfills Eq. (17) can be 

approximated as, 
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A comprehensive explanation how to handle the 

non-equilibrium of the Eq. (20) can be found in [13]. 

In summary, the form-finding procedure in the [13] iterates 

Eqs. (13) and (17) until the rank condition of Eq. (11) is 

satisfied.  The tension coefficients and nodal coordinates are 

updated for the next equilibrium matrix, and so on until 0s > .  

Finally, the tension coefficient vector q that fulfill Eq. (20) and 

the nodal coordinates ][ zyx uuu  that fulfill Eq. (16) are the 

solutions.  Fig. 3 shows the outline of the numerical 

form-finding procedure of a tensegrity structure. 

 

 

Fig. 3 The outline of the numerical form-finding procedure 

IV. DESIGNING AN EIGHT-NODE IRREGULAR TENSEGRITY 

The designing of a monumental object herein is started by 

using the numerical form-finding procedure from a random 

eight-node model preferred as a design parameter.  After the 

form-finding of a tensegrity structure succeed with a unique 

configuration of an eight-node irregular tensegrity structure, the 

model is used as an initial design for a real monumental object 

by using the finite element analysis technique.  Finally, for the 

safety and stability of the structure, the member strengths and 

stability checking are performed. 

A. Form-Finding of the Eight-Node Irregular Tensegrity 

Following the process of numerical form-finding described 

in previous sections, an eight-node irregular tensegrity was 

found by using the following connectivity matrix C and tension 

coefficient vector t as the initial try. 

The connectivity matrix shows the one to one relationship 

between two nodes.  As shown in Fig. 4, the initial tension 

coefficient vector consist of positive value of one, which 

indicates tension members, and negative different values, 
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which indicate the variation of compressive members.  These 

negative varying values are intended to design the compressive 

members with different cross sectional properties.
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Fig. 4 The connectivity matrix C and initial tension coefficient vector 

As a result of form-finding process, an eight

tensegrity structure is found as shown in Fig

 

Fig. 5 The result of form-finding of an eight-node irregular tensegrity

The result of form-finding of an irregular tensegrity structure 

is shown in Tables II and III. 

 

 

 

 

 

 

 

 

which indicate the variation of compressive members.  These 

negative varying values are intended to design the compressive 

members with different cross sectional properties. 
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and initial tension coefficient vector t 

finding process, an eight-node irregular 

tensegrity structure is found as shown in Fig. 5. 

 

node irregular tensegrity 

finding of an irregular tensegrity structure 

TABLE

NODAL C

Node 

Number 
x 

1 -0.046997 

2 0.100338 

3 0.462185 

4 0.502951 

5 -0.638767 

6 -0.334700 

7 -0.029177 

8 -0.015839 

 

TABLE
TENSION 

Member 

Connectivity 

Tens

Coefficient

1 – 2 1.5331

2 – 3 3.2162

3 – 4 4.9010

1 – 4 1.6192

5 – 6 2.8351

6 – 7 1.8807

7 – 8 1.7724

5 – 8 1.3201

1 – 5 3.4248

2 – 6 2.7533

3 – 7 1.6502

4 – 8 5.0517

1 – 6 -3.1641

2 – 7 -2.0067

3 – 8 -3.7128

4 – 5 -3.2504

 

TABLE II 

COORDINATES 

y z 

-0.612765 -0.392801 

-0.267531 0.369638 

-0.155165 0.368403 

0.101945 -0.184040 

-0.233056 -0.026372 

0.331275 0.480091 

0.470376 -0.063288 

0.364918 -0.551630 

TABLE III 
ENSION COEFFICIENTS 

Tension 

Coefficient 

Member 

Type 

1.5331 Cable 

3.2162 Cable 

4.9010 Cable 

1.6192 Cable 

2.8351 Cable 

1.8807 Cable 

1.7724 Cable 

1.3201 Cable 

3.4248 Cable 

2.7533 Cable 

1.6502 Cable 

.0517 Cable 

3.1641 Strut 

2.0067 Strut 

3.7128 Strut 

3.2504 Strut 
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Since the initial tension coefficient vector used for the 

form-finding is not a real member forces, the resulting 

coordinates are correspondingly small.  It c

results shown are scalable in length dimension and member 

forces.  To designing a real tensegrity structure, the nodal 

coordinates resulted from form-finding procedure are 

translated and scaled up as given in Table IV

nodes 1, 2 and 3 which connect the three larger dimension of 

the pipes are projected to the ground. 

 

TABLE IV 
NODAL COORDINATES FOR DESIGN

Node 

Number 

X 

(mm) 

Y 

(mm) 

1 0.00 0.00 

2 1437.34 -689.33 

3 2529.21 0.00 

4 2015.31 1808.41 

5 2261.04 -1106.38 

6 2062.49 902.53 

7 2517.07 1352.97 

8 66.22 1142.40 

 

B. Members Design of the Eight-Node Irregular T

A 4-mm stainless wire cable made from material SUS

with 7x7 strands is used for designing the tensile members.  

