
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

555

Design of an Ensemble Learning Behavior 
Anomaly Detection Framework

Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract—Data assets protection is a crucial issue in the
cybersecurity field. Companies use logical access control tools to
vault their information assets and protect them against external
threats, but they lack solutions to counter insider threats. Nowadays,
insider threats are the most significant concern of security analysts.
They are mainly individuals with legitimate access to companies
information systems, which use their rights with malicious intents.
In several fields, behavior anomaly detection is the method used by
cyber specialists to counter the threats of user malicious activities
effectively. In this paper, we present the step toward the construction
of a user and entity behavior analysis framework by proposing a
behavior anomaly detection model. This model combines machine
learning classification techniques and graph-based methods, relying
on linear algebra and parallel computing techniques. We show the
utility of an ensemble learning approach in this context. We present
some detection methods tests results on an representative access
control dataset. The use of some explored classifiers gives results
up to 99% of accuracy.

Keywords—Cybersecurity, data protection, access control, insider
threat, user behavior analysis, ensemble learning, high performance
computing.

I. INTRODUCTION

IN the information and technology domain, data assets and

their usage represent an immensely lucrative market. Cyber

threats which target these resources are continuously becoming

a more significant issue. Companies understand the strategic

importance to heavily protect their information systems and

use cybersecurity tools to shield themselves against all kinds of

cyber attacks. Hackers understand the value of data assets and

are continuously upgrading and widening their attack options.

For a long time, the main focus of security specialists was

the defense against external threats. They used tools based on

databases of known threats patterns, and experts written-rules

against cyber attacks. They also monitored access to their

internal networks, servers, and endpoints, to control the access

to their data, using intrusion detection systems(IDS).

Identity and access management (IAM) solutions, also

known as logical access control tools, were developed to

restrict the access of organization information assets to only

authorized individuals. These tools offer solutions to control

access to critical information and services. Their use reduced

This project is funded by Atos, and the University of Versailles Paris Saclay.
Abdoulaye Diop is with the Li-PaRAD and Maison de la Simulation

laboratories, and Atos Evidian R&D, Les Clayes-sous-Bois 78340, France
(e-mail: mamadou-abdoulaye.diop@atos.net).

Nahid Emad is a member of the Li-PaRAD and Maison de la simulation
laboratories, Versailles 78310 (e-mail: nahid.emad@uvsq.fr).

Thierry Winter is with Atos Evidian R&D, Les Clayes sous Bois 78340,
France (e-mail: thierry.winter@atos.net).

Mohamed Hilia is with the Ippon Technologies, Paris 75016, France
(e-mail: mhilia@ippon.fr).

the risk of loss, misuses, and sabotage of data drastically.

However, these solutions cannot identify individuals that

maliciously use company assets when they own legitimate

access rights. In the cybersecurity domain, this issue is defined

as an insider threat problem.

In a company environment, insiders are employees who

misuse their access rights. A typical example of insider

activities is the illegal share of confidential business

information to competitor organizations in exchange for

compensation (i.e. industrial espionage). Another example is

the sabotage of an organization proprietary tools by an insider

hired by a rival company. According to IBM [1] in 2015, 60%

of cyber threats were due to insiders (i.e. 44.5% of malicious

insiders and 15.5% inadvertent actors). In 2018 studies from

the Ponemon Institute evaluated the loss related to insider

threat accidents for some relatively big company, in the range

of millions of dollars [12].

The upsurge of insider threats made companies realize the

need to protect themselves efficiently against the internal

as well as external threats. The only way to counter the

security problem is through employee monitoring and behavior

analysis. Cyber attacks specialists developed tools such as

user and entity behavior analytics (UEBA) software to monitor

company systems and their employee’s activities. Their goal

is to detect if their behaviors are normal or anomalous

and harmful to their organizations. User and entity behavior

analytics is a term coined by Gartner in 2015 [14]. It is

referring to the use of advanced analytics methods to detect

insiders efficiently. Before the advent of data analysis methods,

these tools were primarily based on expert written rules.

They now integrate more intelligent and adaptive algorithms.

According to Gartner [13], most of the UEBA software uses a

combination of analysis techniques such as machine learning,

and statistical analysis.

In this paper, we present the step toward the construction of

a behavior anomaly detection framework combining machine

learning classification methods, with graph-based methods

relying on linear algebra and parallel computing techniques.

The proposed software structure would utilize concepts such

as ensemble learning and high-performance computing to

manage big data volume of user activities data and get better

behavior classification results. We also proposed insights on

intelligent risk scoring approaches to measure insiders threat

levels. Our contribution lies into the exploration and the test

of multiple behavior analysis methods and the proposition of

their combination using parallel implementation techniques, as

an all-around better insider detection tools.

