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Design of Multiplier-free State-Space Digital Filters
Tamal Bose, Zhurun Zhang, Miloje Radenkovic, and Ojas Chauhan

Abstract— In this paper, a novel approach is presented
for designing multiplier-free state-space digital filters. The
multiplier-free design is obtained by finding power-of-2 co-
efficients and also quantizing the state variables to power-of-2
numbers. Expressions for the noise variance are derived for the
quantized state vector and the output of the filter. A “structure-
transformation matrix” is incorporated in these expressions. It
is shown that quantization effects can be minimized by prop-
erly designing the structure-transformation matrix. Simulation
results are very promising and illustrate the design algorithm.

Keywords— Digital filters, minimum noise, multiplier-free,
quantization, state-space.

I. INTRODUCTION

Multiplier-free filters have received widespread atten-
tion in the signal processing community due to their
high computational speed and low implementation costs.
Different methods have been proposed for the design
of FIR multiplier-free filters [1–5] but the development
for IIR multiplier-free filters has been limited. It has
been shown [6], [7] that a multiplier-free IIR filter can
be obtained by deriving a special class of digital filter
transfer functions from the elliptic minimal Q-factors.
In [8] multiplierless IIR filter has been obtained by
appropriate extension of the approach given in [7]. In [9]
and [10], the authors have used periodically shift-varying
(PSV) filters for designing multiplierless IIR filters in the
state-space (SS) domain.

In this paper, we provide a novel approach for design-
ing multiplier-free IIR SS filters. A SS structure with
power-of-2 coefficients and quantized state variables is
employed to design the proposed multiplier-free filter.
This makes the filter fast and low cost in VLSI implemen-
tation. Expressions for the noise variance are formulated
for the quantized state vector and the output of the filter.
A structure transformation matrix is incorporated in these
expressions. It is shown in the paper that the power-of-
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2 effects can be minimized by properly designing the
structure transformation matrix.

The remainder of the paper is organized as follows.
Section II introduces the notation and describes the filter
design problem. Noise analysis is done in Section III. The
procedure to obtain the structure transformation matrix is
presented in Section IV. Simulation results are given in
Section V and Section VI is the conclusion..

II. PROBLEM DEFINITION

A. Multiplier-Free SS Structure

An IIR digital filter can be described by the SS
equations

λ(n + 1) = Aλ(n) + Bx(n)

y(n) = Cλ(n) + Dx(n),
(1)

where x(n) is the input, y(n) is the output, λ(n) is an
M dimensional state vector, and A,B, C, and D are,
respectively, M ×M , M × 1, 1×M , and 1× 1 constant
matrices. In fact, there is an infinite number of equivalent
realizations obtained by using a similarity transformation
matrix T as

{A′, B′, C ′, D′} = {T−1AT, T−1B, CT, D}. (2)

In this paper, we assume that D is power-of-2. This is
easily done by scaling the output in (1), i.e., 1

αy(n) =
C
α λ(n) + D

α x(n), where α is a scaling constant.
Based on the transformed SS structure

{A′, B′, C ′, D′}, the multiplier-free implementation
is given by

λ(n + 1) = A′Q2[λ(n)] + B′x(n)

yq(n) = C ′Q2[λ(n)] + D′x(n),
(3)

where Q2[·] represents quantization to the closest power-
of-2 and D′ = D is power-of-2. By properly designing T ,
B′ = T−1B can also be made a power-of-2 matrix. This
design procedure is described in the following sections.
Each multiplication in (3) now has a power-of-2 operand,
requiring only shifters in their hardware realization.
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Fig. 1. Structure and design

B. Quantization Noise

Quantization effect is modeled as a noise sequence
added to the original sequence, giving the actual finite
word-length realization of the multiplier-free filter in (3)
as

λ(n + 1) = A′(λ(n) + eλ(n)) + B′x(n) + α(n) + β(n)

yq(n) = C ′(λ(n) + eλ(n)) + D′x(n) + γ(n) + δ(n),
(4)

where λ(n) is the actual state, yq(n) is the actual output,
and α(n), β(n), γ(n), and δ(n) are, respectively, the
error vectors caused by the shifters in A′(λ(n)+ eλ(n)),
B′x(n), C ′(λ(n) + eλ(n)), and D′x(n). We call eλ(n),
the “power-of-2 state noise.”

