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Abstract—The main goal of the study is to analyze all relevant 

properties of the electro hydraulic systems and based on that to make 
a proper choice of the neural network control strategy that may be 
used for the control of the mechatronic system.  

A combination of electronic and hydraulic systems is widely used 
since it combines the advantages of both. Hydraulic systems are 
widely spread because of their properties as accuracy, flexibility, 
high horsepower-to-weight ratio, fast starting, stopping and reversal 
with smoothness and precision, and simplicity of operations. On the 
other hand, the modern control of hydraulic systems is based on 
control of the circuit fed to the inductive solenoid that controls the 
position of the hydraulic valve. Since this circuit may be easily 
handled by PWM (Pulse Width Modulation) signal with a proper 
frequency, the combination of electrical and hydraulic systems 
became very fruitful and usable in specific areas as airplane and 
military industry. 

The study shows and discusses the experimental results obtained 
by the control strategy of neural network control using MATLAB and 
SIMULINK [1]. Finally, the special attention was paid to the 
possibility of neuro-controller design and its application to control of 
electro-hydraulic systems and to make comparative with other kinds 
of control.  

 

Keywords—Neural-Network controller; Mechatronic; electro-
hydraulic    

I. INTRODUCTION 
HE widespread use of hydraulic circuitry in machine tool 
applications, aircraft control systems, and similar 

operations occurs because of such factors as positiveness, 
accuracy, flexibility, high horsepower-to-weight ratio, fast 
starting, stopping, and reversal with smoothness and precision, 
and simplicity of operations. 

The operating pressure in hydraulic systems is somewhere 
between 145 and 500 lb/in² (between 1 and 35 MPa) [2]. In 
some special applications, the operating pressure may go up to 
10,000 lb/in² (70 MPa). For the same power requirement, the 
weight and size of the hydraulic unit can be made smaller by 
increasing the supply pressure. With high pressure hydraulic 
systems, very large force can be obtained. Rapid-acting, 
accurate positioning of heavy loads is possible with hydraulic 
systems. A combination of electronic and hydraulic systems is 
widely used because it combines the advantages of both 
electronic control and hydraulic power. Moreover, the 
operating conditions of, and the disturbance acting on, 
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hydraulic systems vary in a complicated fashion; for instance 
the valve, oil and load parameters may vary significantly.  

Normally these parameters are not precisely known or time-
variant for a great variety of reasons, e.g., temperature-
dependent behavior. All these properties and facts make the 
control design and tuning difficult. The main objectives for 
closed-loop control of hydraulic servo-systems are [3]:  

- Linearized input-output behavior, which is consistent over 
the whole operating range.  

- Sufficient damping in order to get better step response.   
- Control bandwidth improvement, as much as allowed by the 

dynamics of the hydraulic system and the robust stability 
requirements imposed by unmodelled dynamics, as well as 
by parameter variations and disturbances. 

- The size of the mechanical components and the flow rates 
should be kept at least unchanged. 

An ideal controller would thus be robust against parameter 
and disturbance variations, and lead to best performance 
simultaneously. In practice, however, a trade-off has to be 
decided depending on the application at hand.  

Many industrial controllers for an HSS achieve high 
bandwidth with fixed gain control laws by over-sizing the 
cylinder diameter in order to increase the effective stiffness of 
the fluid in the cylinder. This requires larger and more costly 
components and higher fluid flow rates in order to move a 
load at a given speed. A better approach to obtaining a fast 
response is to model the dominant dynamics of the system, 
and then to use an approach is that, to achieve a given 
bandwidth, the mechanical components are smaller, the 
required flow rates are less, and the overall system is therefore 
much less expensive.  

The main purpose of the study is to analyze the most 
relevant properties of the electro-hydraulic servo system 
shown in the Figure 1, and to make an analysis of the control 
strategies that may be used for the control of these types of 
servomechanism. The idea is to evaluate, through detailed 
simulation, neural network controllers that may be used for 
this purpose. 

 
Fig. 1 Electro-hydraulic servomechanism 

II. NEURAL NETWORK BASED CONTROL 
The neural network based control technique has represented 

an alternative method to solve the problems in control 
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engineering. The most useful property of neural networks in 
control is their ability to approximate arbitrary linear or 
nonlinear mapping through learning. It is because of the above 
property that many neural network based controllers have 
been developed for the compensation for the effects of 
nonlinearities and system uncertainties in control systems so 
that the system performance such as the stability and 
robustness can be improved. 
 It can be seen from the recent development of the neural 
network based control systems that, by suitably choosing 
neural network structures, training methods, and sufficient 
past input and output data, the neural networks can be well 
trained to learn the system forward dynamics to predict the 
future behavior of the systems for the predictive control and 
model control. A neural network derives its computing power 
through, first, its massively parallel distributed structure and, 
second, its ability to learn and therefore generalize; 
generalization refers to the neural networks producing 
reasonable outputs for inputs not encountered during training. 

