
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1631

Abstract—Real-time object tracking is a problem which involves

extraction of critical information from complex and uncertain image-
data. In this paper, we present a comprehensive methodology to
design an artificial neural network (ANN) for a real-time object
tracking application. The object, which is tracked for the purpose of
demonstration, is a specific airplane. However, the proposed ANN
can be trained to track any other object of interest. The ANN has
been simulated and tested on the training and testing datasets, as well
as on a real-time streaming video. The tracking error is analyzed with
post-regression analysis tool, which finds the correlation among the
calculated coordinates and the correct coordinates of the object in the
image. The encouraging results from the computer simulation and
analysis show that the proposed ANN architecture is a good
candidate solution to a real-time object tracking problem.

Keywords—Image processing, machine vision, neural networks,
real-time object tracking.

I. INTRODUCTION
EAL-TIME object tracking (OT) is a very specific field
of study within the general scope of image processing and

analysis. Humans can recognize and track an object perfectly,
instantaneously, and effortlessly even in the presence of high
clutter, occlusion, and non-linear variations in background,
target shape, orientation and size. However, it can be an
overwhelming task for a machine! There are partial solutions,
but the work is still progressing toward a complete solution to
this complex problem.

Tracking of the targets with fixed signatures in stationary
backgrounds is a straightforward task for which numerous
effective techniques have been developed. When the target
signatures or the backgrounds vary in an unlimited or
unknown manner, the traditional approaches have not been
able to furnish appropriate solutions [1]. Therefore, a new
solution based on artificial neural network (ANN) technology
is proposed in this paper. The ANN technology provides a
number of tools which could form the basis for a potentially

Manuscript received May 20, 2005.
Javed Ahmed is with the Electrical Engineering Department, College of

Signals, National University of Sciences & Technology (NUST), Rawalpindi,
Pakistan, and also with NESCOM, Islamabad, Pakistan (phone: 92-333-
5228285; e-mail: jas123pk@yahoo.com).

M. N. Jafri is with the Electrical Engineering Department, College of
Signals, NUST, Rawalpindi, Pakistan (email: mnjafri@yahoo.com).

J. Ahmad is with the Department of Computer Science, Iqra University,
Islamabad, Pakistan. (jamilahmad1@hotmail.com).

Muhammad I. Khan is with the Electrical & Automation Division,
NESCOM, Islamabad, Pakistan. (mani87_k@hotmail.com).

fruitful approach to the object tracking problem.
This paper explains the design procedure of an ANN to

track an object (here a specific airplane) in Sec. II. The
training of the ANN is described in Sec. III. The testing
results are illustrated in Sec. IV, and the post-regression
analysis is described in Sec. V. Finally, Sec. VI discusses the
real-time implementation of the tracking application.

II. DESIGN OF THE NEURAL NETWORK FOR OT
Design of a neural network involves the selection of its

model, architecture, learning algorithm, and activation
functions for its neurons according to the need of the
application. The objective of our application is to locate a
specific airplane in the frames grabbed from a movie clip
playing at the speed of 25 frames/second.

A. Selection of the ANN Model
The application, at hand, for which a neural network is to

be designed, is a kind of function approximation problem. It
may be noted that a back-propagation neural network (BPNN)
with one (or more) sigmoid-type hidden layer(s) and a linear
output layer can approximate any arbitrary (linear or non-
linear) function [2]. The number of hidden layers is normally
chosen to be only one to reduce the network complexity, and
increase the computational efficiency [3]. Thus, a BPNN is
selected for the application at hand, and it consists of three
layers: one input layer (of source nodes), one hidden layer
(with tangent hyperbolic sigmoid activation function), and one
output layer (with pure linear activation function), as shown in
Figure 1.

