
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1766

 

 

 
Abstract—The aim of information systems integration is to make 

all the data sources, applications and business flows integrated into the 
new environment so that unwanted redundancies are reduced and 
bottlenecks and mismatches are eliminated. Two issues have to be 
dealt with to meet such requirements: the software architecture that 
supports resource integration, and the adaptor development tool that 
help integration and migration of legacy applications. In this paper, a 
service-enabled dependable integration environment (SDIE), is 
presented, which has two key components, i.e., a dependable service 
integration platform and a legacy application integration tool. For the 
dependable platform for service integration, the service integration 
bus, the service management framework, the dependable engine for 
service composition, and the service registry and discovery 
components are described. For the legacy application integration tool, 
its basic organization, functionalities and dependable measures taken 
are presented. Due to its service-oriented integration model, the 
light-weight extensible container, the service component 
combination-oriented p-lattice structure, and other features, SDIE has 
advantages in openness, flexibility, performance-price ratio and 
feature support over commercial products, is better than most of the 
open source integration software in functionality, performance and 
dependability support. 

 
Keywords—Application integration, dependability, legacy, SOA. 

I. INTRODUCTION 

HE integration of information systems is to make the data 
sources, applications and business flows integrate into a 

coherent entity so as to meet new demands of the complex 
environment, manage the evolution of component systems, 
reduce unnecessary redundancies, and eliminate possible 
bottlenecks of and mismatches among various systems. Any 
solution of this has to concern with two major issues. The first 
is to invent a software architectural framework inherently 
supporting systems interoperability and integration [1]-[3]. The 
second is for the legacy applications, that is, how to make them 
integrated into the new framework using techniques like 
adaptor, mediator and gateway. This is important for the smoth 
transition of legacy systems [4], [5]. 

To solve the above problem, a service-enabled SDIE is 
developed, which gives a common environment for 
interoperable application development and efficient legacy 
integration/transition.  

The paper is organized as follows. Section II presents the 
architecture of the SDIE. Section III discusses the dependable 
platform for service integration, while Section IV describes the 
legacy application integration tool. Related work is given in 

 
Fuyang Peng and Donghong Li are with the Beijing Institute of System 

Engineering, Beijing, China (e-mail: fuyang_peng@foxmail.com, 
dongdong1202@ 126.com). 

Section V. Section VI is the conclusion. 

II. ARCHITECTURE OF THE SDIE 

SDIE consists of a dependable platform for service 
integration (DPSI) and a tool for legacy application integration 
(Plumbersoft). DPSI is the main part of the SDIE, which has 
four components: a service integration bus, a dependable 
engine for service combination, a service management 
framework, and a service registry and discovery module. The 
service integration bus provides a set of contract 
communication-based application programming interface 
(API). It supports multiple workloads, multiple transfer and 
QoS service, and it also provides a messaging service and 
security service to make reliable and secure data transfer and 
message routing possible. The dependable engine for service 
combination extends the Business Process Execution Language 
(BPEL) to let dependable requirements defined into the BEPL. 
It safely combines multiple services into a new service through 
composition and orchestration. The service management 
framework encapsulates web services into controlled objects 
and defines event managing rules. It monitors service states and 
manages service life cycles to deploy/unload services, 
initiate/stop services. The service registry and discovery 
module provides service registry and discovery service. Service 
registry registers application software and related metadata. 
Service discovery finds/matches the most suitable service using 
certain policy and algorithms according to the service registry 
information. 

The legacy application integration tool is a lightweight 
development and runtime tool for legacy application 
integration and transition. It is part of SDIE and used for better 
support of legacy as a service. It can also be used as an 
independent tool that provides standardized, reusable, 
customizable, extensible and highly dependable support for 
application integration development and execution. 

III. THE DPSI 

The DPSI supports three types of user roles, which are the 
service provider, the service consumer and the service 
manager. For service provider, it provides support for service 
description, service registry and publishing, service 
composition, and dependable design. For service consumer, it 
provides such functionalities as service query, message transfer 
and service invocation. For service manager, it provides means 
for service monitoring and management, QoS guarantee. Loose 
coupling, flexibility, simplicity and dependability are adhered 
to when designing the DPSI. 

