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Design of Nonlinear Observer by Using Chebyshev
Interpolation based on Formal Linearization

Kazuo Komatsu and Hitoshi Takata

Abstract—This paper discusses a design of nonlinear observer by
a formal linearization method using an application of Chebyshev In-
terpolation in order to facilitate processes for synthesizing a nonlinear
observer and to improve the precision of linearization.

A dynamic nonlinear system is linearized with respect to a lin-
earization function, and a measurement equation is transformed into
an augmented linear one by the formal linearization method which is
based on Chebyshev interpolation. To the linearized system, a linear
estimation theory is applied and a nonlinear observer is derived. To
show effectiveness of the observer design, numerical experiments
are illustrated and they indicate that the design shows remarkable
performances for nonlinear systems.

Keywords—nonlinear system, nonlinear observer, formal lineariza-
tion, Chebyshev interpolation.

I. INTRODUCTION

NATURALLY, the estimation problem is more difficult
and less understood when systems are nonlinear than

linear. The most practical way to approach the nonlinear
problem is to employ linearization in order to apply the linear
system theories [1]–[6]. Formal linearization [7]–[10] is one
of them to treat with these nonlinear problems.

In the previous work, a nonlinear observer design using the
formal linearization method based on Chebyshev expansion
was considered [10]. In this paper, we develop a nonlinear
observer design by the formal linearization method based
on Chebyshev interpolation in order to make processes of
the design easier. Introducing a linearization function which
consists of the Chebyshev polynomials of the state variables,
and an augmented measurement vector which consists of
polynomials of the measurement variables, a given nonlinear
system is transformed into an augmented linear system by
using Chebyshev interpolation. By this linearized system,
a nonlinear observer is derived by applying linear system
theories. Inversion is simple because of the original state
variable involved in the linearization function.

An advantage in this method comparing with the previous
work [10] is that coefficients of linearized system are simply
obtained by carrying out summation due to the orthogonality
for a finite sum, while they are executed by the integral
calculus in the previous method.

Numerical experiments are illustrated to verify the effective-
ness of this observer design in comparison with a conventional
linearization based on Taylor expansion truncated at the first
order.
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II. STATEMENT OF PROBLEM

Consider a nonlinear dynamic system described by a state
differential equation

Σ1 : ẋ(t) = f(x(t)), (1)

x(0) = x0 ∈ D

where t denotes time, · = d/dt, x is an n×1 state vector, and
f is a sufficiently smooth nonlinear function. D is a compact
domain denoted by the Cartesian product:

D =
n∏

i=1

[li − pi, li + pi] ⊂ Rn

where li (li ∈ R) is the middle of the domain of xi and
pi (pi > 0) is half of the domain of xi (i = 1, · · · , n).

Assumed that a measurement equation is given by

η(t) = h(x(t)) ∈ R� (2)

where η is an �× 1 output vector with � < n, and h(x) is a
sufficiently smooth nonlinear function.

The problem is that the state of a nonlinear dynamic system
(Eq. (1)) can be estimated by use of the given measurement
output which is written by a nonlinear equation (Eq. (2)) .

III. NONLINEAR OBSERVER BY FORMAL LINEARIZATION

A. Formal Linearization for Dynamic System

In this method, Chebyshev interpolation is applied to lin-
earize the given nonlinear system (Eq. (1)), and the state
variable x is changed into y so that y has the basic domain
of the Chebyshev polynomials

D0 =
n∏

i=1

[−1, 1]

and y is rewritten by

y = P−1(x − L) ∈ D0 (3)

where

L =

⎛
⎝
l1
...
ln

⎞
⎠ , P =

⎛
⎝
p1 0

. . .
0 pn

⎞
⎠ ,y =

⎛
⎝
y1
...
yn

⎞
⎠ .

The given dynamic system (Eq. (1)) becomes

ẏ(t) = P−1f(Py(t) + L). (4)

The Chebyshev polynomials {Tr(·)} are defined by

Tr(yi) = cos(r · cos−1 yi), (r = 0, 1, 2, · · ·) (5)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1503

or,
T0(yi) = 1, T1(yi) = yi, T2(yi) = 2y2

i − 1,

T3(yi) = 4y3
i − 3yi, T4(yi) = 8y4

i − 8y2
i + 1, · · · .

