International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:11, 2009

Design as Contract and Blueprint — Tackling
Maturity Level 1 Software Vendors in an e-School
Project

Yung-Pin Cheng, Ching-Huei Wang

Abstract—Process improvements have drawn much attention in
practical software engineering. The capability maturity levels from
CMMI have become an important index to assess a software com-
pany’s software engineering capability. However, in countries like
Taiwan, customers often have no choices but to deal with vendors that
are not CMMI prepared or qualified. We call these vendors maturity-
level-1 (ML1) vendors. In this paper, we describe our experience
from consulting an e-school project. We propose an approach to help
our client tackle the ML1 vendors. Through our system analysis, we
produce a design. This design is suggested to be used as part of
contract and a blueprint to guide the implementation.

Keywords—CMMI, Software Engineering, Software Design, De-
sign as Contract.

I. INTRODUCTION

Software development life cycle is often partitioned into
several stages. These stages include requirement acquisition,
requirement specification, system analysis and design, cod-
ing (implementation), integration testing, testing, and mainte-
nance.

Conventionally, the stages of requirement and specification
determine “what to build.” The goal of these stages is to
define user and system requirements and write them into
specifications. In past decades, many methodologies [4], [6]
have been developed for requirement acquisition, elicitation,
and specification. In practice, capturing the behavioral require-
ments with use cases has started to dominate the industry [3],
particularly for the software outsourcing industry.

System analysis and design, on the other hand, determine
“how to build.” Typically, system analysis and design are
carried out by the software companies, which we will call
them “vendor” in the later sections. The result of the stage
is an artifact called “design.” A desigh may include system
architecture, modeling diagrams (e.g., UML diagrams), mod-
ule interfaces, and etc. Under normal circumstances, A design
is an important artifact for programmers to follow, obey, and
implement.

In general, the line between specifications and analy-
sis&design is sharp. It is a common belief in software engi-
neering community that specifications (either written formally
or informally) should be neutral from analysis, design, and
coding. Specifications can serve as a contract to be negotiated
between vendors and customers. So, a specification must be

Y.-P. Cheng and Ching-Huei Wang is with the Department of Computer
Science and Information Engineering, National Taiwan Normal University,
Taipei, TAIWAN e-mail: (ypc@csie.ntnu.edu.tw).

understandable for customers. On the other hand, how speci-
fications are designed and implemented is up to the vendors.
As long as the final system conforms to the specifications,
customers are satisfied. After all, customers usually do not
have the expertise to assess some of their system’s important
properties, such as architecture or maintainability.

In this paper, we describe the work and experiences from a
real consulting case. In this case, an e-school system developed
by some vendor has been installed and deployed in a county
of Taiwan for two years. For convenience, we shall refer to the
system, the vendor, and the county as system X, vendor X, and
Y county? in later sections. The end users of this system are
school teachers and staffs. The total number of schools is more
than 100 and the number of teachers and staffs is more than
3000. Unfortunately, system X has been plagued by system
flaws, unreliability problems, and low usability problems. Last
year, we were invited to investigate the problem, understand
the system, and then propose a feasible solution for building
a system of next generation.

The conflicts between Y county government and vendor X
are the major concerns of our consulting work. The difficulties
that frustrate Y county government are that most vendors do
not have adequate capability in software engineering. Using
terms from CMMI, these vendors are maturity level 1. We
call them maturity-level-one (ML1) vendors. To address this
specific problem of Y county, we propose making a design
as a contract and blueprint in the development of their next-
generation e-school system. To complete the contract, a vendor
is required to build a system that conforms to the design (we
call it blueprint) we produce, rather than some specifications
in an ordinary case. We build the detailed design which serves
as a blueprint to direct, guide, and constrain the programmers
to keep the development on the right track. Consequently, the
customer, Y county government, can have system properties
like architecture, reliability, and maintainability, controlled at
their hands.

In the following sections, we will first describe the problems
of system X and the difficult situation in which Y county
government is trapped. We also describe how we redesign the
architecture, how we use UML to capture system behaviors
to certain level of details, and why our proposed solution is
justified. At last we also contrast our work with the popular
Agile development method[10].

1The county locates in the north-eastern part of Taiwan.