eλ(n) is typically much greater in magnitude compared
to α(n), β(n), γ(n), and δ(n). The noise model for (3)
can then be approximated as

λ(n + 1) = A′(λ(n) + eλ(n)) + B′x(n)

yq(n) = C ′(λ(n) + eλ(n)) + D′x(n).
(5)

The architecture of the full precision SS filter in (1)
and the multiplier free version in (5) are both illustrated
in Fig. 1.

C. The Filter Design Problem

The problem of designing the multiplier-free SS fil-
ter (5) can be formulated as follows: Given an arbi-
trary SS filter {A,B, C, D} in (1), design a nonsin-
gular matrix T such that the filter {A′, B′, C ′, D′} =
{T−1AT, T−1B, CT,D} in (5) satisfies the following
requirements.

1) The desired output yq(n) of (5) in response to the
same white noise input x(n) is as close as possible,
in some sense, to the output y(n) of (1).

2) B′ = T−1B is a power-of-2 matrix.
The mean square error E[e2(n)] = E[|yq(n)− y(n)|2]

is used as a cost function. The output yq(n) in (5) can
be separated into two components. One is the response
to input x(n) and other is the response to eλ(n). Since
{A,B,C, D} and {T−1AT, T−1B, CT, D} represent the
same filter, the output noise e(n) = yq(n) − y(n) is
the response to eλ(n) only. Hence the first requirement
mentioned above can be equivalently stated as designing
T to minimize E[e2(n)].

III. NOISE ANALYSIS

In this section, we formulate the expressions for the
variance of the power-of-2 state noise eλ(n) and the
output noise e(n).

A. Power-of-2 Quantization Noise

For power-of-2 quantization, we have Q2[x(n)] =
x(n) + Δx(n), where x(n) is the input, Q2[x(n)] is the
quantized output, and Δx(n) is the quantization noise.
If we assume that x(n) is zero mean white noise that is
properly scaled between the upper and lower boundary,
then Δx(n) is also zero mean and has a variance pro-
portional to the variance of x(n). This relation can be
formulated as

E[Δx2(n)] ≈ κE[x2(n)], (6)

where κ = 0.038 is a constant obtained through sim-
ulations. It will be seen that the optimal matrix T is
independent of κ, and therefore exact value of κ is
unimportant.

B. Power-of-2 State Noise

From (5) we have λ(n) = (λ(n)+eλ(n))+(−eλ(n)) =
Q2[λ(n)] + Δλ(n), where λ(n) = [λ1(n), . . . , λM (n)]T

and eλ(n) = −Δλ(n). The covariance matrix of eλ(n) is
E[eλ(n)eT

λ (n)] = E[Δλ(n)ΔλT (n)]. Assuming no cross
correlation and using (6), we get,

E[eλ(n)eT
λ (n)]

=

⎡
⎢⎣

E[eλ1(n)e∗λ1
(n)] · · · E[eλ1(n)e∗λM

(n)]
...

. . .
...

E[eλM
(n)e∗λ1

(n)] · · · E[eλM
(n)e∗λM

(n)]

⎤
⎥⎦

= κ

⎡
⎢⎣

E[λ1(n)λ∗
1(n)] 0

. . .
0 E[λM (n)λ∗

M (n)]

⎤
⎥⎦

= κ diag(E[λ(n)λT (n)]).

