International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:5, 2007

Design, Implementation and Testing
of Mobile Agent Protection
Mechanism for MANETS

Khaled E. A. Negm

Abstract—In the current research, we present an operation
framework and protection mechanism to facilitate secure
environment to protect mobile agents against tampering. The system
depends on the presence of an authentication authority. The
advantage of the proposed system is that security measures is an
integral part of the design, thus common security retrofitting
problems do not arise. This is due to the presence of AlGamal
encryption mechanism to protect its confidential content and any
collected data by the agent from the visited host . So that
eavesdropping on information from the agent is no longer possible to
reveal any confidential information. Also the inherent security
constraints within the framework allow the system to operate as an
intrusion detection system for any mobile agent environment. The
mechanism is tested for most of the well known severe attacks
against agents and networked systems. The scheme proved a
promising performance that makes it very much recommended for
the types of transactions that needs highly secure environments, €. g.,
business to business.

Keywords—Mobile Agent Security, Mobile Accesses,
Agent Encryption..

1. INTRODUCTION

N a broad sense, a software agent is any program that acts

on the behalf of a user, just as different types of agents
(e.g., travel agent and insurance agents) that represent other
people in day-to-day transactions in real world. Applications
can inject mobile agents into a network, allowing them to
roam the network on either a predetermined path, or agents
themselves determine their paths based on dynamically
gathered information. Having accomplished their goals, the
agents return to their “hosts” in order to report their results to
the user.

However; the mobile agent paradigm also adds significant
problems in the area of security and robustness. Malicious
agents are similar to viruses and trojans, they can expose
hosts, they visit, to the risk of system penetration. While in
transient, the agent’s state becomes vulnerable to attacks in
different ways. An agent is likely to carry-as part of its state-

Manuscript received March 19, 2005. (Write the date on which you
submitted your paper for review.)

K. E. Negm is with the Etisalat College of Engineering, Sharjah, POB 980,
UAE (corresponding author to provide phone: 50-482-1316; fax: 6-522-5937,
e-mail: knegm@eim.ae).

sensitive information about the user identity, e.g., credit card
information, personal confidential preferences, or any other
form of electronic credentials. Such data must not be reveled
to any unauthorized hosts or modified by unauthorized users.
Unless some countermeasures are taken, such agents can
potentially leak or destroy sensitive data and disrupt the
normal functioning of the host.

In the current research we present a protection scheme for
the mobile agents that incorporate standard cryptographic
mechanisms into the agent transfer protocol functions. The
use of the one-way-hashing and digital signatures is two fold;
first detect active, passive and tampering attacks, and second
to establish the identity of the servers participating in the anti-
tampering program (ATP) [1,2]. Also encryption is used to
prevent passive attacks on the agent's state while it is in
transient [3,4].

II. MOBILE AGENT SECURITY ANALYSIS

Mobility allows an agent to move among hosts seeking
computational environment in which an agent can operate.
The host from which an agent originates is referred to as the
home host that normally is the most trusted environment for
an agent [5-7].

In the mobile agent environment, security problem stems
from the inability to effectively extend the trusted
environment of an agent’s home host to other hosts. The user
may digitally sign an agent on its home host before it moves
onto a second platform, but this resembles a limited
protection. The next host receiving the agent can rely on this
signature to verify the source and integrity of the agent’s
code, data, and state information provided that the private
key of the user has not been compromised. For some
applications, such minimal protection may be adequate
through which agents do not accumulate state. For other
applications, these simple schemes may prove inadequate.
For example; the Jumping Beans agent system addresses
some security issues by implementing a client- server
architecture, whereby an agent always returns to a secure
central host first before moving to any other platform [8-10].

Some other category of attacks on the agent involves
tampering by its executing visited hosts. As such, if that

730

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:5, 2007

server is corrupted or becomes malicious, the agent's state is
vulnerable to modification [11]. Although a lot of research
has been done in this area, one of the remaining problems is
the presence of an untrusted malicious host that attacks
mobile agents, for example; a travel agency’s agent system
might modify the best offer the agent has collected, so that its
own offer appears to be the cheapest one. Also, the travel
agency might change the list of travel agencies that the agent
is going to visit to increase its chances to propose a better
offer and/or get the prices of other travel agencies before
making its offer to the agent. All of these attacks involve
eavesdropping and tampering and yet all the published
schemes represent a simple mechanism of protection that can
not guarantee secure transactions for the agents.