B. Input Layer
The input layer of a neural network is determined from the

characteristics of the application inputs. There are 320x240
(i.e. 76800) pixels in each frame coming from a movie (or
camera). Each pixel contains three elements (red, green, and
blue components). Thus, the total number of elements in a
frame is 3x76800 (i.e. 230400). If all these elements are
directly put into the neural network, it will be almost
impossible to process the image in real-time with a standard
PC. Therefore, a preprocessing stage must be incorporated to
reduce the size and dimensionality of the input pattern.

Firstly, the color frame is converted into a gray level image,
using the following expression for every pixel [4]:

y = (0.212671)r + (0.71516)g + (0.072169)b (1)

Design and Implementation of a Neural
Network for Real-Time Object Tracking

Javed Ahmed, M. N. Jafri, J. Ahmad, and Muhammad I. Khan

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1632

where y is the gray level value of the pixel in the output
image, and r, g, and b are the red, green, and blue components
of the pixel in the input color image, respectively. The values
of y, r, g, and b are in the range [0, 255].

Secondly, the gray level image is down-sampled simply by
extracting 1st, 5th, 9th, etc. rows and columns, while skipping
all other rows and columns in the image. The size of the image
is now reduced to 80x60 (reduction factor of 4 with respect to
both the number of rows and the number of columns). Thus,
the total number of elements is reduced from 230400 to only
4800 with a total reduction factor of 48 (i.e. 3x4x4).

Thirdly, the data of the down-sampled image is normalized,
so that the value of each element can be in the range [0.0, 1.0],
instead of [0, 255] for fast convergence during the training
phase of the ANN. The normalization is done using (2):

yn = y / 255 (2)

where yn is the normalized value.
Finally, the resulting image matrix is reshaped to form a

standard pattern (column-vector), by concatenating the rows
of the image matrix, and then transposing the large row-vector
to make it a 4800-element column-vector. Therefore, the
number of input nodes in the proposed BPNN becomes 4800.

C. Hidden Layer
Hidden layer automatically extracts the features of the input

pattern [3], and reduces its dimensionality further. There is no
definite formula to determine the number of hidden neurons.
In this research, a hit-and-trial method was used to identify the
number of neurons in the single hidden layer. It was found
that only 50 hidden neurons could accomplish the task at hand
quite reasonably.

The tangent hyperbolic activation function was chosen for
the hidden layer after comparing its converging results with
those of the logistic sigmoid function. The tangent hyperbolic
function and its fast approximation [5] are given in (3):

 () 1
1

2tanh
111

11

211 −
+

≅
+
−

== −−

−

iii

ii

nnn

nn

ii eee
eena (3)

where ai1 is ith element of a1 vector containing the outputs
from the hidden neurons, and ni1 is ith element of n1 vector
containing net-inputs going into the hidden neurons. n1 vector
is calculated as:

n1 = W10p + b1 (4)

where p is the input pattern, b1 is the vector of bias weights on
the hidden neurons, and W10 is the weight matrix between 0th
(i.e. input) layer and 1st (i.e. hidden) layer. Each row of W10
contains the synaptic weights of the corresponding hidden
neuron.

D. Output Layer
The output layer of the network is designed according to

the need of the application output. Since the output of the
neural network is expected to produce the row and column
coordinates of the target (with respect to the top-left pixel

position), the number of output neurons will be two.
Since the frame size is 320x240, the values of the row and

column coordinates of the target will be in the ranges [0, 240]
and [0, 320], respectively. Thus, the pure linear activation
function is selected for the output neurons, and expressed as:

 a2 = n2 (5)

where a2 is the column-vector coming from the second output
layer, and n2 is the column-vector containing the net inputs
going into the output layer. n2 is calculated as:

 n2 = W21a1 + b2 (6)

where W21 is the synaptic weight matrix between the first (i.e.
hidden) layer and the second (i.e. output) layer, and b2 is the
column-vector containing the bias inputs of the output
neurons. Each row of W21 matrix contains the synaptic
weights for the corresponding output neuron.