The use of neural networks offers the following useful 
properties and capabilities: 
 

1- Nonlinearity: A neuron is basically a nonlinear device, 
Consequently, a neural network, made up of an 
interconnection of neurons.  

2- Input-Output mapping: A popular paradigm of learning 
called supervised learning involves the modification of the 
synaptic weights of the neural network by applying a set of 
labeled training. 

3- Adaptivity: Neural networks have a built-incapability to 
adapt their synaptic weights to changes in the surrounding 
environment. In particular, a neural network trained to 
operate in a specific environment can be easily retrained to 
deal with minor changes in the operating environmental 
conditions.  

4- Evidential response: In the context of pattern 
classification, a neural network can be designed to provide 
information not only about which particular pattern to 
select, but also about the confidence in the direction made. 
This latter information may be used to reject ambiguous 
patterns, should they arise, and thereby, improve the 
classification performance of the network. 

5- Contextual Information: Knowledge is represented by the 
very structure and activation state of a neural network. 
Every neuron in the network is potentially affected by the 
global activity of all other naturally by a neural network. 

6- Fault tolerance: A neural network, implemented in 
hardware form, has the potential to be inherently fault 
tolerance in the sense that its performance is degraded 
gracefully under adverse operating conditions. 

7- Uniformity of analysis and design. Basically, neural 
networks enjoy universality as information processors. We 
say this in the sense that the same notation is used in all the 
domains involving the application of neural network. This 
feature manifests itself in different way: 

• Neurons, in one form or another, represent an ingredient 
common to all neural networks. 
• This commonality makes it possible to share theories and 
learning algorithms in different applications of neural 
networks. 

• Modular networks can be built through a seamless 
integration of modules.   
 Most control design approaches, which can be used for 
fuzzy control, are also suitable to be applied in neural network 
based control schemes. There are two fundamentally different 
approaches to neural control design: 
- Direct Control System Design: The controller itself is a 
neural network. 
- Indirect Control Systems Design: A neural network is used 
as a system model in a more conventional control design.  

III. EXPERIMENTAL RESULTS OBTAINED BY NEURAL 
NETWORK CONTROLLER 

To design the neural network controller, the following 
procedure had to be performed:  
 The first step was to collect the relevant signals that may be 

used for training of neural network. The question was what 
relevant signals may be used to train network to behave 
properly and what behavior may be considered as proper. The 
idea was to force the network to perform similarly as well 
tuned PID controller. 
 The second step was to choose the type of the reference 

signal fed to the close loop system with tuned PID controller, 
in order to generate the training set. It was important to design 
that type of signal that contains and involves steady state 
properties of the system, but also basic dynamical 
characteristics had to be involved. So, the signal presented in 
figure 2 was chosen to represent both requirements. This 
signal is lasting 15 seconds with sampling period of 20 ms, 
and the first half of the signal is stair case with intention to 
represent the capabilities of the system to track the constant 
reference, while the second half of the signal contains sine 
function to check the possibility of the system to follow the 
dynamic reference.  

 
 

Fig.  2 Reference signal  
 

 The following step was to decide how many and what 
inputs should be fed to the neural network. The logic was 
following: if we look at the structures given by figure 3, the 
error signal e[kT] must be one of the inputs to the neural 
controller since it is the input to the classical PID [4]. But, PID 
is a dynamical system and it is capable of generating the 
integral and first derivative of the error signal, while neural 
network is a static system without dynamics and it is not able 
to reconstruct these signals. To avoid this lack of information, 
it was necessary to define some additional inputs to the neuro-
controller. The idea was the second input to be delayed error 
signal e[(k-1)T] and neural network should be forced to be 
able to ‘reconstruct’ the first derivative of the error signal. 
Finally, instead of the error integral, it is decided the third 
input to be the output of the system y[kT]. 

Now, when the nature of neuro-controller inputs and 
outputs were determined, it became easy to generate the 
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training set. The reference signal given by figure 2 is fed to the 
closed-loop system with PID controller given by figure 3 and 
the signals {e[k],e[k-1], y[k]}, k=1,2,…,N are collected as 
training input signals and the signal {m[k]}, k=1,2,..,N is 
collected as training target signal [5]. 

 
Fig. 3 The structures of closed-loop system 

            

 The following step to design the structure of network. The 
first attempt was to use the simple network with three inputs, 
one output, and one hidden layer. The activation function for 
the nodes in the hidden layer was ‘tansig’ while the output 
node was with ‘pure line’ activation function. Having in mind 
some experience with the training of neural network, it was 
decided to use ‘Levenberg-Marquard’ algorithm for the back-
propagation error method. Finally, it was necessary to choose 
the number of nodes in the hidden layer. It was clear that the 
‘optimal’ number can be found by ‘try and error’ approach [6]. 
In this context optimal means the minimum number of nodes 
that provides satisfied results (good fitting of target signal). 
So, the first try was with 5 nodes and the obtained result that 
shows the fitting of obtained and target signal is given by 
figure 4. 
 