The rest of this paper is organized as follows. Section II



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

556

presents some related work. In Section III, we define the

insider threat problem and offer a small review of the detection

models. Section IV presents the ideas of framework models

and explores of some behavior anomaly detection methods. In

Section V, we explain the programming paradigm we advocate

and the corresponding implementation. Section VI will present

some classification results on two access control datasets

collected from an IAM software editor. Finally, Section VII

concludes this article and give indications about the future

directions of our work. I

II. RELATED WORK

In behavior analysis, many works were realized in the

intrusion detection systems field [4]. IDS vendors are the

first to use machine learning for anomaly detection. They

understood the added value of machine learning in the

cybersecurity domain. Their algorithms monitor and profile

companies internal networks to detect anomalies. They can

discover new zero-day attacks, and with training time, most

of the network-based cyber attacks (e.g. distributed and

non-distributed denial of service attacks, port scan attacks).

Sun et al. [10] presented an unsupervised ensemble based

outliers detection framework, which is based on the isolation

forest (IForest) algorithms to detect insiders in a company.

They tested their solution on a dataset of the staff accessing a

payroll system. Their algorithm extracts feature sets and build

users profiles based on the collection of extended isolation

forest trees. Those trees are classic isolation trees modified

to support categorical data. An isolation forest is an anomaly

detection algorithm based on the use of multiple binary search

trees, and the observation of the branches depth. Branches with

small extent, when compared to the average tree branches

depth, are considered anomalous [22][10]. One drawback,

using an isolation forest algorithm lies in the fact that the

training data has to be considered as healthy.

Moriano et al. [11] used bipartite graphs to detect insider

threat. They proposed to identify malicious behavior over time

considerations. They studied precipitating events and used

them to detect anomalous behavior. They defined this type

of events as ”key events that have the potential to trigger

insiders to become a threat to their employer” [11]. They

applied their model on a dataset of a version control tool

for software development. They compared the volume of

interactions between the users and the components before

and after precipitating events. They found out that it was

increasing, hence establishing the precipitating events as a sign

off an upcoming insider attack. This detection method may

encounter some issues if there is a gradual and non-abrupt

change in the behavior of an employee with malicious intent.

If there is no found precipitating events the model would be

unable to detect the insider attack since there is no significant

trigger.

Gamachchi et al. [8] proposed to use a GPU to

extract graph-based features from a graph built with a

multidimensional dataset from the CERT of Carnegie Melon

university data. They fed the features to an IForest algorithm

to detect outliers without profiling normal behavior. This

technique focuses on the study local graph anomalies as

a potential indicator of deviant behavior. In this work, the

behavioral study parameters are chosen in a certain way by

a human operator who is an expert in the field(i.e. graphs

initial features are chosen) This method can be sufficient to

stop insider based on expert experience but does not take into

account all the parameters that could be indicators of internal

threats. Some more elaborate threats and a new types of attack

could slip through this detection method.

Chen et al. [9] used bipartite graphs to map user access

log, then use the cosine similarity method to get the similarity

between users and to detect if specific access is malicious

or not. They based their approach on a correlation method

used in collaborative filtering for recommender systems. These

systems are dependant on the amount of information used

to determine the model for reliable prediction results. It’s a

common problem for recommendation systems.

Haidar et al. [7] proposed an ensemble based methods, using

base classifiers such as a one class support vector machine

(OCSVM) and an IForest on data clusters (k-data). Besides,

they added a progressive update method using false positive

(FP) chunks (i.e. false positive results identify by a human

domain expert) to refine their pre-generated models. After

using their base classifiers on the entire dataset, they executed

a class decomposition method using the k-means algorithm

on the data labeled as normal behavior to get k-clusters.

On those clusters, they applied the base algorithm again, to

detect anomalies at a more local level. They fine-tuned their

algorithm by oversampling the FP results which as the effect to

create a more accurate the decision boundary. This algorithm

presents an interesting idea to solve the internal threat problem,

but it requires the intervention of a human operator for his

optimal functioning.

Parveen et al. [5] proposed an ensemble learning based

framework. It combined an unsupervised learning method

using a graph-based anomaly detection technique based on

minimum description length (MDL)[25] and an OCSVM

as a supervised learning method. They prove that an

OCSVM outperforms classic support vector machine and

their graph-based anomaly detection methods. They previously

proposed a model solely based on the combination of multiple

one class support vectors machine and a stream mining

approach to take account of behavior changes over time (i.e.

concept drift) [6]. Starting with an ensemble learning method,

Parveen et al. decided to use a traditional voting method to

detect insiders. Using this kind of approach, if the accuracy

of some classifiers performance is very weak compared to

the others, they can disrupt the quality of the final results.

This highlight that choice and the number of the methods to

combine is crucial for maximum efficiency.

Yuan and al. [21] presented a deep learning approach to

detect insiders. They use a combination of Long Short Term

Memory (LSTM) neural network to learn the language of

user behavior, and a Convolutional Neural Network (CNN)

to identify the abnormal behavior in multiple scenarios. They

obtained an area under the curve(AUC) of 94 % for their

classifier. A drawback of deep learning methods is they need of

consistent amount of data, and advanced material like GPUs to



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

557

have excellent performance. If one the goal is the framework

portability, this might represent a bottleneck.

