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Networks with Distributed Delays
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Abstract—This paper deals with the problem of delay-dependent
stability for neural networks with distributed delays. Some new
sufficient condition are derived by constructing a novel
Lyapunov-Krasovskii functional approach. The criteria are
formulated in terms of a set of linear matrix inequalities, this is
convenient for numerically checking the system stability using the
powerful MATLAB LMI Toolbox. Moreover, in order to show the
stability condition in this paper gives much less conservative results
than those in the literature, numerical examples are considered.
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I. INTRODUCTION

STABILITY analysis for neural networks have attracted

many researchers attention due to the fact that in many

applications the designed neural networks is required to have

a unique and stable equilibrium point [1-3]. the occurrence

of time delays is unavoidable during the processing and

transmission of the signals because of the finite switching

speed of amplifiers in electronic networks or finite speed for

signal propagation in biological networks ,the existence of

time delay may cause instability and oscillation of neural

networks.Therefore stability analysis of delayed neural

networks has been extensively investigated and reported in

the literature; see [4-15], and the references cited therein.
When bounded distributed delay appear in a neural

network,stability results for such a class of delayed neural

networks were reported in [16-19]. In the case when

unbounded distributed delayed appear in a neural network,

stability results were provided in [20-22] by using the

M-matrix theory and the Lyapunov functional method.

Usually, delay-dependent stability results are less

conservative than delay-dependent ones, especially when the

delay size is small [23,24]. In this paper, we concerned with

the problem of stability analysis for neural networks with

distributed delay. The distributed delay is assumed to be

unbounded. Delay-dependent stability conditions are

obtained,which can be easily checked by MATLAB LMI

Toolbox.Finally, in order to show the stability condition in

this paper gives much less conservative results than those in

the literature, numerical examples are considered.
Notations: The notations in this paper are quite standard.

I denotes the identity matrix with appropriate dimensions,Rn
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denotes the n dimensional Euclid space, and Rm×nis the set

of all m× n real matrices, ∗ denotes the elements below the

main diagonal of a symmetric block matrix. For symmetric

matrices A and B,the notation A > B(respectively,A ≥ B )

means that the matrix A−B is positive definite (respectively,

nonnegative).

II. PROBLEM STATEMENT

Consider a class of delay neural networks described by the

following equation

μ̇i(t) = −ciμi(t) +
n∑

j=1

dijgj(μj(t)) +
n∑

j=1

aijgj(μj(t− ς))

+
n∑

j=1

bij

∫ t

−∞
kj(t− s)gj(μj(s))ds+ Ii

(1)

μi(t) = φi(t), −∞ ≤ t ≤ 0 (2)

for i = 1, 2, . . . , n, μi(t) is the state of the ith unit at time

t;ci > 0 denotes the passive decay rate; aij , bij , dij are the

interconnection matrices representing the weight coefficients

of the neurons; ς is a constant scalar representing the delay

of the neural network; φi(t), i = 1, 2, . . . , n, is the initial

condition of the neural network; Ii, i = 1, 2, . . . , n, is the

external constant inputs; gi(·), i = 1, 2, . . . , n, is the

activation function; the delay kernel ki is a real valued

continuous nonnegative function defined on [0,+∞],which is

assumed to satisfy
∫∞
0

ki(s)ds = 1, i = 1, 2, . . . , n. The

following assumptions are adopted throughout the paper.

Assumption 1:Each neuron activation function gi(·), in (1)

satisfies the following condition:

0 ≤ gj(r1)− gj(r2)

r1 − r2
≤ lj , ∀r1, r2 ∈ R, i = 1, 2, . . . , n.

(3)

where li > 0 and assume that L = diag{l1, l2, . . . , ln}.