Design of a Service-Enabled Dependable Integration 
Environment 
Fuyang Peng, Donghong Li 

T



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1767

 

 

 

Fig. 1 The Architecture of SDIE 
 

 

Fig. 2 Basic Organization of the Plumbersoft 
 

A. The Service Integration Bus 

The service integration bus provides a set of contract 
communication-based API. It supports multiple workloads, 
multiple transferring and QoS service. It provides 
service-oriented meditation services, such as location 
transparent service routing and locating, multiple message 
transfer forms, and various transfer protocols, to support 
various forms of service integration. It supports multiple 
interaction models, including uni-directional, request/response, 

synchronous/asynchronous, and publish/subscribe. The bus is 
responsible for message routing, event processing and message 
format transforming. Applications are encapsulated into service 
forms, and data are transformed into standard SOAP messages 
before delivering via the bus. It also supports JMS, JCA, JDBC 
and other commonly used standard interfaces [6]. The bus also 
provides reliable messaging service and security service to 
make reliable and secure transfer and message routing possible. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1768

 

 

B. The Service Management Framework 

The service management framework encapsulates web 
services into controlled objects with the help of JMX and 
accesses managed resources using dynamic client proxies. It 
has an event mechanism to manage the event processing rules. 
Rules bind events with their processing actions. The framework 
also provides service life cycle management functions. Two 
groups of operations are provided to manage and switch the 
states of the managed services. One is the deploy/unload group 
that make state switching from initial state to managed state. 
The other group is start/stop which switches from operational to 
stop state.  

The framework also provides a monitoring service for 
registered services. It monitors the change of service attributes 
and triggers notification when change occurs. 

C. The Dependable Engine for Service Composition 

The dependable engine for service composition is based on 
BPEL. Connection queue and process state are managed during 
process execution, which makes flexible configuration and 
dynamic deployment of service composition process possible. 
When the engine receives external request, it first finds and 
locates the required services according to description file, then 
finds the process instance in the received request queue, and 
finally decides whether to create a new process or to use the 
existing process. During execution of the service composition 
process, the engine takes the service execution sequence of the 
process as guide and accesses or invokes each service in the 
process by giving the partners’ links, port type, operation name 
and other optional parameters as inputs. 

The engine extends the BPEL to incorporate AOP and Xpath 
capacity. Dependable requirements can be defined in the 
extended BEPL, thus dependable service composition can be 
achieved when dependable service modules are set and 
triggered during service composition process execution. 

D. The Service Registry and Discovery 

The service registry and discovery module provides service 
registry and discovery service. Service registry registers 
application software and related metadata. Service discovery 
finds/matches the most suitable service using certain policy and 
algorithm according to the service registry information. The 
metadata repository stores the service metadata, configuration 
information and management rules used in the service 
integration platform. 

IV. THE LEGACY APPLICATION INTEGRATION TOOL 

Plumbersoft, the legacy application integration tool, is 
designed for the rapid development and convenient runtime 
monitoring of legacy application adaptors. It supports two types 
of users. One is the legacy application integration developers 
and the other is integration users. For developers, it provides 
support for GUI-style integration configuration, configuration 
file editing, and integration component customization using the 
integration framework. For integration users, it provides such 
functionalities as remote control of integration components and 
integration messaging diagnosis. 

A. The Basic Organization 

The core design idea of Plumbersoft is to abstract the 
common parts of the legacy application adapters into a reusable 
framework of integration components and abstract interfaces. 
The framework is based on a component-based, message- 
centric service architecture, which is flexible, extensible, 
reusable and easy to customize [7]-[9]. Using Plumbersoft, 
development time of new integration components (ICs) is 
greatly reduced, thus integration development efficiency is 
improved. 