Defining λ(z) = [λ1(z), · · · , λM (z)]T , and consid-
ering (5) without eλ(n), the input state relation of the
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filter is described by zλ(z) = A′λ(z) + B′X(z) =
T−1ATλ(z) + T−1BX(z). Hence,

λ(z) = T−1(zI − A)−1BX(z). (7)

Using (7) and Parseval’s theorem, the covariance ma-
trix of the state vector can be expressed as

E[λ(n)λT (n)]

= E[[λ1(n), · · · , λM (n)]T [λ1(n), · · · , λM (n)]]

=
1
2π

∫ π

−π
λ(ejω)λT (e−jω)dω

= σ2
x

1
2π

∫ π

−π

[
(T−1(ejωI − A)−1B)

·(T−1(ejωI − A)−1B)∗
]
dω

= σ2
x · [T−1GT−T ], (8)

where G = 1
2π

∫ π
−π[((ejωI − A)−1B)((ejωI −

A)−1B)∗]dω is a Hermitian matrix and σ2
x is the variance

of the white noise input. From (7) and (8), we have

E[eλ(n)eT
λ (n)] = κ · σ2

x · diag(T−1GT−T ), (9)

where G and T−1GT−T can be interpreted as the covari-
ance matrices of power-of-2 state noise for the original
and transformed filters, respectively.

C. Output Noise

Output noise e(n) is the response of the multiplier-free
filter to input eλ(n), which is a white noise vector with
covariance matrix given by (9). If we define eλ(z) =
[eλ1(z), · · · , eλM

(z)]T , the state-output relation of the
filter in (5) can be described by the equations

zλ(z) = A′(λ(z) + eλ(z)) = T−1AT (λ(z) + eλ(z))

e(z) = C ′(λ(z) + eλ(z)) = CT (λ(z) + eλ(z)).
(10)

After some algebraic manipulations e(z) in (10) can be
expressed as

e(z) = CT [(zI − T−1AT )−1(T−1AT ) + I] · eλ(z)

= C((zI − A)−1A + I) · T · eλ(z)

= C((zI − A)−1(A − zI + zI) + I) · T · eλ(z)

= C(zI − A)−1zI · T · eλ(z). (11)

Define

H(ejω) = C(zI − A)−1zI · T |z=ejω

= [h1(ejω), · · · , hM (ejω)]. (12)

Using (11) and (12) we get

e(n) = h1(n) ∗ eλ1(n) + · · · + hM (n) ∗ eλM
(n),

and

E[e2(n)]

= E[(h1(n) ∗ eλ1(n) + · · · + hM (n) ∗ eλM
(n))2]

=
M∑
i=1

M∑
j=1

E[(hi(n) ∗ eλi
(n)) · (hi(n) ∗ eλi

(n))∗]

=
M∑
i=1

M∑
j=1

E[eλi
(n) ∗ e∗λj

(n)] ∗ hi(n) ∗ hj(−n).(13)

Using Parseval’s theorem on (13) and using (12), we have
where W = 1

2π

∫ π
−π[C(ejωI−A)−1ejωI][C(ejωI−A)−1

ejωI]T dω is a Hermitian matrix. Substituting (9) into
(14), we finally get

E[e2(n)]

= tr
{
κ · σ2

x · diag(T−1GT−T ) · T T WT
}

= κ · σ2
x · tr {diag(T−1GT−T ) · diag(T T WT )

}
.(15)

IV. DESIGNING TRANSFORMATION MATRIX T

We now design the real non-singular matrix T to
minimize the cost function given in (15), and achieve
power-of-2 B′ = T−1B. However, a closed form solution
of T , for this problem, is very difficult to establish.
We provide an iterative algorithm to find T in a scaled
orthogonal subspace. That is, we design T which has the
form

T = P · S = P ·

⎡
⎢⎣

s11 0
. . .

0 sMM

⎤
⎥⎦ , (16)

where P is an orthogonal matrix (P T P = I) and S is a
diagonal scaling matrix with nonzero diagonal elements
(sii �= 0, i = 1, · · · ,M ). The design procedure is divided
into two parts: 1) Designing the orthogonal matrix P ,
and 2) Determining the scaling matrix S. The design
methodology will utilize the following theorem.

Theorem 1: If f(T ) = tr{diag(T−1GT−T ) · diag(T T

WT )}, where G and W are Hermitian matrices and T
has the form given in (16), then f(T ) = f(P ).
Proof: Using P T P = I , and (16) we have

T−1 = [P · S]−1 =

⎡
⎢⎣

1
s11

0
. . .