III. PROTECTION SCHEME AND ITS IMPLEMENTATION

In the current research we implement a mechanism by
which tampering of sensitive parts of the state can be detected,
stopped, and reported to the Master Agent (MA). The
framework is composed of different modules.

First the initialization module in which we have the user,
two coordinating entities MA and Slave Agents (SAs). The
user resides on its own platform and/or on a server to create
the MA acquiring only that MA must exclusively reside on a
secure trusted host. Then the MA creates SAs on another host
(or the same MA host) in which being created on a secure host
is not a must. Next MA defines tasks and subtasks to the SAs
to achieve based on the user preferences. Then the SAs move
from host to host to finish the tasks (and/or subtasks) given
from the MA (that includes a central knowledge-base and a
central management components.).

The second module is the Constraints Module that contains
conditions and rules for each agent to follow. This module
presents the first line of defense in which the characteristic
details and operational parameters of the visited host are
listed. The third Module is the Encryption Module,
presenting the second line of defense to afford the security for
the agents’ states. The encryption module contains two parts.
The startup part, allows the user to declare which part of the
agent as a read-only in which any tampering with the
read-only objects can be detected. The second part is a secure
storage container, that allows the agent to create an
append-only container by which the agent can check in data
(when executed) and store it in the container, so no one can
deleted or modify it without detection.

A. The Initialization Module

The concept of MA-SA was first introduced by Buschmann
in 1996 to support fault tolerance, parallel computation and
computational accuracy [12]. Also Lange demonstrated in
1997 that it is also applicable to support tasks at remote
destinations and extended it to fit mobile agents [14]. The
MA-SA concept is interacting as follows: the MA creates
SAs, then the master delegates the subtasks to the SAs, and
finally after the slaves have returned the results, the master
combines the results. The master can assign more than one

task at a time and the slaves can execute them concurrently. A
major benefit of this abstraction is the exchangeability and the
extensibility in which decoupling the SA from the MA and
creating an abstract slave class allows to exchange the slaves’
implementation without changes in the master’s code.

Depending on the MA-SA concept, we built up a system to
facilitate a solution to the mobile agent security problem. To
achieve this, confidential data is contained in a secure place
that is the MA host (or heavily protected if carried by the
SAs). Then the SA must carry essential data to fulfill the task
assigned by the MA [14].

Tables I and II present the two listings of the pseudo code
implementation of MA and SA. First, the doTask () method
is called so the MA moves to the first host where it uses its
strategies to split the tasks into subtasks. Then the MA
assigns subtasks to the SAs. Afterwards it waits for the results
which will be returned by the SAs.

TABLEI
MA PSEUDO CODE
Public class MA extends Agent {
private ConstarintManager cm;
private Vector Tasks;
private vector sentSAIds;
protected void doTask() {
do {
getCurrentHost () .transfer (this object)
splitTasks();
waitForResults();
mergeResults () ;
} while (!supertask.finished());
sendResultsMAHome () ;
}
private void splitTask() {
// 1. apply strategy to divide the task
// 2. refine constraints for the subtasks
for (int i=0; i < tasks.size();++){
SA w= new SA (subtask, constraints);
sentWorkIds.add (w.getId());
w.doTask () ;7
}
}

TABLEII
SA PSEUDO CODE

Public class SA extends Agent {

private ConstarintManager;

private Vector Tasks;

SA (Task t)({task=t; }

protected void doTask() {

do {

task.execute();

addResult (task.getResults());

getCurrentHost () .transfer (this object)

} while (!task.finished());

}
private void addResult (Results=r) {
if (cm.checkConstarints (task,r))
sendResulstToMA;

B. The Constraint Module

After starting the initialization module, the constraints
module starts running in a supervisory parallel fashion during

731

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:5, 2007

the transactions. The constraints module is composed of three
parts:

a. Routing Constraints: which define variables for the
agent’s itinerary that lists hosts, operating systems’ type and
version number including hopes to travel. This type has to be
checked every time before an agent moves to another location.
b. Execution Constraints: which define requirements on the
SA visited system’s environment which contain a limitation
list of hardware (the amount of memory storage) or software
(for example a specific version of the database-access
software or an LDAP-service) requirements.