III. INSIDER THREAT PROBLEM DEFINITION AND

DETECTION METHOD REVIEW

A. Insider Threat Problem

In an organization, the IAM software has the role to manage,

the identification, the authentication, and the authorization

process for each employee. Most of these systems follow

the role-based access control paradigm [2]. They are

working by attributing roles to employees and permissions to

roles. Permissions give access to the organization data and

applications. In this context, an insider can be described as a

user who is essentially an employee which access his company

informational assets through the authentication process of an

IAM software, and which is not respecting the data policy

usage of his company. This policy is in place to prevent the risk

of data loss or misuse, which could have a nefarious impact

on companies. The problem can also be formulated more

practically. Given the activity records of individuals working in

a company and feature information characterizing them (e.g.

organization name, role, permission, operation ...), the goal

is to use anomaly detection tools to determine when these

individuals present an anomalous behavior, in the way they are

using their company’s information assets. Behavior anomaly

detection is a binary classification problem. The employee

conduct is either classified as normal or abnormal.

To model normal behavior, the primary method is to start

by collecting users historical activities or the patterns they

follow during their daily work routines. Users with the same

well-defined roles (i.e. role in organization represented in an

IAM software) have mainly the same tasks. They usually

repeat the same actions and trigger the same processes. A

profile realized with the collection of their interactions with the

system represents their typical behavior [3]. A mathematically

understandable model can be established, using data analysis

algorithms. With an established user baseline, all the patterns

deviation from this model can be suspected to be an anomalous

behavior.

Another way to detect abnormal behavior is to compare an

employee activities to his colleagues(i.e. other users with the

same roles). As an example, two analyst programmers in an

IT company, should have access to the same assets and present

sensibly the same behavior patterns. The process of detecting

insider in a group of regular user can be seen as an outlier

detection problem. The distance between an outlier and the

model (i.e. a normal users aggregation) is an indicator of the

level of menace that the user represents for the company.

B. Detection Methods Review

In this domain, most of the detection methods are usually

in the spectrum of supervised and unsupervised learning

methods. Besides classical data analysis, graph-based methods

are used to fix this issue. Before proposing a detection

model, it’s essential to understand that insider threats have

a heterogeneous nature. There are multiple ways to classify

behavior, and different types of data can be used to model

it. Even though labeled data is not very common in

this domain [3] (i.e. researchers usually test their methods

using artificial data), the supervised anomaly detection

algorithm often outperforms the unsupervised learning and the

graph-based algorithms in terms of low false positive rate.

To counter insiders, new works were developed combining

these supervised approaches with graph-based methods in an

ensemble learning fashion.

They showcased promising results to fix this cybersecurity

issue. According to Gartner [13], existing insider threat

detection tools already rely on different models to detect

anomalous behavior. For each case, the input dataset can

be different; hence, the most efficient algorithm depend

sometimes on the input data. Most of the software already

use a combination of multiple techniques to detect an

insider(e.g. combination of statistical analysis, expert-written

rules, machine learning).

A classical ensemble learning methods can be presented as

multiple classifiers working in parallel to analyze the same

user behavior. A voting system is established at the output

level of each classifier to elect the class of the user depending

on the biggest number of occurrence. An example of classifier

combination can be the use of graph features as the input data

of another classifier. These features can be put into a dataset

format and can be used to feed a standard machine learning

algorithm to detect anomalies (e.g. the use of IForest [8]),

OCSVM, or another type of classifier, which is known to be

efficient for outliers detection). These algorithms would detect

the anomalous parts of the graph, which are representing users

and their actions.

IV. FRAMEWORK MODELING

A. Framework Abstraction

The proposed framework will follow a model combining

prepossessing, processing and postprocessing steps. The

prepossessing part has a role in preparing data entries. They

will be mainly a feed composed by users and their associated

activities. They are mostly, IAM datasets transformed in a

format usable by analysis technique (e.g. dataframes). The

processing part will be centered around the notions of the

modeling a typical behavior profile for each user and the

classification of their behavior. The establishment of this

profile would depend on their past actions, or their peers

recorded activities. An insider menace will be detected if

an employee showcase a significant difference between his

present behavior and his profiled behavior, or the activity

patterns of his colleagues. In an extreme case where the

behavior profile was built from data where the individual

behaved systematically in a malicious way, a comparison with

his peers should mark him as suspicious. At the postprocessing

level, we will rank users, depending on the danger their

supposedly represent, using a computed threat score for each

of them. We essentially see this approach as multiple boxes

of methods able to individually give indications on the nature

of the conduct of a studied user. Their results are combined

to have a stronger opinion on their behavior.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

558

B. Ensemble Learning

To model a framework for behavior anomaly detection,

we propose an ensemble learning approach. As we will see,

this approach presents a significant potential for parallel

computing and consequently for its efficiency in terms of

time to solution. This model of learning is based on the

combination of weak classifiers to get better classifications

results for a given problem. It needs more computation power

since classifiers are mostly working in parallel, but helps to

avoid issues such as overfitting, and the bias-variance trade-off.