Polished hollow stainless pipe made from material SUS

with two types of thickness are used for designing the 

compressive strut members.  Table V shows the material 

properties used for designing the tensegrity.

 
TABLE V 

SECTIONAL PROPERTIES OF MEMBERS

Member Type Dimension

2 – 7 Strut φ =  60.5 mm, t=2

4 – 5 Strut φ =114.3 mm, t=2

1 – 6 Strut φ =165.2 mm, t=3

3 – 8 Strut φ =216.3 mm, t=3

Others Cable φ =4.0 mm, φ strand=0.44 mm

 

 

Since the initial tension coefficient vector used for the 

finding is not a real member forces, the resulting 

coordinates are correspondingly small.  It can be shown that the 

results shown are scalable in length dimension and member 

forces.  To designing a real tensegrity structure, the nodal 

finding procedure are rotated, 

in Table IV such that the 

nodes 1, 2 and 3 which connect the three larger dimension of 

FOR DESIGN 

Z 

(mm) 

0.00 

 1688.40 

0.00 

 0.00 

 1220.02 

2809.20 

 1185.58 

 1839.52 

Node Irregular Tensegrity 

mm stainless wire cable made from material SUS-304 

r designing the tensile members.  

ollow stainless pipe made from material SUS-304 

with two types of thickness are used for designing the 

compressive strut members.  Table V shows the material 

properties used for designing the tensegrity. 

EMBERS 

Dimension 

60.5 mm, t=2.0 mm 

=114.3 mm, t=2.0 mm 

=165.2 mm, t=3.0 mm 

=216.3 mm, t=3.0 mm 

strand=0.44 mm 

C. Structural Analysis of the Eight

Tensegrity 

The tensegrity structure is then, modeled in the 

analysis scheme to evaluate t

tensegrity structure will be put on the ground without any 

supports thus, very small spring constants in three axis 

directions are provided in the finite element model

avoid any rigid body movement in the analysi

the finite element model used for the eight

tensegrity with the chosen configuration where the three bigger 

dimensions of pipes are rested

dimension of the pipe is hanging in the air supported

surrounding cables connected to the others pipes.

Fig. 6 The finite element model of the eight

D. Loadings and Member E

Beside the self weight of the structure, 

static equivalent seismic loadings 

in Fig. 7 are considered to ensure the safety of the structure.

Fig.  7 The static equivalent seismic loadings in 12 directions

view

The safeties of the cables are evaluated by using 

allowable breaking strength design of the stainless SUS

material.  The minimum safety factor of 6.0 is achieved for the 

cable with the maximum tensile strength under various loading 

conditions.  The struts are evaluated 

buckling strength design of the h

material.  The minimum safety factor beyond 50.0 is assured 

for the strut with the maximum compressive strength under the 

same various loading conditions.

Analysis of the Eight-Node Irregular 

The tensegrity structure is then, modeled in the finite element 

to evaluate the member strengths.  The 

will be put on the ground without any fixed 

thus, very small spring constants in three axis 

the finite element model in order to 

avoid any rigid body movement in the analysis.  Fig. 6 shows 

the finite element model used for the eight-node irregular 

tensegrity with the chosen configuration where the three bigger 

rested on the ground with the smallest 

dimension of the pipe is hanging in the air supported by the 

surrounding cables connected to the others pipes. 

 

The finite element model of the eight-node irregular tensegrity 

Loadings and Member Evaluations 

Beside the self weight of the structure, wind loading and 

seismic loadings in 12 directions as illustrated 

are considered to ensure the safety of the structure. 

 

The static equivalent seismic loadings in 12 directions of plane 

view 

The safeties of the cables are evaluated by using the 

h design of the stainless SUS-304 

The minimum safety factor of 6.0 is achieved for the 

cable with the maximum tensile strength under various loading 

The struts are evaluated against member’s elastic 

buckling strength design of the hollow stainless pipe SUS-304 

material.  The minimum safety factor beyond 50.0 is assured 

for the strut with the maximum compressive strength under the 

same various loading conditions. 
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V. SUMMARY 

The structural behavior of an irregular tensegrity structure is 

different from the conventional real world structures.  The 

tensegrity structure is designed under the assumption where 

there is no external loading applied everywhere at the structure.  

The equilibrium condition of the tensegrity structure is 

principally provided in a unique configuration where the 

compressive struts and the tension cables are in self-stress state. 

In order to use the tensegrity structure as a monumental 

object, the results of form-finding configuration must be 

selected by finding the most stable positioning on the ground.  

The structure must also properly being designed when 

subjected to the self-weight, wind and earthquake loadings.   

The proposed tensegrity structure is being planned to be 

constructed inside our campus in front of the library building.  

Figs. 8-9 show the illustrative image pictures from different 

views after the construction.  This tensegrity which will be built 

as a monumental object hence it is expected to give an 

impression of modern look inside our campus. 
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Fig. 8 Illustration of installation of the Tensegrity as a monumental 

object 

 
Fig. 9 Illustration of installation of the Tensegrity as a monumental 

object 
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