¢. Merging Constraints: which define the relations between
subtasks that are generated by the strategies. In contrast to the
other constraints, merging constraints are stored exclusively
by the MA.

C. The Cryptography Module

The cryptography module provides a secure container for

any credentials that the agent might carry and acts as an
intrusion detection system to discover tampering. This
protection mechanism contains two parts:
a. The read only-state: in which it function to assign part of
the “agent’s object” as read-only sub-object in which its
credentials could not be modified by anyone, and thus are
read-only during its travels. To protect such read-only state
we have to declare the associated objects as constants and
incorporate a cryptographic mechanism to protect these
constants.

In Table III we list the pseudo code of this object. It
contains a vector of objects of arbitrary type, along with the
agent owner's digital signature on these objects. The
digital signature is computed by first using a one-way hash
function to digest the vector of objects down to a single
128-bit value, and then encrypt it using the private key of the
agent’s owner. The Digital Signature Algorithm (DSA) is
used for this purpose [15].

sign =K (h(objs))

The verify method of the ReadOnlyContainer
object allows any host on the SA’s path to check whether the
read-only state has been tampered via contacting the
certifying authority to honor the user’s signature (while it

needs an access to the agent's public key.) It uses the public
key to decrypt the signature, and compares the result with a
recomputed one-way hash of the vector of objects. If these
values match, the visited host can assume that none of the
objects has been modified since the signature was computed.
Thus, the condition it checks are:

h(objs)= K ¥ (sign).

The read-only container mechanism is limited in utility to

those parts of the state that remain constant throughout the
agent's travels. But in real life, SAs collect data from the
hosts it visits and need to prevent any subsequent modification
of the data. This could be termed as write-once data.
b. Append-only logs: This object guarantees that the
stored entries within it can not be deleted, modified or read by
an unauthorized user. When data object needs to be
nonmodifiable for the remainder of the agent's journey, it can
be inserted into this append only log and to provide secrecy,
the data is then encrypted with the MA’s public key before it
is stored in the log file. We used this module to preserve the
results that the SA’s had gathered. The pseudo code of this
object is shown in Table 4.

The AppendOnlyContainer object contains vector of
objects to be protect, along with their corresponding digital
signatures and the identities of the signers (in case of MA
only). It also contains a checkSum array to detect
tampering. When an SA is created, its
AppendOnlyContainer is empty. The checksum is
initialized by encrypting a nonce with the agent's public key

checkSum = K* (N)

This nonce N, is not known to any host other than the MA’s
host, and must be kept secret. Therefore, it is not carried by
the SA. The encryption is performed using the ElGamal
cryptosystem [16]. At any stage during the SAs travel, the
agent can use the checkIn method to insert an object X (of
any type) into an AppendOnlyContainer. For example,
after collecting a quotation from a travel agent, it can check

TABLE III
THE READONLYCONTAINER PSEUDO CODE

class ReadOnlyContainer {

// Constructor
objs = o;

}

}

Vector objs; // the read-only objects being carried along
byte[] sign; // owner's signature on the above vector

ReadOnlyContainer (Vector o, PrivateKey k) {
sign = DSA—Signature (hash(objs), k);
public boolean verify(PublicKey k) {

// Verify the agent owner's signature on the objects
// using the owner's public key

732

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:5, 2007

TABLE IV
THE ArpENDONLY PSEUDO CODE

class AppendOnlyContainer —{
Vector objs; // the objects to be protected
Vector signs; // corresponding signatures
Vector signers; // corresponding signers' URNs
byte[] checkSum; // a checksum to detect tampering
// Constructor
AppendOnlyContainer (PublicKey k, int nonce) {

