
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1631

 

 

  
Abstract—Real-time object tracking is a problem which involves 

extraction of critical information from complex and uncertain image- 
data. In this paper, we present a comprehensive methodology to 
design an artificial neural network (ANN) for a real-time object 
tracking application. The object, which is tracked for the purpose of 
demonstration, is a specific airplane. However, the proposed ANN 
can be trained to track any other object of interest.  The ANN has 
been simulated and tested on the training and testing datasets, as well 
as on a real-time streaming video. The tracking error is analyzed with 
post-regression analysis tool, which finds the correlation among the 
calculated coordinates and the correct coordinates of the object in the 
image. The encouraging results from the computer simulation and 
analysis show that the proposed ANN architecture is a good 
candidate solution to a real-time object tracking problem. 
 

Keywords—Image processing, machine vision, neural networks, 
real-time object tracking. 

I. INTRODUCTION 
EAL-TIME object tracking (OT) is a very specific field 
of study within the general scope of image processing and 

analysis. Humans can recognize and track an object perfectly, 
instantaneously, and effortlessly even in the presence of high 
clutter, occlusion, and non-linear variations in background, 
target shape, orientation and size. However, it can be an 
overwhelming task for a machine! There are partial solutions, 
but the work is still progressing toward a complete solution to 
this complex problem. 

Tracking of the targets with fixed signatures in stationary 
backgrounds is a straightforward task for which numerous 
effective techniques have been developed. When the target 
signatures or the backgrounds vary in an unlimited or 
unknown manner, the traditional approaches have not been 
able to furnish appropriate solutions [1]. Therefore, a new 
solution based on artificial neural network (ANN) technology 
is proposed in this paper. The ANN technology provides a 
number of tools which could form the basis for a potentially 
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fruitful approach to the object tracking problem.    
This paper explains the design procedure of an ANN to 

track an object (here a specific airplane) in Sec. II. The 
training of the ANN is described in Sec. III. The testing 
results are illustrated in Sec. IV, and the post-regression 
analysis is described in Sec. V. Finally, Sec. VI discusses the 
real-time implementation of the tracking application.  

II. DESIGN OF THE NEURAL NETWORK FOR OT 
Design of a neural network involves the selection of its 

model, architecture, learning algorithm, and activation 
functions for its neurons according to the need of the 
application. The objective of our application is to locate a 
specific airplane in the frames grabbed from a movie clip 
playing at the speed of 25 frames/second. 

A. Selection of the ANN Model 
The application, at hand, for which a neural network is to 

be designed, is a kind of function approximation problem. It 
may be noted that a back-propagation neural network (BPNN) 
with one (or more) sigmoid-type hidden layer(s) and a linear 
output layer can approximate any arbitrary (linear or non-
linear) function [2]. The number of hidden layers is normally 
chosen to be only one to reduce the network complexity, and 
increase the computational efficiency [3]. Thus, a BPNN is 
selected for the application at hand, and it consists of three 
layers: one input layer (of source nodes), one hidden layer 
(with tangent hyperbolic sigmoid activation function), and one 
output layer (with pure linear activation function), as shown in 
Figure 1. 

B. Input Layer 
The input layer of a neural network is determined from the 

characteristics of the application inputs. There are 320x240 
(i.e. 76800) pixels in each frame coming from a movie (or 
camera). Each pixel contains three elements (red, green, and 
blue components). Thus, the total number of elements in a 
frame is 3x76800 (i.e. 230400). If all these elements are 
directly put into the neural network, it will be almost 
impossible to process the image in real-time with a standard 
PC. Therefore, a preprocessing stage must be incorporated to 
reduce the size and dimensionality of the input pattern. 

Firstly, the color frame is converted into a gray level image, 
using the following expression for every pixel [4]: 

y = (0.212671)r + (0.71516)g + (0.072169)b     (1) 
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where y is the gray level value of the pixel in the output  
image, and r, g, and b are the red, green, and blue components 
of the pixel in the input color image, respectively. The values 
of y, r, g, and b are in the range [0, 255]. 

Secondly, the gray level image is down-sampled simply by 
extracting 1st, 5th, 9th, etc. rows and columns, while skipping 
all other rows and columns in the image. The size of the image 
is now reduced to 80x60 (reduction factor of 4 with respect to 
both the number of rows and the number of columns). Thus, 
the total number of elements is reduced from 230400 to only 
4800 with a total reduction factor of 48 (i.e. 3x4x4). 

Thirdly, the data of the down-sampled image is normalized, 
so that the value of each element can be in the range [0.0, 1.0], 
instead of [0, 255] for fast convergence during the training 
phase of the ANN. The normalization is done using (2): 

yn = y / 255            (2) 

where yn is the normalized value. 
Finally, the resulting image matrix is reshaped to form a 

standard pattern (column-vector), by concatenating the rows 
of the image matrix, and then transposing the large row-vector 
to make it a 4800-element column-vector. Therefore, the 
number of input nodes in the proposed BPNN becomes 4800. 