Example based on Kumar et al. book [15]: Assuming we

have an ensemble learning algorithm with n classifiers and the

error rates of each is ε = 0.35. Let’s calculate the probability

to have m classifiers with the wrong result. Then for n = 25

and m = 13 the error is approximately equal to 0.06 which

smaller than ε.

25∑
i=13

(
25

i

)
εi(1− ε)25−i ≈ 0.06 << ε (1)

This example proves that it is less likely to have wrong

classification results with an ensemble learning framework,

than a single classifier.

At the data level, there are multiple ways to apply ensemble

learning. The main methods are Bagging (i.e. split the data

set into samples and train each classifier with a different

sample) and Boosting (i.e. based on an iterative systems which

introduce at each iteration wrongly classified element in the

new training data to get better models). A combination of these

two approaches can be considered in order to get better results.

Starting from the ensemble learning idea, we will primarily

feed user activity data through a preprocessing pipeline to

multiple behavior classifiers and get their results for each user.

These classifiers would belong to the families of methods

mentioned before to detect the insiders (i.e. supervised

learning, unsupervised learning, graph-based methods)(see

Fig. 1).

Fig. 1 Proposed Ensemble Learning Framework

The obtained result of each classifier will contribute to

the risk scoring of every employee monitored. Each classifier

result would be given a weight, which will represent its impact

on the computed risk score. These weights will be chosen in

relation to the studied accuracy (i.e. recall, precision) of the

classifiers.

C. Supervised Learning

The models used in supervised learning characterize a

typical behavior of user by affecting classes to each users

depending on their data entries. They create a user profile

based on their activity records and try to determine if a new

record corresponds to a specific pattern in that profile. For this

part we propose to study the classification result of multiple

supervised learning algorithms to choose methods to use for

our framework (see Section VI). The use of models such

as OCSVM, IForest, ensemble tree-based algorithms (random

forest or gradient boosting[19]), artificial neural networks[20],

[21] recently showed promising results.

D. Unsupervised Learning

Using an unsupervised learning approach, modeling user

behavior is mostly done at the same time that the detection

of bad behavior. These methods are based on clustering and

outliers detection. The goal is to group users who showcase

the same practices as one entity (i.e. clusters). The detection

process will be based on the assumption that users who

don’t belong to the main employee groups are insiders. We

will essentially use two types of clustering methods (i.e.

hierarchical and flat clustering). Hierarchical clustering would

be by the use of the Mean shift algorithm. This method

can identify the number of clusters on a given dataset. Flat

clustering would be by the use of K-Means. In our problem,

the supposed maximum number of groups is two. Either the

users’ activities is normal or malicious. Using K-means after

Mean shift would allow double-checking the clustering results,

and will showcase uniform values or aberration on the dataset

that will indicate suspicious activities. As presented in the

related work [7], clustering methods can also be used as a class

decomposition tools in our framework, to detect anomalies at

a more local level. This idea is interesting to refine models.

We could also think about apply clustering to a graphical

representation of users.

E. Graph-Based Methods

In some other IT domains such as social networks,

telecommunication, sale sites, search engines, and

recommendation systems, fraudulent user activities is an

issue that cybersecurity experts are continuously facing.

Similar in some aspects to the insider threat problem, this

issue leverage the use of behavior analysis. In these fields,

the term user behavior modeling refers to the study of users

behaviors, in order to classify them as good or fraudulent.

These actions are behavior anomalies same as insider

activities in an organization. With some considerations, the

fraudsters can be seen as the equivalent of to the insiders

of these domains. The methods proposed to deal with this

issue uses graph representations, analysis techniques, and

linear algebra. Their functional entities and their connections

are represented under components such as nodes and edges.

Graph features represent a good information sources to detect

anomalies.

To build a framework using graph-based methods, and still

following the principle of ensemble learning, we can combine



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

559

three types of graph-based methods to work as a much stronger

classifier (i.e. Subgraph Analysis, Propagation Methods and

Latent factor models). The goal is mostly to identify the nature

of the nodes and edges in the graphs. Normal nodes and edges

represent normal behavior, and the anomalous ones, abnormal

behavior.

Strictly following a role-based access control type of

architecture, a graph model, would be close to the

representation proposed in Fig. 2. In this figure, organizations

are represented in green, users in blue cyan, roles in light blue,

permissions in magenta, applications in purple, and operations

in grey.

Fig. 2 Example of graph modelization of a IAM system

An induced subgraph is a subset of a graph. It is defined

as a set of selected nodes or a specific region of a graph. The

goal of their study is to highlight local graph properties in

order to detect if they present a divergence, compared to the

global graph. This is an indicator of behavior anomaly at the

local levels.