}

public void checkIn (Object X) {

}

public boolean verify (PrivateKey k, int nonce) {

objs = new Vector(); // initially empty

signs = new Vector(); // initially empty

signers = new Vector(); // initially empty
checkSum = encrypt (nonce); // with ElGamal key k

// Ask the current server to sign this object

sig = host.sign (X);

// Next, update the vectors

objs.addElement (X);

signs.addElement (sig);

signers.addElement (current server);

// Finally, update the checksum as follows

checkSum = encrypt (checkSum + sig + current server);

loop {
checkSum = decrypt (checkSum); // using private key k
// Now chop off the ''sig'' and server's URN at its end.
// These should match the last elements of the signs and
// signers vectors. Verify this signature.

} until what ever is left is the initial nonce;

}

}

the in-value, in order to protect it from any further
modification. The checkIn procedure requests the current
server “C” to sign the object using its own private key. The
object, its signature and the identity of the signer are inserted
into the corresponding vectors in the
AppendOnlyContainer. Then, the checksum is updated
as follows

checkSum = K ' (checkSum + Sig (X)+ C).

First, the signature and the signer's identity is concatenated
to the current value of the checksum. This byte array is then
encrypted further using the MA’s ElGamal public key,
rendering it to be unreadable by anyone other than the agent's
owner. Then, the encrypted version of the object would be
carried along and protected from tampering. When the agent
returns, the user can use the verify method to ensure that the
AppendOnlyContainer has not been tampered. As
shown in Table IV, the verify process works backwards,
unrolling the nested encryptions of the checksum, and
verifying the signature corresponding to each item in the
protected state. In each iteration of this loop, the following
decryption is performed

K} (checkSum) = checkSum + Sig ¢ (X)+ S,
here S is the server in the current position of the signers
vector, and X is the corresponding object in the objs vector.
The verify procedure then ensures that

K (Sigs (X)) ==h(x).

If any mismatches are found, the agent’s owner knows that
the corresponding object has been tampered and then it can
discard the value. The objects extracted up to this point can
still be relied upon to be valid, but other objects whose
signatures are nested deeper within the checksum can not be
used. When the unrolling is complete, we are left with the
random nonce that was used in the initialization of the
checksum. This number is compared with the original random
number N,. If it does not match, a security exception can be
thrown.

IV. TESTING ENVIRONMENT

The basic goal of the testing is to monitor the system
behavior against malicious attacks and measure the network
utilization for different operational scenarios. We executed
the most common well know attacks for agents, systems, and
networks against the proposed system and collected the results
to study the feasibility [17]. Five traffic generators are
installed and distributed among its testing network to simulate
the real world environment. Additional normal www traffic is
generated while activating and running the system to
introduce the normal competitive packet dynamics and
latencies within the queuing buffers in each router [8].

The major role of the utilization testing is to evaluate the
network resources usage while implementing the framework.
Also we performed functionality testing of the framework in

733

International Journal of Electrical,

Electronic and Communication Sciences

ISSN: 2517-9438
Vol:1, No:5, 2007

______ [— "NET3 |

[NET 1 1 I NET 3 |

[| CISCQ 2950 VPN Concentrator CISC(VPN Host |

| | Cisco 7210 cCIier:t I':’riv'a;e K'ey | Host 9 |

. onstrainst System WINXP
| LINUX MDK | BlackBoard Syst — |
| FIR.E WALL 2 Host 10 |
Cisco 535 Cisco 7000M | WIN2000