2682

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:11, 2009

Il. FACT SHEET
A. Software Industry in Taiwan

In this section, we list some facts of software industry in
Taiwan. These facts constitute the context which leads to our
work.

o Taiwan is a country well-known for its hardware de-
sign and manufacturing. The success of hardware OEM
(Original Equipment Manufacturing) and ODM (Original
Design Manufacturing) makes Taiwan a major force in
global IT industry. In contrast, the Taiwanese software
companies are overall less competitive in terms of the
software engineering capability[7]. The number of com-
panies which are qualified as CMMI level 2 is still in
single digit. A large percentage of the companies do not
take software engineering discipline seriously. Such an
atmosphere can be traced back to the lack of software
engineering education in computer science program (see
[7] as well).

« In Taiwan’s job market, entering a software company
is not necessary the first choice of talented CS gradu-
ates. Many hardware companies pay more. Consequently,
software companies, particularly those without financial
advantages, have trouble hiring good programmers.

« With the popularity of web programming languages like
PHP and ASP (which is much easier to learn than general-
purpose languages like C++), many programmers without
formal CS education enter this area of job market. Typi-
cally, these jobs are less paid and cannot attract talented
programmers with formal CS education. This could be
a cause that leads to underestimate the complexity of
software development.

The facts we describe above, of course, is simply an obser-
vation from average cases. Good software companies which
have financial advantages and market globally suffer much less
from the above facts.

B. The e-School project

Several years ago, Taiwan government decided it was the
time to initiate the idea of e-school from elementary level
to junior high. Some major e-school requirements are: store
students’s grades and data electronically, exchange and track
students’s data when they transfer, support decision making
for distribution of educational budget and funds, and monitor
and assess the performance of teachers or schools.

Technically speaking, the e-school project should be of
national-scale. However, due to political reasons, the central
government decides to implement this e-school idea in a loose
way: They only produce an XML standard for exchanging data
between e-school systems of county government. It is county
government’s responsibility to develop an e-school system of
their own or buy one from vendors.

Since then, there are only some e-school systems under
developing or on-line for use. Most county governments make
no move in a wait-and-see altitude. Some counties use an
open-sourced e-school system developed by teachers. It is
designed for a single school. Some counties tried a centralized

e-school system (a.k.a., system X). System X is modified from
the open-sourced system into a centralized version by vendor
X. Two years ago, Y county government deployed this system
X. They favor a centralized system because they want to
draw useful information from the database to support decision
making of education policies. System X is a thin-client system,
where end users use web browsers to submit or get data from
the centralized server. The language to implement the system
is PHP. System X uses PHP scripts to access the database and
returns the data in HTML to end user’s web browsers.
Unfortunately, the two-year experiment with system X is not
a pleasant experience to Y county government. The system is
plagued by many problems. Here, we list them in items.

« The teachers in school may submit test scores at the same
period of time. In peak time, large network connections
jam the system occasionally. Many end users complained
the loss of submitted data. They ended up in re-keying
in the data.

« Before deploying the system, the user interfaces have
never been surveyed by some usability test. End users
complained about the complexity of user interfaces and
are reluctant to use the system as a helpful toolkit. Many
teachers key in their data on Excel sheet first and submit
the data only when necessary.

« Before deploying the system, the system had not been
fully tested under a formal testing procedure. End users
are actually treated as testers in the beginning. Complaints
about system flaws have never stopped. As a result, end
users are reluctant to explore and use the whole system.
They confine themselves to a small set of workable
system functions. So, rather than enjoying the benefits
and convenience of the e-school system, they passively
resist this e-school policy.

« When there are flaws or requirement changes, the re-
sponses from vendor X take a long time. Besides, when
they fixed a flaw, they introduced new flaws to the system.

« The system’s source code is written without structures
or explicit comments. In practice we call such code
as “spaghetti code.” There are very few documents for
reference. Overall, no software engineering process has
ever been conducted along the development.

The symptoms we described above, actually, shouldn’t be
a surprise to the software engineering community. These
problems are typical software engineering problems.

