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 
Abstract—Multi-energy systems will enhance the system 

reliability and power quality. This paper presents an integrated 
approach for the design and operation of distributed energy resources 
(DER) systems, based on energy hub modeling. A multi-objective 
optimization model is developed by considering an integrated view of 
electricity and natural gas network to analyze the optimal design and 
operating condition of DER systems, by considering two conflicting 
objectives, namely, minimization of total cost and the minimization 
of environmental impact which is assessed in terms of CO2 
emissions. The mathematical model considers energy demands of the 
site, local climate data, and utility tariff structure, as well as technical 
and financial characteristics of the candidate DER technologies. To 
provide energy demands, energy systems including photovoltaic, and 
co-generation systems, boiler, central power grid are considered. As 
an illustrative example, a hotel in Iran demonstrates potential 
applications of the proposed method. The results prove that 
increasing the satisfaction degree of environmental objective leads to 
increased total cost. 
 

Keywords—Multi objective optimization, DER systems, Energy 
hub, Cost, CO2 emission. 

I. INTRODUCTION 

N the one hand the population and energy consumption 
per capita has been growing very fast. On the other hand, 

the concerns about the depletion of fossil fuel resources and 
environmental pollution have also been increasing [1]. In this 
respect, policy makers admitted that transition to renewable 
energy sources is the path for consecutive success of human 
development [1], [2]. Iran enjoys valuable oil and natural gas 
resources. Due to the growing trends of energy consumption, 
the consumption of natural gas resources is highly increasing, 
while this can be supported by the fact that the rate of natural 
replenishment of fossil fuel resources is much smaller than the 
rate of energy demand in Iran [3]. Furthermore, statistics show 
that meeting the increased energy demand from fossil fuel 
would result in increased production of environmental 
pollutions. The CO2 emission per capita is 6.6 ton in Iran in 
2010, while the CO2 emission per capita in the world is 4.4. In 
view of these two factors, it is clear that there is a necessity for 
systematic and progressive shift toward renewable energy 
systems in Iran [3], [4]. 

Distributed energy resources are small scale energy 
generation systems located close to end-users. In comparison 
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with conventional energy supply systems, Distributed energy 
systems may employ a lot of energy conversion technologies 
such as: combined heat and power systems, wind turbines, 
photovoltaic, and those systems based on renewable energy 
resources [5], [6]. From the sustainable point of view, 
distributed energy systems are more reliable, efficient, and 
environmentally friendly [7]. 

Distributed energy systems are believed to enjoy a great 
potential for the reduction of environmental pollution for 
energy demand such as heating, electricity and, cooling, in 
Iran. Therefore, distributed energy systems represent a good 
alternative for a more sustainable development. However, 
designing an optimal distributed energy system that provide 
the energy demand of a district by considering environmental 
pollution (CO2 emission) and costs, needs a new methodology. 
The development of which is the subject of this work. 

 Many references work on Distributed energy systems [6]-
[8]. In spite of different benefits, the incorporation of DER 
technologies in the energy system is not an easy task. The 
optimal design of such a system requires selecting appropriate 
energy conversion system from numerous alternatives to 
match the energy demand. Besides, it is also required to 
determine the capacity of the assumed technologies and the 
operating conditions according to the fluctuation of energy 
demands.  

In order to face with such a complicated and intricate 
subject, a systematic analysis and evaluation procedure is 
imperative. Some available models have been reviewed in 
literature [9]. Various literature [10]-[12] have surveyed about 
the available tools in this field. DER-CAM which has been 
developed by Lawrence Berkeley National Laboratory and 
HEATMAP and HOMER are the other beneficial tools for 
simulating of distributed energy systems. Hafez et al. [13] 
focuses on optimal design, planning, sizing, and operation of 
renewable energy systems by means of HOMER. The other 
research has developed a method for optimal sizing of DER in 
micro grid by considering the reliability and cost [14]. 
Furthermore, a mathematical model is a presented by 
Handschin et al. [15] to increase the economic efficiency of 
DER systems while considering the uncertainties. 