Its recurrence formula is

Tq+1(yi) = 2yiTq(yi) − Tq−1(yi), (q ≥ 1) (6)

T0(yi) = 1, T1(yi) = yi .

Therefore, the derivative of the Chebyshev polynomials

Sq(yi) ≡ dTq(yi)
dyi

(7)

is given by

Sq+1(yi) = 2Tq(yi) + 2yiSq(yi) − Sq−1(yi), (q ≥ 1) (8)

S0(yi) = 0, S1(yi) = 1 .

Using these Chebyshev polynomials, we define an N -th order
linearization function φ(·) = φ

(
y(·)) which consists of the

Chebyshev polynomials by

φ = [φ1, φ2, · · · , φi, · · · , φ(N+1)n−1]T

= [T(10···0)(y), T(01···0)(y), · · · , T(0···01)(y),
T(11···0)(y), T(101···0)(y), · · · , T(10···1)(y),
T(20···0)(y), T(02···0)(y), · · · , T(r1···rn)(y),

· · · , T(N ···N)(y)]T (9)

where

T(r1···rn)(y) =
n∏

i=1

Tri(yi) .

The derivative of each element of φ along with the solution
of the given nonlinear system (Eq. (1)) becomes

φ̇α(y) = Ṫ(r1···rn)(y) =
∂T(r1···rn)(y)

∂yT
ẏ

= [Sr1(y1)Tr2(y2) · · ·Trn−1(yn−1)Trn(yn), · · · ,
Tr1(y1)Tr2(y2) · · ·Trn−1(yn−1)Srn(yn)]P−1f(Py + L)

≡ G(r1···rn)(y), α = α(r1, · · · , rn). (10)

Applying Chebyshev interpolation up to the N -th order, this
G(r1···rn)(y) is approximated by

Ĝ(r1···rn)(y) =
N∑

q1=0

· · ·
N∑

qn=0

C
(r1···rn)
(q1···qn)T(q1···qn)(y) (11)

where

C
(r1···rn)
(q1···qn) ≡ 2n−γ

n∏
i=1

(N + 1)

N∑
j1=0

N∑
j2=0

· · ·

N∑
jn=0

G(r1···rn)(y1j1 , y2j2 , · · · , ynjn
)

×Tq1(y1j1)Tq2(y2j2) · · ·Tqn(ynjn) , (12)

γ = {the number of qi = 0 : 1 ≤ i ≤ n}.

The interpolating points {yiji} are set to be

yiji = cos
2ji + 1
2N + 2

π, (i = 1, · · · , n, ji = 0, · · · , N) . (13)

Substituting this Ĝ(r1···rn)(y) into Eq. (10) yields

φ̇(y) ≈ Aφ(y) + b (14)

where

[Aα β ] = [C(r1···rn)
(q1···qn) ] ∈ R((N+1)n−1)×((N+1)n−1) ,

[bα] = [C(r1···rn)
(0···0) ] ∈ R(N+1)n−1, β = β(q1, · · · , qn).

Thus a formal linear state differential equation is derived by

Σ2 : ż(t) = Az(t) + b , (15)

z(0) = φ
(
y(0)

)
= φ

(
P−1(x(0) − L)

)
.

From Eqs. (3) and (9), the inversion is carried out as x̂(t) by

x̂(t) = P [I 0 · · · 0]φ(y(t)) + L

= P [I 0 · · · 0]z(t) + L (16)

where I is an n× n unit matrix.

B. Formal Linearization for Measurement Equation

An augmented M -th order measurement vector Y (·) =
Y (η(·)) which consists of polynomials of the measurement
variables are defined as

Y = [Y1, Y2, · · · , Yi, · · · , Y(M+1)�−1]
T

= [T ′
(10···0)(η), T ′

(01···0)(η), · · · , T ′
(0···01)(η),

T ′
(11···0)(η), T ′

(101···0)(η), · · · , T ′
(10···1)(η),

T ′
(20···0)(η), T ′

(02···0)(η), · · · , T ′
(r1···r�)

(η),

· · · , T ′
(M ···M)(η)]T (17)

where

T ′
(r1···r�)

(η) =
�∏

i=1

ηri
i .