C. The dilemmas of Y county government

The problems of system X, of course, are not new. CMMI
is the most well-known standard to overcome such problems.
However, Y county government must face some constraints
and limitations. We list the dilemmas as follows:

« Taiwan’s government projects must open to the public.
Typically a project is given to the lowest legitimate
bidder. If the projects are hardware constructions, such
as building construction, this policy works fine for most
of the time. Typically, hardware construction requires
little maintenance and the maintenance may not require
the same vendor. However, to a software project, the

2683

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:11, 2009

maintenance is a big problem. The cost to replace a
vendor is very high and vendors know that.

« Itis legal for Y county government to limit the bidders to
CMMI qualified vendors. However, setting such a limit
would simply result in no bidders in current Taiwan’s
software environment. This phenomenon has been de-
scribed previously.

« Y county government has no confidence in the capability
of other candidate vendors. Records show the bidders
of the e-school project in other counties have the same
origin.

Overall, these facts lead to the consulting work in this paper.

I11. SEARCHING A PROCESS METHOD

One year ago, we were invited to analyze the problem and
propose solutions for the future. Y county government wants to
replace system X with a new one. Since the replacement cost
is very high, the new system should have following properties
to compensate for the replacement cost.

1) They want a system that can last for decades and evolve

successfully for requirement changes.

2) In case the vendor can not continue their maintenance
for some reasons, they want a system which can be
maintained and modified without the original vendor.

3) They want a system that is fully tested before deploy-
ment.

4) The system’s user interface should undergo a rigid
usability test.

5) A system that can scale and survive large number of
connections in peak hour.

Their future plan is either have the new system released to
new vendors or assemble a development team? under their
computer center. In either ways, their concerns are:

« If they open the project to vendors again, how can they
assure that these goals are achieved?

« If they implement the system by their own development
team, an amateur team, how can they assure that these
goals are achieved? After all, their programming skills
are uncertain.

To meet the above expections, we first need to come up with a
process improvement method to address the difficult situation
where county Y is in.

In past decades, different kinds of software process and
process improvements have been proposed to address the
software engineering problems. CMMI no doubt is the most
well-known process improvement standard to assess a software
company’s capability maturity. Besides the standard, several
methods have been also proposed in these years, such as the
unified process [8], [9], Win-Win spiral model[1], [2], and etc.
In practice, Agile method[10] which advocates programming
in pair, test-driven manner, also attracts lots of attention
recently.

2Because of the limits in law and budget concern, it is difficult for a county
government to hire talented programmers from outside. So, the programmers
will be drafted from school teachers. Some teachers are talented and show
great interest in programming but they typically do not have formal CS
education or training.

company X

o

customer 60
satisfaction 4

20
0+

level 1 level 2 level 3 level 4 level 5
Capacity Maturity Index

Fig. 1. The relationship between customer satisfaction and capacity maturity
levels.

These process methods or standards, however, are all based
on an assumption:

“By applying software process and process improvement on
developers, eventually developers should deliver products with good
quality. Consequently, customers are happy and the ultimate goal —
customer satisfaction — is achieved.”

To further explain it, in Fig. 1, we borrow CMMI’s
five level index as the X-axis. Average customer satisfaction
is Y-axis which ranges from 0% to 100% satisfaction. Note
that the percentages we show in this figure are not collected
from any real data. We merely attempt to use it for the purpose
of explanation. In the figure, if a vendor’s capability maturity
is level 5, we expect the average customer satisfaction will
maintain at a high satisfaction and the variance should be
small. However, if a vendor is maturity level 1 (ML1), we
expect the customer satisfaction can vary dramatically. For
example, in the figure, the customer satisfaction can range
from 0% to 80%. There are chances that a customer can
still get good service from these ML1 vendors, if a vendor
happens to have talented programmers or managers who can
have the job done in some informal way. However, giving
a project to ML1 vendors, a client cannot be sure about the
quality of results. The quality of results can range from very
bad, poor, satisfactory, to good. So, by applying the process
improvement methods or standards mentioned above, in the
figure, a vendor’s capability maturity is hopefully heading to
the right. In other words, process improvement (or methods)
is an action taken by the vendors themselves. It is not obliged.