Using an ego-network (egonet) solution, the central nodes

can represent a user, and his neighbor nodes can be the features

associated with his connection or access to his company

resources. Starting with the computation of some subgraphs

features, we can represent them into two dimension axis

and build regression lines to characterize the model and his

boundaries. This is inspired by the work of [23] and [8].

Akoglu et al. studied features of egonets to detect anomalies in

a graph. They developed a scalable and unsupervised learning

method for behavior anomaly detection. The first step of their

work was to compute features that characterized the central

nodes of an egonet and his neighborhood. Those features

can be the number of neighbors, the number of edges, the

total weight of the egonets, and the principal eigenvalues (i.e.

the biggest) of his adjacency matrix. The second step was

to combine these features to find normal behavior patterns

characterized by these subgraphs. They established a list of

laws and observations followed by the majority of the egonets,

and use the principles of outliers detection to find anomalous

egonets. This method would represent an outliers detection

tool which could identify users at the boundaries of the models

as an insider menace.

Propagation methods are a family of techniques that

are useful to spot anomalies (i.e. fraud attempts) on web

pages distribution (e.g. spams), auction sites, review site,

and social networks. The most known propagation methods

are the hyperlink-induced topic search (HITS) [17] and

the PageRank(PR)[18] algorithms. Using these propagation

methods, a directed graph can be created highlighting the

connection or their transitions from a resource to another. The

belief propagation [24] principle can also be considered as

a propagation method. Using this principle, we can start with

the unsupervised learning methods presented before, and try to

identify groups of insider based on a neighborhood study. This

mechanism of detection is labeled as a guilt-by-association

method. For this process, in the case of IAM, all the nodes

in the graph can be connected by their belonging to the same

entity(e.g. organization department).

Latent factor models are the third branch of graph-based

methods for user behavior modeling. They are mostly based

on the use of singular value decomposition (SVD). This

decomposition is used in the domain of recommender systems

as an alternative to the collaborative filtering method based

on user correlations. The graph models related to these

methods become more in the form of a bipartite graph. A

recommender system is a tool able to recommend items

(e.g. applications, sites, movies) to an individual. For a

recommender system, a bipartite graph structure is used to

highlight the common topic of interest between individuals.

In the domain of recommender systems, the most common

method is collaborative filtering [16]. It determines future

preferences in a set of items for a user, based on the

similarity of the user to another (i.e. user-based), or the

similarities between items (i.e. Item-based). This method

represents another tool to detect malicious users. In the process

of filtering, starting with a utility matrix (i.e. relation matrix

between users and items) Pearson correlation(2) and cosine
similarity(3) can be used to determine the similarity between

users.

Ui,j =

∑
j(vij − vi)(vkj − vk)√∑

j(vij − vi)2
∑

j(vkj − vk)2
(2)

cos(ui, uj) =

∑m
k=1(vikvjk)√∑m

k=1(v
2
ik)

∑m
k=1(v

2
jk)

(3)

In these equations ui,k denotes the similarities between the

users i and k. vi,j represent the rating that user i gave to item



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

560

j. To predict user opinion on an unrated item, we apply the

following formula:

V ∗
ij = K

∑
vkj �=?

UjkVkj (4)

The implementation of this method is straightforward but

has the issue to not take into account the change in user

preference over time (i.e. concept drift, which is a common

problem in outliers detection tools). The same process can

be used to calculate the similarity between items, hence

recommend a list of items to the users. The problem here is the

scalability and the sparsity of the problem. The computation

needs grow proportionaly to of the number of user and items.

The sparsity taints the similarity results between items (i.e.

when there are far more items than users, and the majority of

them are not rated).

SVD is used to avoid the cold−start problems linked to the

sparsity of the utility matrix. This lack of rating gives result

inaccurate calculated similarity between users or items. This

decomposition helps to reduce the dimension of the problem,

hence contributing to characterize easily users, based on the

latent factor. It transforms the recommendation systems into

an optimization problem using the properties of the singular

vectors and the sum of square error (SSE).

We are then considering Mij as the utility matrix

with missing values. We want to use the singular value

decomposition on M , to minimize the SSE to get the best

approximation of the rating.

min(U, V )
∑

(i,j)∈M

(Mi,j − UiΣVi)
2 (5)

M̂i,j = Ui.Σ.Vi (6)

Based on the [9] proposal, the computation of the

similarities between user could indicate if a user is behaving

normally or abnormally through a comparison with a list of

users. The usual actions are highly rated in comparison to the

abnormal ones, hence giving insights on insider detection. For

this method, we would propose to build a detection system

based on the efficient SVD computation, as one of the pieces

of the ensemble learning framework.