| Host 2 WIVLAN |

I WINXP CISCO 3600 Shared Backbone |
IDS Sensol

[Host 3 | WKST ' I L:‘Loj)t(}:H |
I : |] WIN2000

I Host 4 Traffic Generator2 | | P T T T | T T T T T T | Host 12 I

: LRostd | LINUXMDK |

Traffic Generator 1 |

r—
I
I
I
I

Host 5 Host 6 H°$l 8
% | LINUXMDK LINUXRH \IIVIJ;; ; BSD
I — | NET 2 Traffic Generator 3
DMZ SERVER LINUX _Pu.blic Key) |
Router Certifying Authority
Figure a: The testing network
TABLEV
TESTING SCENARIO PARAMETERS
Scenario Client Master (1/0) | Slave Host: ports | Target Hosts
1 VPN VPN host: DMZ host: 3062 HI1: 3155
host (4444/3333) DMZ host: 3063 HS5: 3150
DMZ host: 3064 H10: 2774
2 VPN DMZ host H4: 3009 NET!I
host (44444/60000) | H11: 3010 NET2
H12: 3011 NET3
TABLE VI
PARALLELIZING AND PRIMARILY TEST PARAMETERS
packet | Bytes Source Ports | Destination Ports
s
20 3000 Any 3150
40 7050 Any 3155
14 2683 Any 2774
56 6388 Any All the remaining
138 19121 All traffic All traffic
which “Parallelizing” scheme enables concurrent task proceed to collect and/or communicate to the target host. In

execution. In every testing scenario, there is a list of hosts for
the SAs to visit according to their respective predefined
strategy.

A. Parallelizing and Primarily Security Test

In this scenario, the client operates from the VPN host at
which he creates the MA Then the MA creates three ASs on
the DMZ host from which they start traveling to their
designated hosts according to the predefined constraints.

Each SA queries its target host via the dedicated port for
such a process. Then each SA will activate a security query to
the CVE host requesting security clearance to communicate to
the dedicated target hosts. On receiving the clearance it will

case of successful transaction, the collected information is
returned to MA. Then the MA prepares the final report and
pass it to the user. Note that this is not a fully guaranteed
security check, but it helps in some ways to eliminate some
security risks especially for home users.

In here two of the SAs are targeting hosts 5 and 10 will stop
execution due to the fact that the dedicated ports of
communication assigned by these host match malicious
attacks (according to the CVEs) on the SA itself, namely the
deep throat, the Foreplay and the Mini BackLash attacks on
port 3150 and the subseven, and subseven 2.1 Gold on port
2774. This is achieved through the confirmation channel
between the SAs and the MA to approve communication via

734

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:5, 2007

the designated port by the visited host. The MA confirms
communication after checking the CVEs list.

B. DDoS Attack Test

In this scenario malicious software is activated at Host 1
acting against the three networks in which host 6 and 9 are
trojaned to be malicious to deny any execution to all arriving
agents. In general the MA creates five the SAs at Host 5.
Then each one moves to all hosts to collect the desired
information. During this test, the MA enforces a new
constraint that concerns retry in denial-of-service attacks as:

* if repeatedCreation() < 3 then begin
true end
else alarm user(); false end.

The method repeatedCreation () returns the number
of already done retries to create a SA for a certain task. So for
example if one of the SA failes and the MA creates another
one, then the return value of this method would be one. The
constrains for the SAs are the same as in the previous
scenario:

* if placename == "Host 2->12" then begin
true end.

* if ostype ==
begin true end.

"LINUX MDK or RH" then

In here the system information is not collected from hosts in
NET1 because it suffers from DDoS and host 11 because it
does not have the correct name and the last one because it is
not the desired Linux machine. But the encryption module
will detect this behavior, file it, and report it back to the user
via the blackboard system.

The DDoS will not propagate from NET1 to the other
networks because of the network intrusion detection systems
(NIDS) and host based intrusion detection systems (HIDS)
installed to filter out any traffic back and forth. The SA that
moves to host 1 do not return any status report or result within
the given deadline so the MA retried to send it several time.
After retrying it twice the MA’s constraint number one returns
false. Thus, the MA stops trying to send an agent to these
hosts and returns a special report to the user.

This shows that a malicious host can not trap or stop the
overall process by a denial of service attack. When the SA
does not return within a given deadline the MA could start
another one or redefine the subtasks and then start a new one.