Unfortunately, waiting for the vendors to better themselves
in terms of software engineering capability is a luxury we
don’t have. There are no positions for us or the county
government to impose the process on vendors. This is not
the way it works. So, we decide to approach the problem in
a different way. It can be explained in Fig. 2. In the figure,
we accept the fact that vendors (or the amateur development
team) are ML1. We perform system analysis on this project to
produce a design. We make the design as part of the contract
and a blueprint for future vendors to follow. The blueprint is

2684

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:11, 2009

100
80

customer 60
satisfaction 4

O company X
20 pany
0+ . . . :
level 1 level 2 level 3 level 4 level 5

Capacity Maturity Index

Fig. 2. Searching for a process to reduce the variance of customer satisfaction
for low-level vendors.

actually a detailed design, it includes artifacts like architecture,
UML diagrams, module interfaces, user interfaces, and etc. In
other words, we relieve vendors (or the amateur team) of the
burden in analysis and design activities. These activities are
often critical and require wisdom from experienced experts.

As shown in Fig. 2, our process does not attempt to better
a company to the right (higher capability maturity). Instead,
we hope our process can narrow down the variance of the
customer satisfaction for ML1 vendors (or the amateur team).
The wedge shape of customer satisfaction in Fig. 1 can hope-
fully be changed into a belt shape of Fig. 2. Consequently, the
mean value of customer satisfaction should also be increased
(e.g., the company X).

1V. MAKING A BLUEPRINT

To obtain a detailed design as a contract and a blueprint, of
course, there are many questions remained to answer. These
questions are:

1) How do we express our design?

2) How detailed is a design can be called a “blueprint”?

3) How can we make sure our design is workable and

correct?

In these questions, some have explicit answers and some
unfortunately do not. To the first question, the success of
UML diagrams no doubt makes it a unique candidate for
expressing the design. To the second question, the definition
of a software blueprint, unfortunately, is vague. Some
dictionary says a blueprint is a design. However, even the
definition of a software design can be very confusing under
different domains, scenarios, and context[5]. Since our work
is a practical one, we simply define the blueprint in our own
context.

A blueprint is a document which consists of architecture
design, UML models (for describing static data relationship,
dynamic behaviors, and workflow), design rationale, links to
use cases, module interfaces, prototype user interface, and
the needed text to guide, help, and aid the understanding
of a system so that arbitrary programmers can implement
the system without making efforts in highlevel activities like

analysis, design, abstraction, and planning.

In the definition, the term *“arbitrary programmers” is a
little bit risky. We use the word simply to emphasize that
our blueprint should be understandable for the programmers
who never participate in our analysis or some forms of
communication, i.e., the design should be self-explanatory.
We also assume the programmers are familiar with UML.
As a matter of fact, to what extent a blueprint is enough
for programmers to understand is hard to define formally.
After all, this is what make software engineering a difficult
discipline.

Recall that one of Y county’s goals is to be able to maintain
the system without the original vendor. A blueprint is the solu-
tion to this goal. We hope arbitrary programmers can simply
read the documents and then become capable of modifying
the system in a short time. To meet this requirement, a large
amount of text has been written in the blueprint to explain the
design rationale, which shall provide enough clues for future
maintenance.

To question 3, our solution is to validate our design by
prototyping. This part of work will be explained in more
details in later sections.

V. SYSTEM ANALYSIS AND DESIGN OF E-SCHOOL
SYSTEM

In this section, we describe some interesting results from
our system analysis and design on the e-school system.

A. Architecture analysis

Much of the innovation in programming in recent years
has involved loose coupling. The invention of database driver
methodologies such as JDBC and ODBC led to applications
being loosely coupled with their back end databases, allowing
best-of-breed databases to be chosen - and swapped out when
necessary — without any little effect on the user interface.

Nowadays, with the prevalence of web browsers, many e-
commerce systems use web browser as their user interface
to construct a so-called 3-tier architecture. The first tier is
a thin-client user interface (e.g., web browser) which does
not implement any business logics. The second tier which
accepts requests from the first tier, is where business logics
are implemented. The third tier is the database. Note that
3-tier framework is merely a conceptual model. The second
tier and the third tier do not necessarily locate on different
machines. In Fig. 3, we show a 3-tier system where the second
tier is implemented using PHP web application programming
languages. PHP is a scripting language® based on the model
of preprocessing HTML pages. When the PHP preprocessor
in Web server notices a PHP language tag, “<?php”, the PHP
engine is invoked to execute the code between the tag. Most
applications contains PHP script to access database and the
result is sent back to client’s browser.