F. Risk Scoring

After the application of multiple classifiers, there is a need

to establish a risk scoring algorithm to identify a user as an

insider effectively. Employees will be ranked in the function

they score. Using the main principles of ensemble learning,

looking at the classification average result could be applied to

spot a threat effectively. However, we can use more advanced

techniques such as a weighted linear regression method, based

on the studied accuracy of the individual classifiers. Those

weights would represent the influence of a specific classifier

on a user score. Another solution would be to apply another

classifier taking as input the results of the behavior classifiers

to decide if a user is an insider and to generate the indicator.

Some Algorithm like the IForest propose a metrics to quantify

the anomalies scores [22]. It also could be used as a base.

Additionally, to classify employees behavior visually, we

can use a color code. Green would represent a clean user,

orange a suspicious user, and red a confirmed malicious user.

Finally, thresholds would be chosen to pick specific responses

depending on the threat level. These responses would be

considered as contextual grey decision(i.e. a black and white

systems would demonstrate more binary responses such as

allowing or denying user access to the network).

V. FRAMEWORK IMPLEMENTATION IDEAS

The implementation of this framework will leverage the

use of python code and C code. Python can be chosen for

his common use in the machine learning domain. it’s mainly

through libraries such as pandas, scikit-learn, tensorflow,

and especially for graph modeling, the networkx library. A

combination of these libraries will allow creating a pipeline

able to preprocess data and apply numerous classifiers. A

pipeline using pandas functions, will be able to support

multiple data entry format of security datasets. The raw

datasets would much likely be under databases format

extraction (i.e. .xls, .xml or .csv files). The preprocessed data

would be then be fed to the classifiers, in a distributed and

parallel manner.

The C code will allow us to build memory optimized custom

implementation of our classifiers and also the eigenvalues

computation methods used on our graph-based classifiers. The

eigenvalues computation would use Arnoldi based methods

(e.g. Implicitly Restarted Arnoldi Methods(IRAM)). The use

of the cython library will serve as an interface between

the c and the python code. Custom implementation or

The scikit-learn, and tensorflow libraries can be used to

apply classifiers to activities data. These libraries are widely

used on the machine learning communities, but a custom

implementation is more suitable to build optimized software.

After a study of most demanding computation aspects of the

framework, high-performance computing methods (i.e. using

the pyMPI library) can be used to do distributed calculations

on the ensemble learning model and the eigenvalues problems.

In the case of the use of neural network methods, an

efficient implementation might require a GPU distributed

implementation to get the best performance.

In the context of the learning method, it would represent

the usage of a different process for each classifier, data

duplication, and result gathering at the end. An MPI(i.e.

Message Passing Interface) architecture would be perfectly

suitable for this kind of software architecture. Parallel

implementations of the eigenvalue problem are standard in

the high-performance computing domain and proven useful

to provide better computation performance. In our case, the

user activity data can be significant depending on the size of

the studied companies(i.e. big enterprises tend to have many

employees, so a lot of entries in datasets).

The performance study would also assess the feasibility of a

combination of a MPI and a OpenMP(Open Multi-Processing)

implementation. This hybrid implementation would manage at

the same time the eigenvalues, the forests algorithm, and the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

561

ensemble learning structure. Running on a cluster architecture,

the node would be in charge of a single classifier, and

the threads would manage the distributed part of the base

algorithms.

The parallelism present in this framework is the large

coarse grain with asynchronous communications between the

large-size components. This kind of parallelism is well adapted

to current petascale and future exascale supercomputers.

VI. TEST RESULTS

In this section, we present the results of some of the

previously explored classification methods used on two

different datasets. This part has the goal to give insights on

the accuracy of the classifiers, before choosing to use them

in our future framework. We used an IAM software company

data to classify users, and their roles related to their activities

to test some supervised learning algorithm. Classifying users,

using their actions is the base of anomaly detection in IAM

context. In order to test unsupervised learning methods, we

applied the Mean shift algorithm using scikit-learn(see Fig.

3). The dataset used is an organization policy dataset of 51

entries containing: User Id, Organization code, Organization
inheritance,Role and Role ID, and Permission and Permission
ID.

The policy represents the list of roles and permission of the

users. We applied a principal component analysis (PCA) to

represent the data in a 2D format.

Fig. 3 Mean shift on Policy dataset

In Fig. 3, we considered the dataset as healthy. Therefore

we expected to have only one cluster detected (i.e. when

regrouping the users) by the unsupervised learning approach.

This was not the case; four groups were found. This was due

to the fact the users in the data can be cluster into a subgroup.

However, one clear outsider was found at the edge of the

domain. This user has not the same organization inheritance

as the rest of the users, which are all sensibly in the same

area.

We applied on the same dataset the isolation forest

algorithm (see Fig. 4), we found a list of outliers, which also

contain the same individuals at the edge of the domain. This

allowed us to confirm in a way the result of the clustering

algorithm, and showcase one of the utilities of an ensemble

learning approach.

