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Abstract—The negative Poisson’s ratios can be described in 

terms of models based on the geometry of the system and the way 
this geometry changes due to applied loads. As the Poisson’s ratio 
does not depend on scale hence deformation can take place at the 
nano to macro level the only requirement is the right combination of 
the geometry. Our thrust in this paper is to combine our knowledge of 
tailored enhanced mechanical properties of the materials having 
negative Poisson’s ratio with the micromachining and electrospining 
technology to develop a novel stent carrying a drug delivery system. 
Therefore, the objective of this paper includes (i) fabrication of a 
micromachined metal sheet tailored with structure having negative 
Poisson’s ratio through rotating solid squares geometry using 
femtosecond laser ablation; (ii) rolling fabricated structure and 
welding to make a tubular structure (iii) wrapping it with nanofibers 
of biocompatible polymer PCL (polycaprolactone) for drug delivery 
(iv) analysis of the functional and mechanical performance of 
fabricated structure analytically and experimentally. Further, as the 
applications concerned, tubular structures have potential in 
biomedical for example hollow tubes called stents are placed inside 
to provide mechanical support to a damaged artery or diseased region 
and to open a blocked esophagus thus allowing feeding capacity and 
improving quality of life. 
 

Keywords—Micromachining, electrospining, auxetic materials, 
enhanced mechanical properties. 

I. INTRODUCTION 

A. Problem Area 
TENTS are usually defined as small tubular structures that 
are inserted into the diseased region which provide 

mechanical support to damaged artery or for the palliation of 
dysphagia from inoperable esophageal or gastric cardiac 
cancer. The use of stents for esophageal diseases has evolved 
greatly over the past 30 years. For a brief description 
esophagus is the tube that runs from the mouth to the stomach 
and it carries food we swallow to our stomach to be digested. 
Esophageal cancer is the growth of cancer cells in esophagus 
tube which usually originates in the inner layers of the lining 
of the esophagus and grows outward. In time, the tumor can 
obstruct the passage of food and liquid, making swallowing 
painful and difficult. About 13,000 new cases of esophageal 
cancer are diagnosed in the United States each year [1]. Since 
most patients are not diagnosed until the late stages of the 
disease, esophageal cancer is associated with poor quality of 
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life and low survival rates. Treatment, therefore, focuses 
mainly on palliation therapy of dysphagia employing a stent to 
mechanically open a blocked esophagus as illustrated in Fig. 
1, thereby allowing feeding capacity and improving quality of 
life. Studies are being performed to improve stent patency and 
to mitigate stent related complications. A number of studies 
have employed to study the influence of stent design 
parameters on the mechanical performance of a stent. To 
mention a few – the effect of stent design parameters on 
arterial wall stress and radial displacement of the stent was 
discussed in [2], [3]. The role of the three-dimensional draping 
(prolapse) of the stented artery has been analyzed in [4] 
through finite element analysis. Comparison of stent 
parameters with stressesimposed on the arterial wall [5], 
multi-Link stent had lower stresses and a lower rate of 
restenosis [6] and longitudinal strain in stents during 
deployment via balloon catheter has been studied in [7]. Also, 
a stent with a negative Poisson’s ratio for more precise 
deployment using finite element analysis [8], [9] and a model 
of an auxetic stent of rotating-square geometry with a circular 
hole of polyurathylene are discussed in [10]. Further, various 
types of esophageal stents made of metal, plastic or 
bioabsorbable polymer, have been technically evolved and 
many of them are already in clinical use to relieve dysphasia 
[11]. These stents are designed to possess good mechanical 
flexibility for ease of insertion and elimination of excessive 
esophagus dilation. Also, metal stents have become popular 
for the palliation of patients with malignant esophageal 
obstruction, especially patients with a poor prognosis [12]. 
Insertion of a self-expandable metal stent (SEMS) has become 
a well-established technique over the past 10 years. The major 
advantage of stent insertion is that it offers rapid improvement 
in dysphagia, and SEMS have a relatively low procedure-
related complication rate [13]. Early, delayed and Potentially 
life-threatening complications associated with stent placement 
are misplacement, perforation, chest pain, stent migration, 
occlusion of the stent due to tumor in-growth and out-growth 
or food impaction [14]-[16]. Therefore, it is a major current 
challenge to develop, design and manufacture such stents that 
are maximally compatible with living tissue, light weight, 
reduce migration and get a good grip with tumor tissue. 
Studies and experiences demonstrated smart materials with a 
negative Poisson’s ratio called auxetic materials which 
become wider when stretched along with enhanced 
mechanical properties such as synclastic behavior, resilient 
nature and stiffness without brittleness are good candidate for 
biomedical industry [17], [18]. 
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of Chloroform and Methanol with a volume ration of 7:1 was 
prepared to dissolve 10 % PCL (w/v) in the mixed solvent. 
PCL solution was stirred overnight at room temperature at 
1100 rpm.  