0 1
sMM

⎤
⎥⎦ · P T .

Assume P = [p1, · · · , pM ] where pi, (i = 1, · · · , M)
are column vectors. Then Similarly,

diag(T T WT ) =

⎡
⎢⎣

s2
11(p

T
1 Wp1) 0

. . .
0 s2

MM (pT
MWpM )

⎤
⎥⎦ .
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E[e2(n)]

=
M∑
i=1

M∑
j=1

{
E[eλi

(n) ∗ e∗λj
(n)] · 1

2π

∫ π

−π
[hi(ejω)h∗

j (e
jω)]dω

}

= tr

{
E[eλ(n) · eT

λ (n)] · 1
2π

∫ π

−π
[HT (ejω)H(ejω)]dω

}

= tr

{
E[eλ(n) · eT

λ (n)] · T T

[
1
2π

∫ π

−π
[C(ejωI − A)−1ejωI] · [C(ejωI − A)−1ejωI]T dω

]
T

}

= tr
{
E[eλ(n) · eT

λ (n)] · [T T WT ]
}

, (14)

diag(T−1GT−T )

= diag

⎛
⎜⎝
⎡
⎢⎣

1
s11

0
. . .

0 1
sMM

⎤
⎥⎦P T GP

⎡
⎢⎣

1
s11

0
. . .

0 1
sMM

⎤
⎥⎦
⎞
⎟⎠

=

⎡
⎢⎢⎢⎣

(
1

s11

)2
(pT

1 Gp1) 0
. . .

0
(

1
sMM

)2
(pT

MGpM )

⎤
⎥⎥⎥⎦ . (17)

Using (17) and (18),

f(T ) = tr
{
diag(T−1GT−T ) · diag(T T WT )

}

=
M∑
i=1

(
1
sii

)2

(pT
i Gpi)s2

ii(p
T
i Wpi)

= tr
{
diag(P T GP ) · diag(P T WP )

}
= tr

{
diag(P−1GP−T ) · diag(P T WP )

}
= f(P ). �

A. Designing the Scaling Matrix S

Theorem 1 claims that once the orthogonal matrix P
is fixed, the cost function f(PS) is unaffected by the
scaling matrix S. The degree of freedom in choosing
S provides the opportunity to achieve power-of-2 B′ =
T−1B. Assuming P = [p1, · · · , pM ] is given, then from
(16) we have

B′ =

⎡
⎢⎣

b′1
...

b′M

⎤
⎥⎦ =

⎡
⎢⎣

1
s11

pT
1 B

...
1

sMM
pT

MB

⎤
⎥⎦ ,

where B′ is the desired power-of-2 matrix (b′1, · · · , b′M
can be chosen arbitrarily), and

sii =
pT

i B

b′i
(i = 1, · · · ,M). (18)

Therefore, once the orthogonal matrix P is fixed, and
the power-of-2 matrix B′ is chosen, the scaling matrix S
given by

S =

⎡
⎢⎢⎣

pT
1 B
b′1

0
. . .

0 pT
MB
b′M

⎤
⎥⎥⎦

can be used without affecting the cost function.

B. Designing the Orthogonal Matrix P

The problem of finding the orthogonal matrix P can
be formulated as follows.

min
P

f(P ) = tr
{
diag(P−1GP−T ) · diag(P T WP )

}

where subject to P T · P = I , G and W are given
Hermitian matrices.

An iterative algorithm is derived to solve this problem
At each iteration, the algorithm uses the steepest gradient
update procedure and an orthogonalization procedure in
order to satisfy the orthogonality constraint.

In the steepest gradient update procedure, we first as-
sume P = [p1, · · · , pM ] is orthogonal and then compute
the gradient of f(P ) with respect to P as

∇f(P ) =
[
∂f(P )
∂p1

,
∂f(P )
∂p2

, · · · ,
∂f(P )
∂pM

]
,
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where
∂f(P )

∂pi
=

∂

∂pi
tr
{
diag(P−1GP−T ) · diag(P T WP )

}

=
∂

∂pi
tr
{
diag(P T GP ) · diag(P T WP )

}
= (pT

i Gpi)Wpi + (pT
i Wpi)Gpi

(i = 1, · · · ,M). (19)

Then an update of P in the steepest-descent direction is
performed as

P (k1+1) = P (k1) − μ1∇f(P (k1)), (20)

where μ1 is the iteration step and k1 is the iteration index.
Equations (19) and (20) are repeated several times to
reduce the cost function f(P ).