Fig. 4 Isolation forest on Policy dataset

To test supervised learning methods, we used a user

activities dataset of 1000 entries, 26 unique users, representing

respectively: User Name, Role, Permission, Resources, and

Operation. We used multiple classification methods to classify

the users (i.e. Logistic Regression, Decisions trees, K-Nearest

Neighbors, Linear Discriminant Analysis, Gaussian Naive

Bayes, Support Vector Machine, Random Forest, Bagging,

and Gradient boosting classifier using decision trees as base

classifiers). The main goal was to determine the users’

classification accuracy using this dataset. At the view of the

Fig. 5 User classification recall

result in Fig. 5, we found out that this dataset allows to

classify users up to 75% of recall, which is pretty accurate.

However, the classification algorithms tend to perform worse

to identify users for all the methods if we choose a more

significant data sample(e.g. 11380 entries, 301 unique users,

42% using Gradient boosting). If we look at the problem in

an access control context, a smart solution would be trying to

classify users with the same role. So we would mostly deal

with small data samples, and avoid the poor accuracy problem.

However, we can do further studies to identify the source of

these poor results correctly. As a solution, we are thinking to

improve the hyperparameters of each algorithm using bayesian
optimization. Whatever the size of the dataset, the gradient

boosting ensemble-based method tends to perform better. We

might get even better results if we change his base classifiers.

For a second series of test we worked on a subset of user

activity dataset of 364 entries, composed by 251 entries for

User1, 93 entries for User2, 10 entries for User3 and 10 entries



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

562

for User4. Our goal was to simulate a scenario where User2,

User3 and User4 entries would be idealy detected as outliers

of this subset.

At first, we applied to our dataset four outliers detection

methods, which are an OCSVM, an IForest algorithm, a robust

covariance method (i.e. elliptic envelope (EE)), and the local

outlier factor(LOF). We then use a voting classifier combining

the base-classifiers with the best recall, hoping we get a better

result. We finally test 5 binary classifiers method: An artificial

neural network(ANN) with two hidden layers, a Gaussian

naive Bayes(Gnb) algorithm, and ensemble learning Bagging

classifiers (Bgc), random forest (Rdf) and gradient boosting

(Gbc). We present the results in Table I (see Fig. 6 for the

ROC curves).

TABLE I
CLASSIFIERS’ ACCURACIES

Classifers(%) Precision Recall F1-score AUC-score
IForest 74 74 68 59
OCSVM 64 48 49 55
LOF 73 74 69 60
EE 54 62 57 47
ANN 94 95 94 93
ODVtg 60 64 61 51
Gnb 72 71 63 54
Bgc 99 99 99 99
Rdf 99 99 99 99
Gbc 99 99 99 99

Fig. 6 Receiver Operating Characteristic curve for outliers detection methods

It is important to note that changing the studied subset(i.e.

choosing different users in the subset) as an impact

on the accuracy of the detection methods, but overall

the ensemble-based methods always outperform the other

algorithms, closely followed by the artificial neural network

(i.e. in our tests the ensemble base method varied from 97%

to 99% and the ANN accuracy varied from 60% to 99%). It

might be interesting to use an ANN combine with bagging or

boosting methods to check if we can obtain even more better

performance.

Our next steps is to convert the dataset at our disposal into a

graph or a data frame format, to matrix format (e.g. adjacency,

utility matrix). This will allow us the test the graph based

methods we studied, and assess their detection accuracies

for the insider threat problems. It will also be necessary to

consider more algorithm taking into account the behavior

evolution over time, to build more diverse framework detection

capabilities.

VII. CONCLUSION

Due to the evolution of the threat landscape and continuous

hacker innovation, behavior analysis has become an essential

tool. Based on the monitoring of user, systems, and entity

activities, its goal is to detect intruders, insiders, or fraudsters

in multiple application domains. These threats can pass

through classical cybersecurity tools such as IAM, SIEM

software, and fraud detection programs. This is mainly because

classic tools are based on expert-written rules and correlation

studies. These tools present a high cost of maintenance and a

lack of flexibility.

In this article, we explored some basics about the

core themes of data protection, cybersecurity threats, and

behavior analysis. Starting with the study of behavior analysis

application in cybersecurity, we presented ideas to develop

a framework able to detect and stop insiders. This study

allowed to highlight the usefulness of the ensemble learning

approach base on the combination of multiple classifiers

combine with a parallel implementation. We pointed out the

detection methods based on graph modeling, supervised and

unsupervised learning methods, that can be used as classifiers

into an ensemble learning framework implemented with

high-performance computing methods. We tested unsupervised

learning methods and supervised learning classifiers accuracy

for this problem in an IAM context. We obtained the

best results using an ensemble-based boosting technique for

both test (75%-99%) followed closely by an artificial neural

network for our second test (60%-99%).

To complete our the proposed framework model, as

future work we are going to test other ensemble type

solutions, graph-based detection algorithms we presented,

other emerging deep learning solutions, and exploit the

potential parallelism of the proposed ensemble solution.