Plumbersoft consists of source binding ICs, sink binding ICs, 
transformation ICs, and message routing controller and system 
services such as monitor, logging and exception handling. Here 
we only give a brief description to the Plumbersoft framework. 
For details, please refer to our other paper [10].  

The source binding ICs and the sink binding ICs, acting as 
message producers and message consumers, respectively, 
implement binding with the to-be-integrated applications, 
manage the sessions, and transform the incoming message into 
the common message format before dispatching it into the 
next-stage ICs (for source binding ICs) or transform the 
incoming message into the external message format or 
appropriate APIs to the destination system (for sink binding 
ICs). Between the source binding ICs and the sink binding ICs 
may sit the transformation ICs which modify, enrich, filter 
and/or align the incoming messages. These ICs can be 
organized into a lattice-like net called p-lattice according to the 
configuration, rather than only the simple linear or tree 
structure. The message routing controller is a service container. 
It not only manages the life cycle of the ICs but also organizes 
the ICs into the p-lattice internal form. Its main functions are: to 
start and synchronize the source binding IC threads and the 
remote controlling thread, practice global transaction control, 
provide the event mechanism (i.e. callback registering and 
triggering mechanism), control the message transforming and 
routing, and manage the ICs and their connections.  

B. Functionalities 

Plumbersoft has the following functionalities: 
(1) It supports reliable asynchronous data transfer among 

different application systems or components; 
(2) It supports multiple data formats. Different application 

data formats can be transformed by Plumbersoft to make 
them speak in a common language; 

(3) It provides strong data processing capability. It has built in 
functionalities of data compression, data encryption and 
signature, data filling, data format translation and data 
filtering. It also supports for developers to write his/her 
own data processing code; 

(4) It supports global transaction capability to support 
consistent commit or rollback operations among different 
application systems; 

(5) It supports data recovery. When failure occurs, it can redo 
the unfinished operation. Developers also can write their 
own data recovery code; 

(6) It provides large sets of reusable integration adaptors, 
which may eliminate much of the coding that programmers 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1769

 

 

have to do before and accelerate the application integration 
process; 

(7) It provides an adaptor development framework to support 
the development of specific adaptors. 

For integration modeling and design, Plumbersoft provides 
three types of support: editor, GUI, and guidance. Editor mode 
is the basic, which is suitable for advanced integration 
developers to directly edit the integration configuration files. 
GUI mode is easy to use and suitable for both developers and 
users. Guidance mode is the simplest. One has to follow the 
instructions step by step to accomplish the integration work. 

C. Dependable Measures 

Plumbersoft is designed as an extensible lightweight 
container [11]-[13]. To make our design more dependable, the 
following measures have taken. Some of the measures are 
injected into by the container, and others are woven into the 
p-lattice as transformation ICs. 
a) Global transaction mechanism. Plumbersoft provides a 

global transaction facility to implement the transaction 
atomicity among multiple applications. The container 
guarantees that global transaction is committed only after 
all ICs of the p-lattice are correctly executed, otherwise it 
will be rollbacked. 

b) Exception handling mechanism. Plumbetsoft has taken 
every possible exception into consideration. It 
encapsulates the exception handling methods of the 
to-be-integrated objects into a uniform mechanism so as to 
make the exception handling more convenient when 
composing the ICs. 

c) Logging and remote analysis. It provides a rich set of 
categorized logging information, including warning, 
general, severe, and fatal errors. The logging information 
can be monitored and analyzed with a remote program. 

d) Exceptional Message Mechanism. Plumbersoft provides a 
message diagnosis mechanism to handle the exceptional 
messages. The mechanism is actually a temporary message 
queue that stores the data objects that could not be 
processed by the adaptors. A special adaptor is designed to 
read the exceptional messages from the queue and discard 
the messages or re-route the messages to appropriate ICs 
according to the configuration parameter. 

e) Message Compression and Encryption. Plumbersoft 
provides transformation ICs for message compression and 
encryption. Through these ICs, messages can be 
compressed and/or encrypted during the integration 
process, so message confidentiality can be ensured. 