From the given measurement equation (Eq. (2)), each element
function of Eq. (17) is written as

Yα′(η) = T ′
(r1···r�)

(η) =
�∏

i=1

ηri
i

= hr1
1 (Py + L)hr2

2 (Py + L) · · ·hr�

� (Py + L)

≡ G′
(r1···r�)

(y), α′ = α′(r1, · · · , r�). (18)

To this new augmented measurement equation, apply Cheby-
shev interpolation up to the N -th order, and this G′

(r1···r�)
(y)

is approximated by

Ĝ′
(r1···r�)(y) =

N∑
q1=0

· · ·
N∑

qn=0

C ′(r1···r�)
(q1···qn)T(q1···qn)(y) (19)

where

C
′(r1···r�)
(q1···qn) ≡ 2n−γ′

n∏
i=1

(N + 1)

N∑
j1=0

N∑
j2=0

· · ·
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N∑
jn=0

G′
(r1···r�)

(y1j1 , y2j2 , · · · , ynjn)

×Tq1(y1j1)Tq2(y2j2) · · ·Tqn(ynjn) , (20)

γ′ = {the number of qi = 0 : 1 ≤ i ≤ n}.

Substituting this Ĝ′
(r1···r�)(y) into Eq.(18), the augmented

measurement equation becomes

Y ≈ Dφ(y) + e (21)

where

[Dα′ β′ ] = [C ′(r1···r�)
(q1···qn)] ∈ R((M+1)�−1)×((N+1)n−1) ,

[eα′ ] = [C ′(r1···r�)
(0···0) ] ∈ R((M+1)�−1), β′ = β′(q1, · · · , qn).

Thus a formal linear measurement equation is derived by

Y (t) = Dz(t) + e . (22)

C. Design of Nonlinear Observer

To the above linearized system (Eqs. (15) and (22)), a linear
estimation theory is applied so that the identity observer [11]
is synthesized as

˙̂z(t) = Aẑ(t) + b+K(t)
(
Y (t) − (Dẑ(t) + e)

)
, (23)

ẑ(0) = φ(ˆ̂y(0)) = φ(P−1(ˆ̂x(0) − L))

where ˆ̂x(0) is an initial value of the observer, K(t) is an
observer gain as

K(t) =
1
2
R(t)DTW (t) ∈ R

(
(N+1)n−1

)
×
(
(M+1)�−1

)
.

R(t) satisfies the matrix Riccati differential equation as

Ṙ(t) = AR(t)+R(t)AT +Q(t)−R(t)DTW (t)DR(t) (24)

where Q(t),W (t) and R(0) are chosen to be arbitrary real,
symmetric, and positive definite. With the reference to the
exponential estimator [11], the error in the state estimate
e = z − ẑ is uniformly asymptotically stable in the sense
of Lyapunov.

From Eq.(16), the estimate of the nonlinear observer ˆ̂x(t)
becomes

ˆ̂x(t) = P [I 0 · · · 0]φ(ˆ̂y(t)) + L

= P [I 0 · · · 0]ẑ(t) + L. (25)

IV. NUMERICAL EXPERIMENTS

Numerical experiments for nonlinear observers of scalar and
multidimensional systems are illustrated. For comparison, a
conventional linearization based on Taylor expansion truncated
at the first order is also depicted.

A. Nonlinear Observer for Scalar System

As a simple example, consider a dynamic scalar system

ẋ = x2 (26)

x(0) = 0.9, D = [−1, 0] ⊂ R

and a measurement equation

η =
√

1 + x. (27)

To apply the above formal linearization in Sec. III, the values
for changing state variable in Eq. (3) are set as

L = −0.5, P = 0.5,

the linearization function and the augmented measurement
vector are

φ =

⎛
⎝ y

2y2 − 1
4y3 − 3y

⎞
⎠ ,Y =

⎛
⎝ η
η2

η3

⎞
⎠

respectively, when the order of the linearization function N
and the measurement vector M are N = M = 3. In this case,
the formal linear system (Eq. (15)) becomes

ż(t) =

⎛
⎝−1 0.25 0

3.5 −2 0.5
−6 5.25 −3

⎞
⎠ z(t) +

⎛
⎝ 0.75

−2
3

⎞
⎠ ,

and the augmented measurement equation (Eq. (22)) is

Y (t) =

⎛
⎝ 0.416 − 0.075 0.023

0.5 0 0
0.51 0.072 − 0.007221

⎞
⎠ z(t)+

⎛
⎝ 0.641

0.5
0.424

⎞
⎠ .