Based on Assumption 1, it can be easily proven that there

exists one equilibrium point for (1) by Brouwer‘s fixed-point

theorem. Assuming that μ∗ = [μ∗
1, μ

∗
2, . . . , μ

∗
n]

T is the

equilibrium point of (1) and using the transformation

x(·) = μ(·) − μ∗,the system (1) can be converted to the
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following system :

ẋi(t) = −cixi(t) +

n∑
j=1

dijfj(xj(t)) +

n∑
j=1

aijfj(xj(t− ς))

+

n∑
j=1

bij

∫ t

−∞
kj(t− s)fj(xj(s))ds

(4)

which can be re-written as

ẋ(t) = −Cx(t) +Df(x(t)) +Af(x(t− ς))

+B

∫ t

−∞
K(t− s)f(x(s))ds

(5)

where

C = diag{ci}, A = [aij ]n×n, B = [bij ]n×n, D = [dij ]n×n

and vector x(t) = [x1(t), x2(t), . . . , xn(t)]
T , f(x(t)) =

[f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]
T ,

fi(xi(t)) = gi(xi(t) + μ∗
i ) − gi(μ

∗
i ), K(s) = diag{ki(s)}.

By Assumption 1, it is easy to see that

0 ≤ fj(r)

r
≤ li, ∀r ∈ R, r �= 0, i = 1, 2, . . . , n. (6)

Lemma 1 [25].For any positive semi-definite matrices X =⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ X33

⎤
⎦≥0,the following integral integral inequality

holds:

−
∫ t

t−ς

ẋT (s)X33ẋ(s)ds

≤
∫ t

t−ς

⎡
⎣ x(t)
x(t− ς)
ẋ(s)

⎤
⎦
T⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ 0

⎤
⎦
⎡
⎣ x(t)
x(t− ς)
ẋ(s)

⎤
⎦ds

(7)

Lemma 2 [26].Let ζ ∈ Rn,Γ = ΓT ∈ Rn×n, and B ∈ Rm×n

such that rank(G) < n. Then, the following statements are

equivalent:

(1) ζTΓζ < 0, Gζ = 0, ζ �= 0,

(2) (G⊥)TΓG⊥ < 0,
(8)

where G⊥ is a right orthogonal complement of G.

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed

and a less conservative delay-dependent stability criterion is

obtained.

Theorem 1 Given that the Assumption 1 hold, the system (5)

is globally asymptotic stability if there exist matrices P >
0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, diagonal matrices E =
diag{ei} > 0, S = diag{si} > 0,Λ1 > 0,Λ2 > 0 and matrix

X =

⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ X33

⎤
⎦ ≥ 0, such that the following LMI

holds:

R2 −X33 ≥ 0 (9)

(Γ⊥)TΩΓ⊥ < 0 (10)

where

Ω =

⎡
⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 Ω14 Ω15

∗ Ω22 Ω23 Ω24 0
∗ ∗ Ω33 Ω34 −Λ2L
∗ ∗ ∗ Ω44 0
∗ ∗ ∗ ∗ Ω55

⎤
⎥⎥⎥⎥⎦

Γ =
[−C D A B 0

]
, R̄ = R1 + ςR2

Ω11 = −2PC +Q1 + ςX11 +X13 +XT
13 + CT R̄C

Ω12 = −LΛ1 − CS + PD − CT R̄D

Ω13 = PA− CT R̄A, Ω14 = PB − CT R̄B

Ω15 = ςX12 −X13 +XT
13

Ω22 = Q2 + E − 2Λ1 + 2SD +DT R̄D

Ω23 = SA+DT R̄A, Ω24 = SB +DT R̄B

Ω33 = −Q2 +AT R̄A− 2Λ2, Ω34 = AT R̄B

Ω44 = −E +BT R̄B

Ω55 = −Q1 + ςX22 −X23 −XT
23

Proof: Construct a new class of Lyapunov functional

candidate as follow:

V (xt) =
4∑

i=1

Vi(xt)

with

V1(xt) = xT (t)Px(t) + 2

n∑
i=1

si

∫ xi(t)

0

fi(s)ds

V2(xt) =

∫ t

t−ς

xT (s)Q1x(s)ds+

∫ t

t−ς

fT (x(s))Q2f(x(s))ds

V3(xt) =
n∑

i=1

∫ ∞

0

∫ t

t−σ

ki(σ)f
2
i (xi(s))dsdσ

V4(xt) =

∫ t

t−ς

ẋT (s)R1ẋ(s)ds+

∫ 0

−ς

∫ t

t+β

ẋT (s)R2ẋ(s)dsdβ

Then, taking the time derivative of V(t) with respect to t along

the system (5) yield

V̇ (xt) =

4∑
i=1

V̇i(xt)

where

V̇1(xt) = 2xT (t)Pẋ(t) + 2
n∑

i=1

sifi(xi(t))ẋi(t)