Now we satisfy the orthogonality constraint, P T P =
I . We use the following cost function

R(P ) = ‖P T P − I‖2
F

= tr{(P T P − I)T (P T P − I)}

=
M∑
i=1

M∑
j=1,j �=i

[
(pT

i pj)2 + (pT
i pi − 1)2

]
,(21)

where ‖ · ‖F is the Frobenius norm. P is orthogonalized
when R(P ) is reduced to zero. A steepest descent method
shown in the following equations is used to minimize
(21).

∇R(P ) =
[
∂R(P )

∂p1
,
∂R(P )

∂p2
, · · · ,

∂R(P )
∂pM

]

∂R(P )
∂pi

= 4
∑
j �=i

(pT
i pj)pj + 2(pT

i pi − 1)pi

P (k2+1) = P (k2) − μ2∇R(P (k2)),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(22)

where μ2 is the iteration step and k2 is the iteration
index. The algorithm to find the orthogonal matrix P
is summarized in Table I.

The complete procedure for designing the multiplier-
free SS filter is summarized in Table II.

V. SIMULATION RESULTS

The simulation procedure is illustrated in Fig. 3 with
three different filters. The full precision SS filter de-
scribed by {A,B, C, D} is the desired filter. The trans-
formed multiplier-free filter is the filter we designed.
The semi multiplier-free SS filter has the same power-
of-2 quantization structure as the transformed multiplier-
free SS filter, except that it does not use the structure
transformation matrix T . Since B and D are not power-
of-2 matrices, the shifters can only be used in AQ2[λ(n)]
and CQ2[λ(n)]. Hence, the name semi multiplier-free. In

TABLE I
FINDING ORTHOGONAL MATRIX P TO MINIMIZE f(P )

Input: Hermitian symmetric matrices G and W , No.
of steepest descent iterations (N#), μ1 and μ2 step
size of steepest-descent itr., ε minimum cost for R(P ).
Initialization: Randomly initialize P .
Procedure:
(1) Steepest-descent update of P .

for k1 = 1:N#

∇f(P (k1)) = [∂f(P (k1))
∂p1

, ∂f(P (k1))
∂p2

, · · · , ∂f(P )

∂p
(k1)
M

] ,

where ∂f(P (k1))
∂pi

= (pT
i Gpi)Wpi + (pT

i Wpi)Gpi

(i = 1, · · · ,M).
P (k1+1) = P (k1) − μ1∇f(P (k1)).

end
(2) Orthogonalize P .

while R(P ) > ε

∇R(P (k2)) = [∂R(P (k2))
∂p1

, ∂R(P (k2))
∂p2

, · · · , ∂R(P (k2))
∂pM

],
where ∂R(P )

∂pi
= 4
∑

j �=i(p
T
i pj)pj + 2(pT

i pi − 1)pi.
P (k2+1) = P (k2) − μ2∇R(P (k2)).

end

TABLE II
MULTIPLIER-FREE SS FILTER DESIGN PROCEDURE

Input: Arbitrary SS filter {A, B, C, D}
Procedure:
(1) Scale the output to achieve power-of-2 D.

1
αy(n) = C

α λ(n) + D
α x(n)

(2) Calculate the Hermitian symmetric matrices G and
W .

G = 1
2π

∫ π

−π
[((ejωI − A)−1B)((ejωI − A)−1B)∗]dω

W = 1
2π

∫ π

−π
[C(ejωI − A)−1ejωI]

·[C(ejωI − A)−1ejωI]T dω
(3) Design P using Algorithm 1.
(4) Find the scaling matrix S.