The designed architecture of the proposed BPNN is shown
in Fig. 1. The dimensions of the vectors and matrices are
shown under their names, where m0 (= 4800) is the number of
input nodes, m1 (= 50) is the number of hidden neurons, and
m2 (= 2) is the number of output neurons.

Fig. 1 Architecture of the proposed neural network

III. TRAINING THE NEURAL NETWORK
The training of the neural network was performed using

MATLAB and its Neural Network Toolbox. Before training a
neural network, a dataset must be prepared on which the
network is to be trained. The BPNN is trained in a supervised
manner, so the target (desired output) for every training
pattern must also be included in the dataset. To generate the
dataset, an AVI movie clip of a specific airplane was
downloaded from internet [6]. This clip consists of taking-off,
flying (with a reasonable variety of maneuvers), and landing
profiles of the airplane. It also contains the variations in the
background and target illumination and in the scene content.

A user-controlled automatic program was then developed to
extract some suitable frames, convert them into valid patterns
using the preprocessing stage (as discussed in Sec. II-B), and
select the correct coordinates of the object in the image. These
coordinates become the elements of the 2-element desired
output vector of the proposed ANN. Using this program, a
master dataset was generated which contained about 695
examples (pairs of pattern vectors and the corresponding
target vectors).

When the network is being trained, it automatically learns
the behavior of the I/O mapping, so that whenever those
patterns (or similar ones) are shown to it again during its

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1633

application phase, it produces the desirable (or reasonable)
outputs.

Another simulation program was then developed to design
and train the proposed ANN. This program, initially, divides
the training set into two parts: training set (to train the
network), and testing set (to test the performance of the
network after training). The training set and the testing set
were chosen to be about 6/7th and 1/7th parts of the master
dataset, respectively. The program, then, simulates the
proposed ANN shown in Fig. 1, and trains it in 2491 epochs,
using the “Scaled Conjugate Gradient BP Learning Algorithm
[7]” with the mean-squared-error goal set to 0.05. Finally, it
stores all the synaptic weights of the trained ANN in a binary
file. The mean-square-error curve plotted during the training
phase is shown in Fig. 2, which shows how the error decreases
from about 1050 towards the error goal of 0.05.

Fig. 1 Mean square error curve of the training

IV. TESTING THE NEURAL NETWORK
The network was tested with both the datasets (i.e., training

and testing). Fig. 3 shows some of the frames belonging to the
training set. The target coordinates (suggested by the network,
and down-scaled by a factor of 4) are shown at the top of
every frame. The center point of the cross-hair sign in every
image represents the target coordinates. It can be observed
that the network’s response is absolutely correct, even in the
presence of non-linear variations in background, target shape,
orientation and size. Fig. 4 illustrates some of the frames
belonging to the testing set (which were not shown to the
network during its training). This figure shows that the
network has learnt the I/O mapping quite well even for the
unseen patterns. Fig. 5 shows the result of testing on the
frames 3321 to 3332 of the downloaded movie clip.

V. POST-REGRESSION ANALYSIS
The post-regression analysis function compares the actual

outputs (A) of the neural network with the corresponding
desired outputs (T) [2]. It returns the correlation coefficient
(R) between them, and also the slope (m) and the A-intercept
(c) of the best-linear-fit equation: A = mT + c. The values of
m and R can be in the range [0.0, 1.0]. The more the values of
m and R are near to 1.0 and the more the value of c is near to

zero, the more correct the response of the network. This
function also displays a plot of A vs. T. Figures 6(a) and 6 (b)
show the result of the analysis on the row-coordinates when
the network is tested on training and testing sets, respectively.
The same analysis for column-coordinates is shown in Figures
6(c) and 6(d).