PHP is indeed very popular, easy to learn, and easy to write.
System X is implemented in this way. Recall that system X

3which has a head-to-head competition with ASP from Microsoft.

2685

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:11, 2009

Server

center
database

HTTP PHP
script

]

ODBC

Fig. 3. A 3-tier architecture using PHP as an example.

suffers from the scalability problem in peak time. We analyzed
the system and have the following observations:

1) System X implements user interfaces in web browsers.
However, some works in the system require a con-
venient, powerful user interfaces. To accomplish these
works, plenty of interactions and steps need to be taken
care. Implementing such a user interface by a web
browser has an obvious drawback - an HTTP request
is sent whenever an action in the user interface is taken.
This is the main cause for network congestion during
peak time.

2) HTTP is stateless. Under the PHP architecture, a PHP
script is executed as new every time. Same data which
has already been generated in previous requests is
computed again. As a result, the database is accessed
frequently in a redundant way.

3) As for now, web browsers are not designed for imple-
menting complicated user interfaces. There are several
shortcomings of web browser. They are:

a) The speed to render of a web page is slow because
it needs to download and parse an HTML file.
Its response time is no match for an application
running locally.
b) Its form does not memory newly keyed in data. A
careless action (e.g., clicking the button “back’) or
a failure to submit the data to server can lose all
the data.
In the above observations, observation 1 is the key factor
which prevents system X from scaling up during peak time.
One trivial solution to the problem is increasing the network
bandwidth, server’s CPU speed and memory (for parallel-
running HTTP daemon process and PHP preprocessor), or
investing load balancing hardware. However, these are all
hardware solutions, which have its limits in hardware physics
and cost. We expect a solution which can solve the scalability
issue radically.

B. Architecture redesign

After we understand the causes, we propose a new architec-
ture which is built under web services. Web service no doubt is
the hottest technology to build a distributed enterprise system
nowadays. The progress of XML and the commitment from
heavy players like Microsoft, make web service a technology
that worths investment in the long run. It will gradually replace

Server side

Database tier

Client application web service tier

HTTP/SCIAP

access

central
database

Fig. 4. The 3-tier architecture using web service.

technologies like CORBA or DCOM for building distributed
applications.

Observing that the frequent interactions in user interfaces
may cause the network congestion, we redesign the architec-
ture as in the Fig. 3. In this design, the thin-client principle
is reversed a little. The client side application (the 1st tier)
is implemented as window applications. These applications
connect the server via web services, where web services serve
as 2nd tier. Under this architecture, in most of the time, the
client applications stay off-line to server. Only when end users
take particular actions, the connection is then established to
invoke the web services. For example, in the application which
computes student test scores, initially, the application will
invoke a web service to download student’s names, student
ids, and course ids from the server. Then, the application
stays disconnected and off-line from the server. A teacher can
calculate student grades in a spreadsheet-like user interfaces on
a local machine, which provides more convenient functionality
than a regular Excel sheet. A teacher is allowed to save its
results to local files and bring them around different machines.
When a teacher finishes its grading, it can use the application
to submit the grades to the server by invoking another web
service. So, every end user’s interaction with the application no
longer triggers an HTTP connection to the server. Database is
also much less accessed since same data will not be generated
repeatedly. This is how we “radically” solve the scalability
problem.

C. An architecture anti-pattern

Concluded from the above results, using web browser to
practise thin-client principle must be careful. It depends on
the complexity of the user interfaces. A wrong design choice
may induce low performance, low scalability, low usability,
and long response time of user interfaces.

In practice, many e-commerce systems are implemented
using browser+PHP solution simply because end users do not
interact with the system in a complicated way. Typically, their
interactions are of patterns like COMMERCE SITE, BUY/SELL
or SHOPPING CART [11]. Under these circumstances, we
believe the browser+PHP solution works adequately. To deal
with scalability problem, increasing hardware investments or
adding some caching system, is still the ultimate solution.