 

 
Fig. 7 Electrospinning system and set up of stent sample 

 
The experimental setup, operated to fabricate the 

electrospun PCL nanofibers, is schematically described in Fig. 
8. The setup consists of a syringe pump (New Era Pump 
Systems Inc., USA), stainless steel needles (McMaster-CARR, 
Canada), drum fiber-collector machined aluminum with DC 
motor for wrapping of stent with nanofibers, and a high 
voltage power supply (GAMMA High Voltage Research Inc., 
USA). The stainless steel needle receives the polymer solution 
through a syringe connected to the syringe pump, which 
maintains the constant flow rate of the polymer solution to the 
tip of needle. In order to wrap stent with nanofibers, the 
machined stent is mounted on drum fiber-collector which is 
placed below needle tip. The distance between them is fixed at 
optimizing conditions based on our preliminary results. The 
positive terminal of the high voltage power supply (0-30kV) is 
connected to the drum while the ground terminal is connected 
to the needle tip. 

 

 
Fig. 8 Schematic representation of the device used for the 

electrospinning of PCL nanofibers on a stent and stent wrapped with 
nanofibers 

E. Tensile Testing 
For further analysis, conventional macro-tensile 

measurements were performed using an electromechanical 
tensile tester (Adelaide Testing Machines, Toronto, Ontario, 
Canada). All samples were mounted between holders at a 

distance of 3cm. Tensile testing was conducted at a rate of 
2mm/min at room temperature (21°C) and at two times each. 
The amounts of elastic modulus and strain at the breaking 
point were calculated by the Adelaide Testing Machines 
software. The Yield strength test for both sample 1 and sample 
2 was performed and stress and strain curves from collected 
data are shown in Figs. 9 and 10. Each elastic modulus for 
sample 1 and 2 are 3.5Mpa/mm and 20.8Mpa/mm. The sample 
1and 2 are respectively stretched until 5.8mm and 3.2mm by 
changing the shape of structure at 3.8MPa and 10.1MPa as 
elasticity section. After elasticity section, the sample 1 and 2 
are completely deformed as shown in Figs. 9 (C) and 10 (C). 

 

 

Fig. 9 Results of Sample 1 without endtabs(64mm × 45mm × 
0.127mm), (A) Stress-strain curve, (B) Original sample, (C) 

Stretched sample 
 

 
Fig. 10 Results of Sample 2 without endtabs(25mm × 18mm × 

0.127mm), (A) Stress-strain curve, (B) Original sample, (C) 
Stretched sample. 

F. Analytical Solution 
The mechanism for producing a negative Poisson’s ratio is 

not scale-dependent, so it exhibiting exactly the same 
geometry and deformation mechanism at the macro-, micro- 
and nano- (molecular) level. Further, for simple structures 
deformation mechanisms the magnitude of the Poisson’s ratio 
can be easily identified from a visual analysis the structure and 
material. However, when the geometry of the structures is 
more complex than magnitude of Poisson’s ratio can be 
obtained by deriving analytical equations in terms of the 
structure’s geometrical parameters. The shape of the structure 
for various values of ߠ (as shown above in Fig. 3) may be 
obtained through loading in a direction and the projections of 
the unit cell in the ௜ܺdirectionsare given in [35], [36]: 

 

ଵܺ ൌ ܺଶ ൌ 2ܽ ቂcos ቀఏ
ଶ

ቁ ൅ sin ቀఏ
ଶ

ቁቃ                      (1) 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:2, 2014

452

 

 

and structure that deforms solely by relative rotation of the 
squares, then a is constant and hence ܺଵare functions of the 
single variable ߠ. Also, the stiffness of the structure (and 
hence the Young’s moduli) may be related to the stiffness of 
the hinges, that is, a stiffness which opposes changes in the 
angles ߠ and hinges satisfy the equation: 
 

ܯ ൌ  ሻ                                              (2)ߠߜ௛ሺܭ
 
where, ܯis the moment applied to the rectangles,ߠߜ is the 
angular displacement due to ܯ, and ܭ௛is the spring constant 
for the hinge. As the structure only deform through relative 
rotation of the rigid squares, the structure is geometrically not 
allowed to shear. This results in an infinite on-axis shear 
modulus and a value of zero for the five elements of 
compliance matrix which are associated with shearing. The 
compliance matrix for this system is hence of the form: 
 

ܵ ൌ ൣ ௜ܵ௝൧ ൌ

ۏ
ێ
ێ
ۍ

ଵ
ாభ

െ ఔమభ

ாభ
0

െ ఔభమ

ாభ

ଵ
ாమ

0
0 0 ے0

ۑ
ۑ
ې
                         (3) 

 
where, ߥ௜௝ and ܧ௜ represents the Poisson’s ratios and Young’s 
modulus in the ܱݔ௜௝plane for loading in the ܱݔ௜  direction.  
The infinitesimally small strains ݀ߝ௜in the  ܱݔ௜directions is 
defined by: 
 

௜ߝ݀ ൌ ௗ௑೔
௑೔

and ௜ܺ ൌ ௜ܺሺߠሻ                          (4) 
 