 
Fig. 4 Obtained and target signal    

Of course, it was not possible to get this type of result 
immediately, since the convergence of mean-square-error 
depends significantly on the starting point (network 
initialization). Adopted number of training epochs was 2000. 
The obtained result presented in figure 4 was not satisfied 
since there was a significant difference between the target and 
generated signal. This difference is particularly significant 
during the steady-state phases of the control sequence m[k]. It 
was obvious that this kind of neuro-controller was not able to 
generate good results in the closed-loop. In order to make the 
proper selection of nodes number in the hidden layer, the 
following experiment has been performed. The number of the 
nodes was changed from 1 to 20, and for each of these 
structures the network has been training for enough number of 
epoch (1000 epochs) and the best results were saved. These 
results are presented in figure 5. As it is expected, this curve is 
monotony decreasing, except the value of 14. This irregularity 
appears because the quality of neural network training is very 
sensitive to the initial conditions. Initial conditions understand 
starting point values of the network weights and biases. To 
overcome this sensitivity, the experiment of network training 
was repeated 100 times with different initial conditions and 
after that choosing the best guess. So, this best guess for some 

number of nodes was really the best one, for some other it was 
close to the best. Based on the figure 5, it is possible to 
conclude that significant decreasing of the criterion is obvious 
for the nodes number less than 6.   

0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

9

10

11

12

Number of nodes in the hidden layer

Mean-square error

 
Fig.  5 The mean square error  

 

After that, with further increasing of nodes number, 
network is trying to learn some details about the controller 
output and these details cannot improve the behavior of 
controller significantly. So, it was decided to adopt number of 
nodes in the hidden layer to be 8, since this value is close to 
the knee of the characteristics given in figure 5. The following 
experiment is performed with 8 nodes in the hidden layer, 
‘tansig’ function as activation function of the nodes, three 
inputs, one output and Levenberg-Marquardt algorithm for 
back-propagation error network training. The obtained result, 
showing the fitting between the target signal and network 
output is presented in figure 6.  

 
Fig. 6 Target and obtained signals  

 

It became clear that the obtained result was much better and 
that the difference between what we wanted and what we’ve 
got is small enough.  
 The final step in design of a network was to check if 

another hidden layer can help. It was decided to introduce 
another hidden layer, while the number of nodes in the first 
layer remained 8 and the number of nodes in the second layer 
was chosen to be 3. The training of this type of network 
became much more complex and the training process took 
significantly longer time. The obtained results are given in 
figure 7, while figure 8 shows the history of mean-square-
error during the process of training. The figure 8 shows that 
the mean-square error after 5000 epochs became 3.34. That 
means that the relative deviation of the obtained control 
respect to desirable one is 3.34 /100 1.82%= . This result is 
pretty acceptable, especially looking at the figure 7 where very 
good fitting of desired controller output is obtained.   

 
Fig.  7 Target and obtained results  

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:3, 2010

331

 

 

In order to check if the increasing of number of nodes in the 
second hidden layer can improve the performance of neuro-
controller, we again made the experiment where the number of 
nodes in the first hidden layer was kept to be 8 and we 
changed the number of nodes in the second hidden layer 
starting from 1 and ending in 10.  

 
Fig.  8 Mean square error  

 

 Based on that it was clear that the proper structure giving 
the satisfactory result is a network with 3+8+5+1 structure (3 
input nodes, 8 nodes is first hidden layer, 5 nodes in second 
hidden layer and 1 node in output layer). The results obtained 
after training of this type of network are presented in figures 9 
and 10. Figure 10 shows high quality fitting of the desired 
controller output in both cases: when the reference is constant 
and when it is time dependent. Of course, it does not mean 
that the network really understood what kind of behavior it 
should perform. It only means that it was able to repeat the 
behavior contained in the training set. In order to check the 
property of ‘generalization’ that the network should posses, 
some other experiments had to be performed. 
 