C. Hidden Layer 
Hidden layer automatically extracts the features of the input 

pattern [3], and reduces its dimensionality further. There is no 
definite formula to determine the number of hidden neurons. 
In this research, a hit-and-trial method was used to identify the 
number of neurons in the single hidden layer. It was found 
that only 50 hidden neurons could accomplish the task at hand 
quite reasonably. 

The tangent hyperbolic activation function was chosen for 
the hidden layer after comparing its converging results with 
those of the logistic sigmoid function. The tangent hyperbolic 
function and its fast approximation [5] are given in (3): 
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where ai1 is ith element of a1 vector containing the outputs 
from the hidden neurons, and ni1 is ith element of n1 vector 
containing net-inputs going into the hidden neurons. n1 vector 
is calculated as: 

n1 = W10p + b1           (4) 

where p is the input pattern, b1 is the vector of bias weights on 
the hidden neurons, and W10 is the weight matrix between 0th 
(i.e. input) layer and 1st (i.e. hidden) layer. Each row of W10 
contains the synaptic weights of the corresponding hidden 
neuron. 

D. Output Layer 
The output layer of the network is designed according to 

the need of the application output. Since the output of the 
neural network is expected to produce the row and column 
coordinates of the target (with respect to the top-left pixel 

position), the number of output neurons will be two. 
Since the frame size is 320x240, the values of the row and 

column coordinates of the target will be in the ranges [0, 240] 
and [0, 320], respectively. Thus, the pure linear activation 
function is selected for the output neurons, and expressed as: 

           a2 = n2             (5) 

where a2 is the column-vector coming from the second output 
layer, and n2 is the column-vector containing the net inputs 
going into the output layer. n2 is calculated as: 

                       n2 = W21a1 + b2           (6) 

where W21 is the synaptic weight matrix between the first (i.e. 
hidden) layer and the second (i.e. output) layer, and b2 is the 
column-vector containing the bias inputs of the output 
neurons. Each row of W21 matrix contains the synaptic 
weights for the corresponding output neuron. 

The designed architecture of the proposed BPNN is shown 
in Fig. 1. The dimensions of the vectors and matrices are 
shown under their names, where m0 (= 4800) is the number of 
input nodes, m1 (= 50) is the number of hidden neurons, and 
m2 (= 2) is the number of output neurons. 

 

 
Fig.  1 Architecture of the proposed neural network 

III. TRAINING THE NEURAL NETWORK 
The training of the neural network was performed using 

MATLAB and its Neural Network Toolbox. Before training a 
neural network, a dataset must be prepared on which the 
network is to be trained. The BPNN is trained in a supervised 
manner, so the target (desired output) for every training 
pattern must also be included in the dataset. To generate the 
dataset, an AVI movie clip of a specific airplane was 
downloaded from internet [6]. This clip consists of taking-off, 
flying (with a reasonable variety of maneuvers), and landing 
profiles of the airplane. It also contains the variations in the 
background and target illumination and in the scene content. 

A user-controlled automatic program was then developed to 
extract some suitable frames, convert them into valid patterns 
using the preprocessing stage (as discussed in Sec. II-B), and 
select the correct coordinates of the object in the image. These 
coordinates become the elements of the 2-element desired 
output vector of the proposed ANN. Using this program, a 
master dataset was generated which contained about 695 
examples (pairs of pattern vectors and the corresponding 
target vectors). 

When the network is being trained, it automatically learns 
the behavior of the I/O mapping, so that whenever those 
patterns (or similar ones) are shown to it again during its 
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application phase, it produces the desirable (or reasonable) 
outputs. 

Another simulation program was then developed to design 
and train the proposed ANN. This program, initially, divides 
the training set into two parts: training set (to train the 
network), and testing set (to test the performance of the 
network after training). The training set and the testing set 
were chosen to be about 6/7th and 1/7th parts of the master 
dataset, respectively. The program, then, simulates the 
proposed ANN shown in Fig. 1, and trains it in 2491 epochs, 
using the “Scaled Conjugate Gradient BP Learning Algorithm 
[7]” with the mean-squared-error goal set to 0.05. Finally, it 
stores all the synaptic weights of the trained ANN in a binary 
file. The mean-square-error curve plotted during the training 
phase is shown in Fig. 2, which shows how the error decreases 
from about 1050 towards the error goal of 0.05. 