The resulting parameters of the analysis are summarized in

Table I. Some figures in the table are rounded to save space.
When the network was tested on the training set, there was
approximately 100% correlation (R ≈ 1) between the network
row-outputs and the correct row-coordinates, and between the
network column-outputs and the correct column-coordinates.
However, when the network was tested on the unseen testing
set, there was 81.8% correlation (R = 0.818) between the
network row-outputs and the correct row-coordinates, and
74.5% correlation between the network column-outputs and
the correct column-coordinates. This reduced accuracy for

Fig. 2 Some training set patterns tested on the network

Fig. 4 Network response for a typical video sequence

Fig. 3 Some testing set patterns tested on the network

TABLE I
SUMMARY OF THE POST-REGRESSION ANALYSIS

Training Set Testing Set
Row Column Row Column

R m c R m c R m c R m c
.999 1 0 1 1 0 .818 .7 8 .745 .7 15

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1634

unseen patterns is due to the so-called generalization problem
in neural networks, which can be solved to a significant extent
using some techniques described in [2].

VI. REAL-TIME IMPLEMENTATION
The trained neural network was finally implemented using

C++ programming language for the real-time operation. The
flow of the application code is outlined in the following steps.

1. Initialize the weight matrices with the parameter values
of the network from the binary file (see Sec. III).

2. Grab a frame from the movie clip (or camera).
3. Preprocess the frame (see Sec. II-B) to make a pattern.
4. Present the pattern at the input of the network.
5. The network processes the pattern, and produces the

target coordinates.
6. Apply a Gaussian-weighted running average low-pass

FIR (finite impulse response) filter on the output
values, to make them smooth.

7. Overlay a target sign and coordinates on the image.
8. Show the image with the overlaid content on it.
9. Wait for some milliseconds until next frame’s time is

due.
10. Go to Step 2.
The program was tested on the downloaded movie clip

playing at the speed of 25 frames/second. Thus, the total time
available between two frames in the movie was 40 ms. The
average time taken by the main steps (i.e. 2 to 8) on two types
of PC’s is outlined in Table II. Step 5 in the program flow is
the actual processing step performed by the neural network.
The computational complexity of the proposed BPNN running
in application phase is outlined in Table III. Each tanh(.)
operation was calculated using its fast approximate formula
expressed in (3). The m’s are as defined in Sec. II-D.

TABLE II

AVERAGE TIME TAKEN BY THE MAIN STEPS IN THE CODE
PC Steps 2-8

Centrino Tech., P-IV 2.0 GHz, 2.0 GB RAM 0.03 ms
P-IV 1.5 GHz, 256 MB RAM 11 ms

TABLE III

COMPUTATIONAL COMPLEXITY OF THE NEURAL NETWORK
 Multiplications Additions tanh(.)

Input Layer 0 0 0
Hidden Layer m0m1 m1 m1
Output Layer m1m2 m2 0
Total m1(m0+m2) m1+m2 m1

REFERENCES
[1] Michael W. Roth, “Survey of Neural Network Technology for

Automatic Target Recognition,” IEEE Transactions on Neural
Networks, Vol.1, NO. 1, March, 1990

[2] Howard Demuth, Mark Beale, Neural Network Toolbox for Use with
MATLAB: User’s Guide (v. 4), The Mathworks, Inc., 2001.

[3] Simon Haykin, Neural Networks: A Comprehensive Foundation, 2nd
Ed., Pearson Education, Delhi, 1999.

[4] OpenCV: Image Processing and Computer Vision Reference Manual,
http://www.sourceforge.net/projects/opencvlibrary

[5] MATLAB On-line Help Documentation
[6] http://www.fastpasses.com
[7] Moller, M. F., “A scaled conjugate gradient algorithm for fast supervised

learning,” Neural Networks, vol. 6, pp. 525-533, 1993.M. Young, The
Techincal Writers Handbook. Mill Valley, CA: University Science,
1989.

(a)

(b)

(d)

(c)

Fig. 6 Post-regression analysis: row-coordinates for (a) training-set,
(b) testing-set; column-coordinates for (c) training set, (d) testing
set.