2686

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:11, 2009

On the other hand, for enterprise systems which are only
open to their staffs or limited end users, if the nature of
their work requires frequent user interface operations, the
browser+PHP solution apparently is a lousy one. This example
also shows that ML1 vendors could blindly chase the thin-
client principle without understanding the story behind the
scene. Also, it is a very good anti-pattern which worths
documenting.

We believe many experienced architects have discovered
this design choice from different systems. Many enterprise
systems are indeed seldom implemented by the browser+PHP
solution. When web service technology were not available
then, these systems are typically implemented in a client-server
framework. More advanced ones could be built under CORBA,
DCOM, or RMI in Java.

VI. PROTOTYPING TO VALIDATE DESIGN

In a regular development process, analysts, architects, and
developers typically work together as a team. So, when a
design has flaws, analysts and architects can get feedback from
developers to correct the flaw immediately. Nevertheless, that
is a luxury we don’t have. We use the term “blueprint” to
emphasize that the design we produce should be a proved and
tested design. To assure that, a lot of prototypes were built
and tried before the design is written.

A. User Interface Prototypes

In the two-year experience with system X, one major com-
plaint is the complexity and confusion of the user interface.
The poor user interfaces make end users reluctant to use the
system. On the other hand, during the analysis, we began to
understand that school teachers (including elementary level
and junior high level) are difficult and picky than we expect.
First, the age of teachers can range from 20s to 60s, across
5 generations. Second, the majors of teachers can range from
arts, literature, physical education, to science. As a result, their
computer skills vary considerably. The vendor had a hard time
in educating and training them.

To make future training and education easier, we conducted
several user interface usability surveys. The user interface
prototypes are designed based on a philosophy - treating the
end users as if they knows little about computer. The major
user interfaces are much wizard-based. Step-by-step wizard
style user interface is constructed to smooth the learning curve.
As to powerful users, they can turn on the so-called “power
option” to avoid the step-by-step dumb user interface and play
with powerful functions.

After the prototypes were tested, surveyed, these user
interfaces are written into use cases to specifically restrict
future user interfaces design. Note that UML standard does
not specify the syntax and format of how to write a use
case. In practice, a use case captures a contact between
the stakeholders of a system about its behaviors. Use case
are fundamentally a text form, although they can be written
using flow charts, sequence charts, Petri nets, or programming
languages. Under normal circumstances, they serve as a means
of communication from one person to another, of among

people with no special training. Simple text is, therefore,
usually the best choice[3]. In our case, however, the use cases
are primarily used to communicate from us to programmers.
They are people with needed training. When writing plenty of
use cases for the e-school system, in our opinion, using text to
describe the requirements of user interfaces, their alternatives,
or extensions are tedious. A prototype user interface is worth
100,000 words. Written requirements specifications trying to
describe the look and feel of a user interface were nowhere
near as effective as a user interface prototype or screenshot[1].
So, we boldly embed the prototyped user interfaces in the use
cases. These use cases, however, are no longer neutral as a
use case should be. They are actually part of the design.

B. Web service prototypes and interfaces

In this analysis, we choose web service as the technology
for client applications to communicate with the server. In
this work, the web services are simply used as a means to
replace older techniques like remote procedure calls, CORBA,
or DCOM. These web services will not be open to the public.

We built some prototypes to try out the .NET platform then
write down the web service interfaces for developers to follow.
A typical web service in .NET is similar to a procedure call
like:

DataSet scoremgr_get_score (string school_id,
int semester_year,
int semester_no,

string login,
string passwd)

To make sure we do not miss any parameters, we often built
a small prototype, tried the idea, and validated the results to
see if we miss anything.

After the web service interfaces are clearly defined, we
further explain its behaviors by sequence diagram like Fig. 5.
In this sequence diagram, we explicitly tell the programmers
the sequence of database queries and the tables involved.
Following the diagram to implement a web service shouldn’t
be a difficult job.

VI1l. DiscussioNs AND CONCLUSIONS

In this paper, we describe a consulting work to tackle
ML1 vendors in an e-school project. The approach is to
construct a detailed design which serves as a contract and
a software blueprint. This approach is a process specifically
designed for a particular stakeholder (in this case, the Y
county government), where we play the role as a consulting
team, an architect team, and a design team to produce a
software blueprint that guides and restricts ML1 vendors to
implement the future system. The correctness and precision
of the blueprint are validated by prototyping. We have built
prototypes of different kinds to validate different problems.