Ren et al. [16] developed a mathematical model of 
distributed energy systems operation which evaluates the 
economic and environmental effects of the DER technologies. 

Each of the aforementioned research, dealing with 
distributed energy system modeling, has its own 
characteristics. It can be concluded that an integrated approach 
for the design and operation of distributed energy systems 
while considering the renewable and non-renewable energy 
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Fig. 2 Example of energy hub model for typical hotel 
 

To provide the electrical energy demand of the hotel, there 
is an option between combined heat and power systems and 
photovoltaic and also electricity grid. Besides, Boiler and CHP 
considered for providing the heat demand. The surplus 
electricity is delivered to the grid while the generated 
electricity by DER exceeds the electricity demand; the Electric 
grid provides the deficit electricity. 

The given data for the optimization are the electricity and 
heat demand for each month of the year for a typical hotel in 
Tehran. DER technologies cost and their technical 
information, feed in tariff of electricity, gas price, price of 
selling excess electricity, hourly solar irradiance profile for 
each month of the year are the required information of the 
energy hub modeling. 

What to be determined by the modeling and optimization 
are the allocations and capacities of DER systems, hourly 
electricity and heat profiles, transfer of electricity between 
grid and  the proposed Energy hub. 

V. OBJECTIVE FUNCTION 

In order to achieve optimum design of en energy hub, 
decision variables should be determined using an optimization 
model. The optimization model is composed of objective 
function, decision variables as well as physical constraints. In 
the present research, two objective functions are considered to 
form the Pareto curve that represents the tradeoffs between 
conflicting objectives. Solution to a multi objective 
optimization is a concept rather than a definition, 
notwithstanding single objective optimization method. 

One of the most common general methods for multi 
objective optimization is the weighted global criterion method 
in which all objectives are gathered in a single function. One 
of the most general functions is presented in the weighted 
exponential sum (2). 
 

ܷ ൌ ∑ ,ሻሿ௣ݔ௜ሺܨ௜ሾݓ ሻݔ௜ሺܨ݅׊ ൐ 0                       ௞
௜ୀଵ (2) 

where k is the number of the objective functions and wi is the 
weighted factor that should follow as (3). 
 

∑ ௜ݓ ൌ 1 ௞
௜ୀଵ                                      (3) 

  
In this paper, multi objective optimization is performed by 

considering two objectives namely, minimization of total 
annual cost ($/yr) versus minimization of CO2 emission 
(ton/yr). (4) 
 

ሺܼሻܰܫܯ ൌ ሺannual total cost ሻݓ െ ሺ1 െ   ሻ    (4)݊݋ݏ݅݉݉݁ 2ܱܥሻሺݓ
 

Since the multi objective optimization methodology is very 
sensitive to the objective function scaling, it is recommended 
that the objectives can be normalized into a dimensionless 
scale. (5) [24] 
 

௜ܨ
௧௥௔௡௦ ൌ

ி೔ሺ௫ሻ

หி೔
೘ೌೣห

                                   (5) 

 
The first objective is related to the minimization of total 

energy cost. It includes cost of fuel and operational cost of 
every technologies as well as the investment cost of DER 
systems. Moreover, the energy transfer income with the grid is 
also considered in the objective which can be heat or 
electrical.  

To get the annual investment cost, the Capital recovery 
factor (CRF) of every technology is also considered in which r 
is the interest rate and n is the lifetime of every technology.  

 

.(1 r)

(1 ) 1

n

n

r
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r




                
 

The other objective is the minimization of CO2 emission. 
According to the energy hub modeling, all the parameters and 
all the variables are considered as a matrix.  

The objective function is presented in (6) and (7). 
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VI. CONSTRAINTS 

The first constraint is related to the balance of supply and 
demand (input flow and output flow) and also flow transfer 
with the grid. The excess energy flow produced by DER 
technologies can be bought to the grid in a form of electricity 
or heat. Therefore, the output energy flow of every technology 
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