V. SUMMARY AND CONCLUSION

Mobile agents differ from other techniques in regard to
security issues and security mechanisms, whose requirements
are not met by classical security systems. Concerning security
in traditional operating systems, the system is always trusted.
This is not true for mobile agents, here the visited operating
system can be the untrusted one and the agent is the trusted
one. The problem arising is that the users have no chance to
check the functionality of the operating system.

To eliminate some of the security risks we incorporate a
sophisticated mechanism to be built in within the mobile agent
design by which none would be able to retrofit into the
application. This aim is fully accomplished. The framework
limits the risks of leakage and tampering as the data stored in
the Master Agent will never be accessible to potential
malicious hosts, since it will only reside on trusted hosts. In
addition to implementing the MA-SA system in an enhanced
way to facilitate full optimized operation and protection to the
agent system.

Besides the main intent to make mobile agent technology
more secure the Master Agent-Slave Agent Framework
provides additional benefits and boosts some of the mobile
agent’s advantages due to its design and structure (e.g.
flexibility, simplicity, separation of concerns, etc.). Its
separation of code focusing on coordination and code
focusing on computation make the pattern an ideal basis for
the framework. This design allows easy integration of this
framework in applications and eases porting to other mobile
agent systems.

The framework consists of a coordinating entity (the MA)
and several independent entities (the SAs). The MA holds all
the current knowledge found by the Slave Agents and uses
this knowledge to accomplish its task. The key difference to
the client-server paradigm is that the MA component is mobile
as well. So it can move to a host near the area its SAs
scenarios will operate in. The only prerequisite is that the MA
must exclusively visit secure trusted places. In the worst case
this is the host where it has been initialized. We have
demonstrated that this framework solves special aspects of
mobile agent security, in addition to that eavesdropping
information and tampering the agent is no longer possible or
does not reveal any confidential information.

Every time the agent departs a host, its server inserts a log
entry into the AppendOnlyContainer. This entry includes the
current server's name, the name of the server from which the
agent arrived, and the name of its intended destination. This
travel log can be used by the agent's owner when the agent
returns, to verify that it followed the itinerary prescribed when
it was dispatched.

If the agent's itinerary is known in advance of its dispatch,
we can insert a copy of the itinerary into the agent's
ReadOnlyContainer. Thus, each host visited by the agent
has access to the original itinerary, as intended by the agent's
creator. The receiving host can check the current itinerary to
ensure that the agent is following the specified path, and that
the method to be executed is as specified originally.

This ensures that any tampering with the method's
parameters by any host on the agent's path can be detected,
before the agent is allowed to execute. In addition, an audit
trail of the agent's migration path can be maintained using an
instance of the AppendOnlyContainer class. One
limitation of AppendOnlyContainer scheme is that the

735

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:1, No:5, 2007

verification process requires the agent's private key, and can
thus only be done by the agent's host.

FUTURE WORK

Currently we are working on enhancing the IDS feature of
the system by adding a backboard system to the encryption
module. But in this case we have to implement a rigorous
reporting mechanism from the slave agents to the master
agent.

ACKNOWLEDGEMENT

The author would like to thank Cisco systems in Dubai,
UAE to support this research by the needed Cisco equipments.
Also the author would like to acknowledge the Etisalat
Academy in Dubai to facilitate the premises to run this
research.

REFERENCES

[1] D. Vincenzetti and M. Cotrozzi, ATP anti tampering program,
in Edward DeHart, ed., Proc. of Security IV Conf.-USENIX
Assoc., pp 79-90, 1993.

[2] R. Sielken, Application Intrusion Detection, Univ. of Virginia
Computer Science Technical Report CS-99-17, 1999.

[3] V. Roth, “Scalable and Secure Global Name Services for
Mobile Agents,” 6" ECOOP Workshop on Mobile Object
Systems: Operating System Support, Security and
Programming Languages, 2000.

[4] R. Gray, “D’Agents: Security in a Multiple Language, Mobile-
Agent System,” in Mobile Agents and Security, G. Vigna, ed.,
LNCS 1419 pp. 154-187, Springer, 1998.

[5] Fuggetta, G, Picco, and G. Vigna, "Understanding Code
Mobility," IEEE Transactions on Software Engineering, 24,
pp. 342-361, 1998.