 
Fig. 1 Mean square error curve of the training 

IV.  TESTING THE NEURAL NETWORK 
The network was tested with both the datasets (i.e., training 

and testing). Fig. 3 shows some of the frames belonging to the 
training set. The target coordinates (suggested by the network, 
and down-scaled by a factor of 4) are shown at the top of 
every frame. The center point of the cross-hair sign in every 
image represents the target coordinates. It can be observed 
that the network’s response is absolutely correct, even in the 
presence of non-linear variations in background, target shape, 
orientation and size. Fig. 4 illustrates some of the frames 
belonging to the testing set (which were not shown to the 
network during its training). This figure shows that the 
network has learnt the I/O mapping quite well even for the 
unseen patterns. Fig. 5 shows the result of testing on the 
frames 3321 to 3332 of the downloaded movie clip. 

V.  POST-REGRESSION ANALYSIS 
The post-regression analysis function compares the actual 

outputs (A) of the neural network with the corresponding 
desired outputs (T) [2]. It returns the correlation coefficient 
(R) between them, and also the slope (m) and the A-intercept 
(c) of the best-linear-fit equation: A = mT + c. The values of 
m and R can be in the range [0.0, 1.0]. The more the values of 
m and R are near to 1.0 and the more the value of c is near to 

zero, the more correct the response of the network. This 
function also displays a plot of A vs. T. Figures 6(a) and 6 (b) 
show the result of the analysis on the row-coordinates when 
the network is tested on training and testing sets, respectively. 
The same analysis for column-coordinates is shown in Figures 
6(c) and 6(d). 

 

 

 

 
 
The resulting parameters of the analysis are summarized in 

Table I. Some figures in the table are rounded to save space. 
When the network was tested on the training set, there was 
approximately 100% correlation (R ≈ 1) between the network 
row-outputs and the correct row-coordinates, and between the 
network column-outputs and the correct column-coordinates. 
However, when the network was tested on the unseen testing 
set, there was 81.8% correlation (R = 0.818) between the 
network row-outputs and the correct row-coordinates, and 
74.5% correlation between the network column-outputs and 
the correct column-coordinates. This reduced accuracy for 

      

       
Fig. 2 Some training set patterns tested on the network 

     

      

     
Fig. 4 Network response for a typical video sequence 

  

Fig. 3 Some testing set patterns tested on the network 

TABLE I 
SUMMARY OF THE POST-REGRESSION ANALYSIS 

Training Set Testing Set 
Row Column Row Column 

R m c R m c R m c R m c 
.999 1 0 1 1 0 .818 .7 8 .745 .7 15 
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unseen patterns is due to the so-called generalization problem 
in neural networks, which can be solved to a significant extent 
using some techniques described in [2]. 

 

 

VI.  REAL-TIME IMPLEMENTATION 
The trained neural network was finally implemented using 

C++ programming language for the real-time operation. The 
flow of the application code is outlined in the following steps. 

1. Initialize the weight matrices with the parameter values 
of the network from the binary file (see Sec. III). 

2. Grab a frame from the movie clip (or camera). 
3. Preprocess the frame (see Sec. II-B) to make a pattern. 
4. Present the pattern at the input of the network. 
5. The network processes the pattern, and produces the 

target coordinates. 
6. Apply a Gaussian-weighted running average low-pass 

FIR (finite impulse response) filter on the output 
values, to make them smooth. 

7. Overlay a target sign and coordinates on the image. 
8. Show the image with the overlaid content on it. 
9. Wait for some milliseconds until next frame’s time is 

due. 
10. Go to Step 2. 
The program was tested on the downloaded movie clip 

playing at the speed of 25 frames/second. Thus, the total time 
available between two frames in the movie was 40 ms. The 
average time taken by the main steps (i.e. 2 to 8) on two types 
of PC’s is outlined in Table II. Step 5 in the program flow is 
the actual processing step performed by the neural network. 
The computational complexity of the proposed BPNN running 
in application phase is outlined in Table III. Each tanh(.) 
operation was calculated using its fast approximate formula 
expressed in (3). The m’s are as defined in Sec. II-D. 

 
TABLE II 

AVERAGE TIME TAKEN BY THE MAIN STEPS IN THE CODE 
PC Steps 2-8 

Centrino Tech., P-IV 2.0 GHz, 2.0 GB RAM 0.03 ms 
P-IV 1.5 GHz, 256 MB RAM 11 ms 

 
TABLE III 

COMPUTATIONAL COMPLEXITY OF THE NEURAL NETWORK 
 Multiplications Additions tanh(.) 

Input Layer 0 0 0 
Hidden Layer m0m1 m1 m1 
Output Layer m1m2 m2 0 
Total  m1(m0+m2) m1+m2 m1 
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Fig. 6 Post-regression analysis: row-coordinates for (a) training-set, 
(b) testing-set; column-coordinates for (c) training set, (d) testing 
set. 