Therefore, Poisson’s ratio is obtained as: 
 

ଶଵߥ ൌ ଵଶߥ ൌ െ ௗ௑భ ௑భ⁄
ௗ௑మ ௑మ⁄

                            (5) 
 

Further, the work done by each unit cell due to the changes 
in the inter-square angles from ߠ to ߠ ൅  that accompany a ߠ݀
small strain is given in [36]:  
 

      ܹ ൌ ܰ ቂଵ
ଶ

 ሻଶቃ                                (6)ߠ௛ሺ݀ܭ
 
where, ܰ is the number of hinges per unit cell.  The principle 
of conservation of energy is 
 

ܷ ൌ ଵ
௏

ܹ                                 (7) 
 
where, ܸ is the volume of the unit cell. Also for loading in the 
 ௜ direction work done per unit volume due to infinitesimalݔܱ
small strain is given by 
 

     ܷ ൌ ଵ
ଶ

௜ܧ
ଵ

௑೔
ቀௗ௑೔

ௗఏ
ቁ

ଶ
ሺ݀ߠሻଶ                        (8) 

 
Hence the Young’s modulus ܧ௜ሺ݅ ൌ 1,2ሻ from (6) to (8) are 

given by: 
 

௜ܧ ൌ ௛ܭܰ
௑೔

మ

௑భ௑మ
ቀௗ௑೔

ௗఏ
ቁ

ିଶ
, ݅ ൌ 1,2.     (9) 

III. RESULT AND DISCUSSION 
The stenting outcomes were improved through mechanical 

design with tailored negative Poisson’s ratio through cell 
geometry of the fabricated stent. The aim of this study was 
fourfold: (i) designing and manufacturing an micromachined 
auxetic structure; (ii) configuring this auxetic structure as an 
auxetic stent for the treatment of esophageal cancer and for the 
prevention of dysphagia and (iii) wrap auxetic stent with nano 
fibers for drug delivery to control further growth of tumor (iv) 
To compare the physical tests of the auxetic stent with 
analytical results of stent to achieve an agreement between the 
physical and analytic results. The metal structure is fabricated 
on a flat sheet of stainless steel 316, was selected as a material 
after doing a literature review which is a biocompatible 
material used in many. The values of Poisson’s ratio and 
Young’s modulus obtained through tensile testing are given in 
Table I for both samples. It is noticed that these values are 
close to the analytical values in the case of sample 2 which is 
one fourth of the size of the sample 1. 

 
TABLE I 

VALUES OF POISSON’S RATIO 
 Analytically Experimentally 

 Poisson’s 
ratio 

Young’s 
modulus 

Poisson’s 
ratio 

Young’s 
modulus 

Sample 1 -1 4.1MPa/mm െ0.71 3.6MPa/mm 
Sample 2 -1 16.7MPa/mm െ1.041 20.8MPa/mm 

 
Since negative values of Poisson’s ratio are achieved 

through the tailored auxetic geometrical structure, hence due 
to deformation mechanism the diamond shaped cuts within the 
geometry of the sample were wide opened which is visualized 
through microscopic images illustrated in Fig. 11. 

In addition, the enhanced mechanical properties achieved 
through auxiticity such as the synclastic behavior of auxetic 
structure to be advantageous in terms expansion inside the 
esophageal lumen wall evenly from each side. 

 

 
Fig. 11 Rotating hinging squares mechanism, sample 1 and sample 2 
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To summarize the results due to the unique deformation 
mechanism and the geometry of the auxetic stent would be: 
(i) The large (expandable) diameter could be obtained and it 

can be helpful to reduce complications like food 
impaction, and obstruction. 

(ii) Under uniaxial tensile loading, synclastic behaviour of 
auxetic stent would be advantageous in terms of auxetic 
stent expansion inside the esophageal lumen wall evenly 
from each side. 

(iii) On stretched longitudinally it will get bigger and wider, 
and get the anchorage with the surrounding tumor tissue 
inside the esophagus. It could be be helpful to get a good 
grip with tumor tissue by embedding inside the tissue. 

(iv) On extending the drug loaded auxetic fibres will open the 
micropores and a specific dose of drug will be released 
specifically towards the cancerous tissues and on relaxing 
drug delivery will be ceased. Due to novel expansion 
behavior in both ways, transversely and longitudinally it 
will dilate the esophagus by itself. In addition, it can also 
work like a drug carrying system to dispense targeted 
local chemotherapy through its wrapped nano fibers 
directly from the stent surface to the neighboring 
malignant tissue instead of painful systemic 
chemotherapy procedure.  

IV. CONCLUSION 
This paper demonstrates successful design and fabrication 

of an auxetic stent with drug carrying system achieved through 
the combination of micromaching and electrospining 
techniques. Its structure has specifically tailored mechanical 
properties which are achieved through auxticity shows 
enhanced functional performance. In addition initially having 
a small diameter fabricated stent could be beneficial in 
deployment while its expandable diameter achieved through 
deformation mechanism could get good grip with tumor 
tissue; hence, it could improve quality of life. 
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