Bd = [bd
1, b

d
2, · · · , bd

M ]T = Q2[B]
sii = pT

i B

bd
i

(i = 1, · · · , M)
(5) Get T = PS.
(6) Return the multiplier-free SS filter with

{A′, B′, C ′, D′} = {T−1AT, T−1B,CT, D}

fact, the transformed SS multiplier-free filter equals the
semi multiplier-free SS filter when T = I . Thus, the
difference between E[e2

I(n)] and E[e2
T (n)] is interpreted

as the improvement that we achieve by using the structure
transformation matrix T .

Example 1: Consider a 4th order Butterworth low pass
filter with passband edge frequency at 0.3π. The SS
structure of this filter is

A =

⎡
⎢⎢⎣
−0.0914 −0.4630 0 0
0.4630 0.7641 0 0
0.1430 0.5449 0.2124 −0.6178
0.0729 0.2776 0.6178 0.6852

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.6547
0.3336
0.1030
0.0525

⎤
⎥⎥⎦ ,

C =
[
0.0258 0.0982 0.2184 0.5958

]
, D =

[
0.0186

]
.
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Fig. 2. Spectrum of (a) Desired filter, (b) Semi multiplier-free filter, (c) Transformed multiplier-free filter.

Full precision SS filter
λ(n + 1) = AQλ(n) + Bx(n)

y(n) = Cλ(n) + Dx(n)

Semi multiplier-free SS filter
λ(n + 1) = AQ2[λ(n)] + Bx(n)

y(n) = CQ2[λ(n)] + Dx(n)

Transformed multiplier-free SS filter
λ(n + 1) = T−1ATQ2[λ(n)] + T−1Bx(n)

y(n) = CTQ2[λ(n)] + Dx(n)

x(n)

eI(n)

eT (n)

Fig. 3. Simulation Procedure

After scaling the output y(n) with factor α = 2−6

0.0186 =
0.8401 we get

C =
[
0.0217 0.0826 0.1838 0.5015

]
, D =

[
2−6
]
.

Following the procedure in Algorithm 2 we find the
transformation matrix

T =

⎡
⎢⎢⎣

0.8588 0.0347 −0.7364 −0.1303
0.4284 0.2813 0.5574 −0.7537
−0.2219 0.8676 −0.1880 0.1995
0.6827 0.0619 0.5154 0.7018

⎤
⎥⎥⎦ .

Using (2) we obtain the following transformed SS struc-
ture.

A′ =

⎡
⎢⎢⎣

0.3116 0.2553 0.0967 0.3359
0.1533 0.4363 −0.1201 −1.0210
0.7739 0.4414 0.3399 −0.2317
−0.1552 0.3280 0.1487 0.4826

⎤
⎥⎥⎦ , B′ =

⎡
⎢⎢⎣

2−1

2−2

−2−2

−2−2

⎤
⎥⎥⎦

C′ =
[
0.3556 0.2145 0.2540 0.3235

]
, D′ =

[
2−6
]

We feed the filter with Gaussian white noise with vari-
ance σ2

x = 0.001. Power-of-2 quantization values used
are {0,±20,±2−1, · · · ,±2−8}. From (15), the variance
of the output noise is

10 log10(E[e2
T (n)]) = −37.5819 dB.

For the semi multiplier-free SS filter, the variance of
output noise is obtained from (15) by setting T = I .
The result is

10 log10(E[e2
I(n)]) = −36.3846 dB.

There is an 37.5819 − 36.3846 = 1.1973 dB improve-
ment in theory. From simulation we get E[e2

T (n)] =
−37.7289 dB and E[e2

I(n)] = −36.5949 dB, so the
actual improvement is 1.134 dB. The difference between
the theoretical and actual value is due to the ignored cross
correlation terms in (9). The power spectrum of the filters
are shown in Fig. 2.

VI. CONCLUSION

In this paper, a new approach is presented for designing
multiplier-free SS digital filters. Expressions for noise
variance are formulated for the quantized state vector
and the output noise. A steepest-descent type method
is developed for the design algorithm. The simulation
results are very promising and yield low noise multiplier-
free filters.
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