 
Fig. 9 Target and obtained results  
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Fig. 10 Mean square error  

 

The figure 10 tells us that the final mean-square-error was 
0.71. In other words, relative deviation of the obtained control 
respect to desirable one is 0.71 /100 0.84%= . This result is 
quite acceptable. So one can be pleased with the obtained 
training process, and some analysis of the closed-loop system 
with neuro-controller had to be performed. Now, when the 
neuro-controller is designed, it becomes interesting to check 
what quality of control-loop regulation is possible to expect. 
The first and most logical test was to prepare neuro-controller 
in Simulink and to see what output will be obtained if the 
reference signals is identical as the signal used for neural 
network training. Figure 11 represents the structure of network 

prepared in Simulink layout. Since the structure of this 
controller became complex (not in the numerical sense 
because the controller performed the number of simple 
arithmetical operations but the number of these operations 
became huge) it was necessary to organize simple transfer of 
the numerical values for each of the network weights and 
biases. Having in mind the number of nodes in the each of the 
layers, the number of parameters that had to be fed to the 
network became:3×8+8×3+5×1=69 for weights and 8+5+1=14  
for biases. So 69+14=83 saved parameters were transferred 
from the disk to the Simulink using by the protocol called 
‘From Disk to Simulink’ available in this programming 
package.  

Now, when the structure of neuro-controller was selected 
and corresponding parameters were calculated, it was possible 
to make the close-loop system with the neuro-controller in 
line. This part of the system that shows the connection of the 
controller with other parts is given in figure 12. Using neural 
network controller in the closed-loop electro-hydraulic servo 
system, with the reference signal used for neural network 
training gives the output of the system shown in figure 13. 
 

 
Fig. 11 Structure of neural network controller 

 

 
Fig. 12 Neural network controller 

 

Figure 13 also shows the giving reference and the output of 
the system when well tuned PID is used as a controller. One 
can conclude that the fitting of the different controllers is 
almost perfect. The difference between these two outputs is 
smaller than 1% of the reference. The following experiment 
had to check the capability of the network to control the 
system for some other type of reference signal. Making some 
changes in the input as shown in figure 14, the same 
experiment has been performed. 
  

 
Fig. 13 Output of the system  

 

Figure 14 represents the changed reference signal, the 
system output obtained by using PID controller and neuro-
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controller. In this case the difference between these two 
outputs becomes obvious. The PID controller showed better 
performance especially in the regions marked on this figure. 
The reason for that is simple: the network was not trained for 
the reference with values between 0.002 and 0.004, and it is 
able only to interpolate the expected output. To check this 
reasoning, it was decided to extend the training reference 
signal and to make a mixture of the references given by figure 
14 and figure 13 and to repeat the training procedure.  

New reference signal is presented in figure 15. Now, the 
reference was two times longer and it was logical the training 
process to last at least two times more. The training process 
was very successful and the obtained results are given in 
figures 16 and 17. Figure 16 presents the training control 
sequence and the output of the network, while figure 17 
presents the reference, output of the system with PID 
controller and output of the system with neuro-controller.  

 

 
Fig. 14 Output of the system  

 

 
Fig. 15  Training reference signal  

 

 
Fig. 16 Training output comparing with the goal 

  

Since the difference between these three signals is almost 
negligible, the figure 18 presents the difference (error signal) 
between the given reference and output signal obtained with 
neuro-controller. The noticeable peaks in this signal have a 
source in the sharp jumps in reference signal.  
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Fig. 17  Output of the system  
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Fig. 18 Error signal for the system 

IV. CONCLUSION 
Finally, the special attention was paid to the possibility of 

neuro-controller design and its application to control of 
electro-hydraulic systems. Several questions had to be 
answered in order to design the proper neuro-controller. The 
first important question was what should be the inputs to such 
controller. Making several ‘try and error’ attempts, the answer 
was that the controller should have the information about the 
error signal, delayed error signal and system output (piston 
position). After that it was necessary to decide about the 
number of hidden layers, the number of nodes in the layers, 
the activation functions in the nodes and the algorithm for 
network training. Few analyses regarding the number of nodes 
in the layers have been accomplished giving the pretty clear 
answer that the network should contain two hidden layers with 
eight nodes in the first and five nodes in the second layer.  

 These answers have been obtained after the long systematic 
and tedious experiments, where the number of nodes have 
been changed and checking the actual criteria.  The adopted 
criteria for network training quality were the computed mean 
square error between the network output and the desired 
output signal.  

Also, the activation function of ‘tansig’ type was selected 
and Levenberg-Marquardt back-propagation algorithm for 
network training. Another important question was how to 
design the training set for network training. The most simple 
and most logical choice was to push the network to behave 
similar as PID controller. So, with the proper reference signal, 
the output of the PID controller was saved and used as a 
training (desired) set for the procedure of neural network 
training. The obtained results were promising, since the 
training procedure resulted in the mean square error less than 
0.8%. In other words, it seemed that the network learnt to 
behave very similar as classical feedback controller. 

Two additional analyses were accomplished. The first one 
was to check if the network is able to preserve good behavior 
even if the reference signal is changed. It was concluded that 
the performances of the closed-loop system is changed in that 
case, not significantly but noticeable. And it was clear, if the 
reference signal used for the training of neural network is 
more reach and longer, although the training procedure takes 
more time, the quality of regulation becomes improved. The 
other important performed analysis was related to the 
appearance of disturbance.  
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