[6] "Agent Management," FIPA 1997 Specification, part 1, ver.
2.0, Foundation for Intelligent Physical Agents, 1998.

[7] "Mobile Agent System Interoperability
Specification," OMG-TC-orbos/97, 1997.

[8] “Jumping Beans White Paper,” Ad Astra Engineering Inc., CA,
1998.

[9] Khaled E. A. Negm, “Implementation of Secure Mobile Agent
for Ad-Hoc Networks, WEAS Transactions on
Communications, Vol. 2, 2003, pp. 519-526.

[10] Khaled E. A. Negm and Wael Adi, “Secure Mobile Code
Computing in Distributed Remote Environment, Proc. the
2004 IEEE International Conference on Networking, Sensing
and Control, 2004, pp. 270-275.

[11] W. Farmer, J. Guttman, and V. Swarup, Security for Mobile
Agents: Issues and Requirements. In Proc. of the 19"
International Information Systems Security Conference, pp.
591-597, 1996.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, “Pattern-Oriented Software Architecture: A System of
Patterns,” John Wiley, UK, 1996.

[13] J. White, “Mobile Agents,” in Software Agents (J. Bradshow,
ed.), ch. 18, pp. 437-472, MIT Press, 1997.

[14] A. Tripathi, N. Karnik, N. Vora, T. Ahmed, R. Singh,
Mobile Agent Programming in Ajanta, Proc. of 19th IEEE
International Conference on Distributed Computing Systems,
pp. 190-197, 1999.

Facilities

[15] M. Bellare, S. Goldwasser, and D. Micciancio, “Pseudo-
Random Number Generation with Cryptographic Algorithms:
the DSS Case, Crypto 97, LNCS 1294, pp. 1-12, Springer,
1997.

[16] T. ElGamal, “A public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms, Proc. of Crypto ’84,
LNCS 196, pp. 10-18, 1984.

[17] Common Vulnerability Exposure (CVE) http://cve.mitre.org/.

[18] TG: Traffic Generator, http://www.postel.org/services.html.

K. Negm, Ph.D., SMIEEE, CISSP, CISA, Associate Professor in Etisalat
College of Engineering and Senior Security Specialist Dr. Negm is a member
of the Information Systems Security Association (ISSA)-USA and
Information Systems Audit and Control Association (ISACA)-USA. He is the
Associate Chairman for the Security Standards Committee and Secretary for
the Scientific Committee of the ISSA for the Middle East and Asia. Also he is
a member of the Technical Committee of Security Standards of the IEEE and
the USENIX group. He is a member of many IEEE committees as: Technical
Committee on Computer Communication, Technical Committee on Security
and Privacy, Task Force on Information Assurance.

Currently he is an Associate Professor in Etisalat College of Engineering,
UAE. He have various International collaborations, TRIUMF-Canada, ICTP-
Italy, and ECT*-Italy, NATO -Italy. For the last 18 years he have been
involved in carrying out responsibilities for the Network Security
Architecture, including the design, implementation, and administration of
firewalls, Web servers, proxy servers, SecurelD and other network security
components for several Governmental Departments, Security Agencies,
Banks and Educational Institutes. He provided training and consulting in the
areas of security solutions and security audits. This involved writing the
corporate security policy, designing and implementing the corporate firewall
solution, and providing secure access for remote systems. Dr.

Dr. Negm has authored over 60 papers in refereed technical journals and
international conferences. He is a Senior Member of the IEEE and Member of
the Applied Computational Society. He is a regular reviewer for Modeling
and Simulation Journal, IEEE Security and Privacy and Computer Security
Journal.

Dr. Negm is an author of well knows published three IDS based on neural
networks algorithms. Currently he is interested in IPSEC, Wireless Security,
IT Forensics and the AAA Wireless Problems. Dr. Negm is listed in Who’s
Who in Information Technology and Networks Systems Security and
Nominated to be the Professional of the Year 2004 (of IT Security) by the
International Association of Networking Professionals-USA.

736