Overall, this approach can be analoged to a typical process
in other engineering discipline such as civil engineering. In
the discipline, a building can be designed by an architect to
produce a blueprint and then constructed by other teams. Such
a way, of course, is not common for developing software but
there are reasons that lead us to the approach.

After all, constructing a building and a software has fun-
damental difference in nature. A building is static. It does

2687

Teacher

r______

login

International Journal of Information, Control and Computer Sciences

A teacher may teach several
classes in a semester

web service A

scoremgr_get_score(

ISSN: 2517-9942
Vol:3, No:11, 2009

authorization

—>

return legal

[legal] retrieve all the classes taught by login

—>

return classes

Central

Database

query table: ACCOUNT

VT

query table: TEACHING_EVENT

> for each class

retrieve student id, name

return student_id, name, seat no

query table: ENROLLMENT, STUDENTDATA

> for each class

retrieve existing grades, if any

return quiz score and term score

query RAW_SCORE

return DataSet

T

L -- pack these info in a DataSet
1
1
|

Fig. 5. The sequence diagram to describe the web service behaviors.

not have behaviors. A building’s blueprint which often does
not need much text to explain can be understood by arbitrary
qualified civil engineers. In contrast, despite the success of
UML, if a design is only expressed by UML diagrams, it is
apparently not readable nor understandable. There are missing
pieces. In this work, we supplement a lot of text, such as
design rationale, the context, and etc. Such supplements,
however, are up to the designer’s writing skills. Besides,
the problem of using text is that a reader can easily miss
some critical points from large amount of text. These are the
problems which makes software engineering so different from
other engineering disciplines, and they are worth exploring.
The results of this work, obviously, is an opposite to the
Agile method[10]. The manifesto of the agile alliance are:

« Individuals and interactions over processes and tools
« Working software over comprehensive documentation
« Customer collaboration over contract negotiation

« Responding to change over following a plan

When there is value in the terms on the right, they value the
items of the left more. They believe code is the best docu-
mentation. Here, we do not intend to compare our results with
their beliefs, simply because the assumptions of our approach
and theirs are totally different. Their process improvement is
designed to impose on developers, whereas our approach is
not. Nonetheless, we believe software processes is difficult to
be unified. An appropriate software process must be chosen
carefully or modified from existing ones to balance the weights
among different factors.

REFERENCES

[1] B. Boehm. Anchoring the software process. |IEEE Software,
13(4):73-82, July 1996.

[2] B. W. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan, and
R. J. Madachy. A stakeholder win-win approach to software
engineering education. Annals of Software Engineering, 6:295—

321, 1998. . . .
[3] A"Cockburn. Writing Effective Use Cases. Addison Wesley,

004. . .

[4] % Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed
requirements acquisition. Science of Computer Programming,
20(1-2):3-50, 1993. . Lo

[5] A.(H. Eaen an%i % Kazman. Architecture, design, implementa-
ion. In ICSE 2003 es 149-159, 2003. .

[6] % J. éreenspan,os). I\E)ﬁ%poulos, and A. Borgida. On formal re-
quirements modeling languages: RML revisited. In International

Caonference on Software Engineering, .pages 135-147, 1994,
[7] I.cll. 1. 1.J. S, Ke, Pre?lr ent. “Softwar |Rg%stry?fn taiwan. In The

Seventeenth International Conference on Software Engineering
[8] ﬁnjjaé)%g\évrll?dggBEonogcin?gﬂg 9, 2Rouor?lbaugh. The Unified Software
[9] E%?Iu(t’ %ﬁtTWeo %%Sbr%fj ?J%?He}jlv §Ie eség,%\?l Introduction, 2nd
[10] %’ grle{/rlgir%fn.'_' ggilé%?t'ware Development, Principles, Patterns,

and Practices. Prentice Hall, 2004. .
[11] M. Weiss. %Satterns or wel aprﬁlcatlons. In The 10th Pattern

Languages of Programs (PLop 2003), 2003.

2688