These are essential steps to finalize our efficient framework

architecture.

REFERENCES

[1] IBM-Security, IBM 2015 Cybersecurity Intelligence Index,
Managed Security services, https://securityintelligence.com/media/
cyber-security-intelligence-index-2015/, 2016.

[2] P. Bradford and J. Lui, Applying role based access control and genetic
algorithm to insider threat detection, 44th annual Southeast regional
conference, pp 1–7, 2016.

[3] J. Peng, K. R. Choo and H. Ashman, User profiling in intrusion detection:
A Review, Journal of Network and Computer Applications, vol. 72, pp
14–27, 2016.

[4] A. L. Buczak and E. Guven, A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection Systems, IEEE
Communications surveys and Tutorials, vol. 18, no. 2, pp 1153–1178,
2016.

[5] P. Pallabi, N. Mcdaniel and Z. R. Weger, Evolving Insider Threat
Detection Stream mining Perspective, International Journal on Artificial
Intelligence Tools vol. 22, no. 5, 2013.

[6] P. Pallabi, Z. R. Weger, et al., Supervised Learning for Insider Threat
Detection Using Stream mining, 23rd International Conference on Tools
with Artificial Intelligence, 2011.

[7] D. Haidar, and M. M. Gaber, Adaptive One-Class Ensemble-based
Anomaly Detection: An Application to Insider Threats, Internationnal
Joint conference on Neural Networks(IJCNN), 2018.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:10, 2019

563

[8] A. Gamachchi, L. Sun, and S. Boztas, A graph based framework for
malicious insider threat detection, Hawai International conference on
system sciences, (HICSS), 2017.

[9] Y. Chen, S. Nyemba, W. Zhang, and B. Malin, Specializing network
analysis to detect anomalous insider actions, Security Informatics, vol. 1,
no. 1, pp 5, 2012.

[10] I. Sun, S. Versteeg, S. Boztas, and A. Rao, Detecting Anomalous User
Behavior Using an Extended Isolation Forest Algorithm: An Enterprise
Case Study, In Computer Research Repository(CoRR), 2016.

[11] P. Moriano, J. Pendleton, S. Rich, and L. Jean Camp, Stopping the
Insider at the Gates: Protecting Organizational Assets through Graph
Mining, Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications, vol. 9, pp 4–29, 2018.

[12] Ponemon, 2018 Coast of Insider Threat Global organizations,
Ponemon Insitute Research report, https://www.observeit.com/
ponemon-report-cost-of-insider-threats/. Last accessed 4, 2018.

[13] A. Chuvakin and A. Barros, A Comparison of UEBA Technologies and
Solution, Gartner Technical Professional Advice, pp 1–45, https://www.
gartner.com/doc/3645381/comparison-ueba-technologies-solutions, 2017.

[14] S. Gopalakrishnan, Data Science & Machine Learning in Cybersecurity,
In: AT&T Business, vol. 3, pp 1–15, 2017.

[15] V. Kumar, P-N. Tan, M. Steinbach and A. Karpatne, Introduction to data
mining 2nd edition, https://www-users.cs.umn.edu/∼kumar001/dmbook/
index.php, 2018.

[16] S. Hung, Introduction to collaborative filtering Part1, in hackernoon.com,
hackernoon.com, 2018.

[17] J. M. Kleinberg, Authoritative Sources in a Hyperlinked Environment,
Journal of the ACM”, vol. 46, pp 604–632, 1999.

[18] L. Page and S. Brin, Anatomy of a Large-Scale Hypertextual Web Search
Engine, Proceedings of the seventh international conference on World
Wide Web(WWW) 7”, vol. 46, pp 107–117, 1999.

[19] A. Ravanshad, Gradient boosting versus
random forest, https://medium.com/@aravanshad/
gradient-boosting-versus-random-forest-cfa3fa8f0d80, 2018.

[20] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols and S. Robinson,
Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams, AAAI Conference on Artificial Intelligence,
2017.

[21] F. Yuan, Y. Cao, Y. Shang, Y. Liu, J. Tan and B. Fang, Insider
Threat Detection with Deep Neural Network. International conference
on Computationnal Science (1), pp 43–54, 2018.

[22] E. Lewinson, Outlier Detection with
Isolation Forest, https://towardsdatascience.com/
outlier-detection-with-isolation-forest-3d190448d45e, 2018.

[23] L. Akoglu, M. McGlohon, and C. Faloutsos, Oddball, Spotting
anomalies in weighted graphs, Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), vol. 46, pp 1–12, 2010.

[24] P. P. Talukar and K. Cramer, New Regularized Algorithms for
Transductive Learning, Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases, Part II, vol.
5782, pp 442–457, 2009.

[25] W. Eberle, and L. Holder, Insider Threats Detection Using Graph-Base
approaches, Cyber security Application & technologies Conference for
homeland security, vol. 5782, pp 1–5, 2009.