V. RELATED WORK 

Although system software companies, like IBM, Microsoft 
and Oracle, have EAI products with rich functionalities, these 
products are usually heavyweight, expensive, and bundled with 
other products of the company. They have poor flexibility and 
openness, are difficult to interoperate with products of other 
companies. SDIE uses lightweight extensible container model, 
reusable framework and open standard, thus has advantages in 
openness, flexibility, performance-price ratio. 

Many open source software, just taking Mule, Openadaptor, 
BabelDoc and xBus, as examples, serve the similar purpose to 
ours. But Mule does not support message container, has no 
support in configuration, management and monitor frontend, 
and has poor usability. Openadaptor does not support 
asynchronous communication. BabelDoc does not support 
application-based connection, re-composition of message, and 
message encryption and user authentication. xBus does not 
support message re-composition and message compression. 
They have no workflow support, have little support in 
dependability. SDIE provides good support for 
synchronous/asynchronous communication, application-based/ 
middleware-based connection, message container API, 
message decomposition and re-composition, message 
encryption and compression and BEPL-based dependable 
service composition. It also provides user-friendly tools for 
integration modeling design, integration configuration setting, 
and monitoring and management. 

VI. CONCLUSIONS 

A SDIE is developed, which gives a common environment 
for interoperable application development and efficient legacy 
integration. With the help of the service-oriented integration 
model, lightweight extensible container, the service component 
composition-oriented p-lattice structure, and the dependable 
measures for service integration, both coarse and fine 
integration granularities are supported on SDIE, and service 
components on asynchronous WAN can be integrated 
efficiently, which are impossible in our previous environment. 
SDIE has advantages in openness, flexibility, 
performance-price ratio and feature support, comparing with 
similar commercial products. It is better than most of the open 
source integration software both in dependable support and in 
some functional and performance criteria. 

ACKNOWLEDGMENT 

We would like to thank our team members, Bo Deng, 
Hailong Li, Lele Tang, Shuangfei Yi and Youyuan Huang, for 
their sound work and good suggestion. 

REFERENCES  
[1] Cape Clear Software, “Service-Centric vs. Message-Centric ESBs”, 

CPV-DOC- 3066, 2005. 
[2]  Steve Vinoski, Integration with Web Service, IEEE Internet Computing, 

November/ December 2003, pp 75-77. 
[3] Dave Chappell, Enterprise Service Bus, O'Reilly, June 2004. 
[4] Rahul Sharma, Beth Stearns and Tony Ng, J2EE Connector Architecture 

and Enterprise Application Integration, Addison Wesley, 2001. 
[5] Parker Shi, Suketu Gandhi, “Enterprise Application Integration”, Centre 

for Technology Innovation, vol.2 No.3, 2001. 
[6] Mark Endrei, et al., “Patterns: Service-Oriented Architecture and Web 

Services”, IBM, April 2004. 
[7] S. D. Halloway, Component Development for the Java Platform, 

Addison-Wesley, 2002. 
[8] Markus Völter, “PluggableComponent – A Pattern for Interactive System 

Configuration”, Proc. EuroPLoP '99, 1999. 
[9] Erich Gamma, et al. Design Patterns: Elements of Reusable 

Object-oriented Software, Addison Wesley Longman, Inc, 1998. 
[10] Fuyang Peng and Lele Tang, Architectural Design of a Component-Based 

Application Integration Framework，Proc. WSEAS 2007. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:10, 2016

1770

 

 

[11] Martin Fowler, “Inversion of Control Containers and the Dependency 
Injection pattern”, http://www.martinfowler.com, accessed on July 
5,2015. 

[12] Douglas Schmidt, et al., Pattern-Oriented Software 
Architecture—Patterns for Concurrent and Networked Objects, Volume 
2, John Wiley & Sons, Ltd, 2000. 

[13] “PicoContainer 1.2 documentation”, http://www.picocontainer.org. 
accessed on May 20,2014. 