Fig. 1 shows the true value x of Eq. (26) and the approxi-
mated values x̂ of Eq.(16) when N is varied from N = 1 to
3. x̂(Taylor) refers to a result obtained by Taylor expansion
truncated at the first order :

˙̂x = −x̂− 1
4

when the operating point is −0.5 for comparison.

t

x,
 x^

x

x^ (Taylor) x^ (N=1) x^ (N=2) x^ (N=3)

0 10 20 30
-0.8

-0.6

-0.4

-0.2

0

Fig. 1. True value x(t) and approximated values x̂(t) of linearization

Fig. 2 depicts the true value η of Eq. (27) and the approxi-
mated values Y of Eq.(21) when N is varied from N = 1 to



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:10, 2010

1505

3 and M is fixed at 1. η̂(Taylor) is a result obtained by Taylor
expansion truncated at the first order :

η̂ =
1√
2
x+

3
√

2
4

when the operating point is −0.5.

x

η

Y (N=1)

Y (N=2)
Y (N=3)

η^ (Taylor)

η,
 Y

-1 -0.8 -0.6 -0.4 -0.2 0

0

0.3

0.6

0.9

Fig. 2. True value η and approximated values of measurement equation

To synthesize the nonlinear observer for the given system
(Eqs. (26) and (27)), parameters for the nonlinear observer
(Eq. (23)) are set by the unknown value x(0) = 0.9, an initial
value of the observer ˆ̂x(0) = −0.01 in Eq. (23),

R(0) =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ = diag(1, 1, 1),

W (t) =

⎛
⎝ 5 0 0

0 5 0
0 0 5

⎞
⎠ = diag(5, 5, 5)

when N = 3,

R(0) = diag(1, 1), W (t) = diag(5, 5)

when N = 2, and

R(0) = 1, W (t) = 5

when N = 1.
Fig. 3 shows true value x and estimates ˆ̂x of Eq. (25) when

the orders of N and M are varied from 1 to 3. ˆ̂x (Taylor)
is a result by the conventional first order Taylor expansion
for comparison when the parameters for the observer are the
same R(0) = 1 and W (t) = 5 as our method of the order
N = M = 1.

Fig. 4 shows the integral square errors of estimation

J(t) =
∫ t

0

(
x(τ) − ˆ̂x(τ)

)2
dτ

for the various orders from N = M = 1 to N = M = 3 and
the conventional Taylor method(Taylor).

Next experimentats are the results when the order of lin-
earization function is fixed at N = 3 and the order of the
augmented measurement vector is varied from M = 1 to 3.
Fig. 5 shows x and ˆ̂x . Fig. 6 shows the integral square errors
of estimation in this case.

t

x,
 x^̂

x^ (N=M=1)

x

x^ (Taylor)x^ (N=M=2)

x^ (N=M=3)

^

^

^

^

0 10 20 30

-0.8

-0.6

-0.4

-0.2

0

Fig. 3. Estimates ˆ̂x(t) of the scalar system by various orders

t

lo
g 1

0 
J(

t)

N=M=1
N=M=2

N=M=3

Taylor

0 10 20 30

-1.5

-1

-0.5

0

Fig. 4. Integral square errors of estimation of the scalar system by various
orders

B. Nonlinear Observer for Multidimensional System

As a multidimensional system, consider the simple pendu-
lum in which the bob is connected to the rod which has zero
mass. Let θ denote the angle subtended by the rod and the
vertical axis through the pivot point. The dynamic equation of
this system is written as

d2

dt2
θ + a1

d

dt
θ + a2 sin(θ) = 0. (28)

Assume that the position of the bob is measured from above
and the measurement equation is

η = a3 sin(θ). (29)

Taking the state variables as x1 = θ and x2 = θ̇, the dynamic
system (Eq. (28)) is described as{

ẋ1 = x2

ẋ2 = −a1x2 − a2 sin(x1)
(30)

and the measurement equation is

η = a3 sin(x1) (31)

Applying the above formal linearization in Sec. III, a formal
linear system is obtained by

ż(t) = Az(t) + b , (32)
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t

x,
 x^̂

x^ (N=3, M=1)

x

x^ (N=3, M=2)

x^ (N=M=3)

^

^

^

0 10 20 30

-0.8

-0.6

-0.4

-0.2

0

Fig. 5. Estimates ˆ̂x(t) of the scalar system by various orders of M when
N is fixed at 3

t

lo
g 1

0 
J(

t)

N=3, M=1
N=3, M=2

N=M=3

0 10 20 30

-1.5

-1

-0.5

0

Fig. 6. Integral square errors of estimation of the scalar system by various
orders of M when N is fixed at 3

Y (t) = Cz(t) + d , (33)

and the observer of this pendulum system is

˙̂z(t) = Aẑ(t) + b+K(t)
(
Y (t) − Cẑ(t) − d

)
, (34)

ẑ(0) = φ(ˆ̂x(0)).

Throughout this experiments, the system parameters are set
as

a1 = 0.5, a2 =
980.7
400

, a3 = 1.

For the formal linearization, the values for changing state
variable in Eq. (3) are set as

L =
(

0.4
−0.4

)
, P =

(
1.3 0
0 1.5

)
.

To synthesize the observer, parameters for the nonlinear ob-
server (Eq. (34)) are set by

x(0) =
(

1.5
1

)
, ˆ̂x(0) =

(
0
0

)
,

R(0) = I ,W (t) = diag(10, 5, 2), N = 3, and M = 3.
Figs. 7 and 8 show the true values xi(t) and the estimated

values ˆ̂xi(t) for i = 1 and 2, respectively. ˆ̂xi(Taylor) are the

t

x^1(N=M=3)

x 1
,x

^ 1^

x^1(Taylor)

x1

^

^

0 2.5 5 7.5 10
-1

-0.5

0

0.5

1

1.5

Fig. 7. Estimates ˆ̂x1(t) of the pendulum system by new method and the
conventional method

t

x^2(N=M=3)

x 2
,x

^ 2^

x^2(Taylor)

x2

^

^

0 2.5 5 7.5 10

-1.5

-1

-0.5

0

0.5

1

Fig. 8. Estimates ˆ̂x2(t) of the pendulum system by new method and the
conventional method

results synthesized by the conventional observer based on the
linearization of Taylor expansion truncated at the first order
whose system is written by{ ˙̂x1 = x̂2

˙̂x2 = −a1x̂2 − a2x̂1
,

η̂ = a3x̂1

when the operating point is the origin for comparison.
Fig. 9 shows the integral square errors of estimation

J(t) =
∫ t

0

(
x(τ) − x̂(τ)

)T (
x(τ) − x̂(τ)

)
dτ

for the various orders of the linearization function N and the
augmented measurement vector M from 1 to 3. Taylor is the
error by the conventional method based on Taylor expansion.
Fig. 10 shows the errors of estimation for the various orders
of M from 1 to 3 when the order of N is fixed at 3.

V. CONCLUSIONS

We have developed an observer design for a nonlinear
system by a formal linearization method exploiting Chebyshev
interpolation. By this method, a nonlinear observer design is
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t

lo
g 1

0 
J(

t)

N=M=1
N=M=2

N=M=3

Taylor

0 2.5 5 7.5 10

-0.5

0

0.5

Fig. 9. Integral square errors of estimation of the pendulum system by
various orders

t

lo
g 1

0 
J(

t)

N=3, M=1
N=3, M=2

N=M=3

0 2.5 5 7.5 10

-0.5

0

0.5

Fig. 10. Integral square errors of estimation of the pendulum system by
various orders of M when N is fixed at 3

synthesized easier than the previous work because linearization
processes are mechanically computed with a computer.

Numerical experiments show that our method is better than
the previous works and the accuracy is improved as both
the orders of the linearization function and the augmented
measurement vector increase.
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