= 2xT (t)Pẋ(t) + 2fT (x(t))Sẋ(t)

(11)
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V̇2(xt) = xT (t)Q1x(t)− xT (t− ς)Q1x(t− ς)

+ fT (x(t))Q2f(x(t))− fT (x(t− ς))Q2f(x(t− ς))
(12)

V̇3(xt)=fT (x(t))Ef(x(t))−
n∑

i=1

ei

∫ ∞

0

ki(σ)f
2
i (xi(t−σ))dσ

(13)

In the derivative of V3(xt), we use Cauchy’s inequality

(
∫
p(s)q(s)ds)2 ≤ (

∫
p2(s)ds)(

∫
q2(s)ds) and assumption∫∞

0
ki(s)ds = 1, we can obtain that

V̇3(xt)≤fT (x(t))Ef(x(t))

−(

∫ t

−∞
K(t−s)f(x(s))ds)TE(

∫ t

−∞
K(t−s)f(x(s))ds)

(14)

V̇4(xt) = ẋT (t)R1ẋ(t)− ẋT (t− ς)R1ẋ(t− ς)

+ ςẋT (t)R2ẋ(t)−
∫ t

t−ς

ẋT (β)R2ẋ(β)dβ

= ẋT (t)R̄ẋ(t)− ẋT (t− ς)R1ẋ(t− ς)

−
∫ t

t−ς
ẋT (β)(R2−X33)ẋ(β)dβ−

∫ t

t−ς
ẋT (β)X33ẋ(β)dβ

(15)

Using Lemma 1, we can obtain that

−
∫ t

t−ς
ẋT (β)X33ẋ(β)dβ≤xT (t)(ςX11 +X13 +XT

13)x(t)

+2xT (t)(ςX12−X13+XT
13)x(t−ς)

+xT (t−ς)(ςX22−X23−XT
23)x(t−ς)

(16)

From (6), we can get that there exist positive diagonal matrices

Λ1,Λ2 such that the following inequalities holds:

−2fT (x(t))Λ1[f(x(t))− Lx(t)] ≥ 0 (17)

−2fT (x(t− ς))Λ2[f(x(t− ς))− Lx(t− ς)] ≥ 0 (18)

From (9) and (11)-(18), we can obtain that:

V̇ (xt) ≤ ξT (t)Ωξ(t) (19)

where

ξT (t) = [xT (t), fT (x(t)), fT (x(t− ς)),

(

∫ t

−∞
K(t− s)f(x(s))ds)T , xT (t− ς)]

By Lemma 2, ξT (t)Ωξ(t) < 0 with Γξ(t) = 0 is equivalent

to (Γ⊥)TΩΓ⊥ < 0. Therefore, if LMIs (9),(10) hold, then the

neural networks (5) is asymptotically stable. This completes

the proof.

Remark 1 Theorem 1 provides an delay-dependent LMI

condition,under which the delayed neural network in (5) is

guaranteed to have a unique equilibrium point, which is

globally asymptotically stable.It is worth pointing out that

via a similar approach as in the proof of Theorem 1, we can

deal with the case when the delays in ς are different.

When B = 0,the delayed neural network in (5) reduces to

ẋ(t) = −Cx(t) +Df(x(t)) +Af(x(t− ς)) (20)

In this case, by Theorem 1, it is easy to have the following

result.

Theorem 2 Given that the Assumption 1 hold, the system

(5) is globally asymptotic stability if there exist matrices

P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, diagonal matrices

S = diag{si} > 0,Λ1 > 0,Λ2 > 0 and matrix

X =

⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ X33

⎤
⎦ ≥ 0, such that the following LMI

holds:

R2 −X33 ≥ 0 (21)

(Ψ⊥)TΦΨ⊥ < 0 (22)

where

Ψ =
[−C D A 0

]

Φ =

⎡
⎢⎢⎣
Φ11 Φ12 Φ13 Φ14

∗ Φ22 Φ23 0
∗ ∗ Φ33 −Λ2L
∗ ∗ ∗ Φ44

⎤
⎥⎥⎦

Φ11 = −2PC +Q1 + ςX11 +X13 +XT
13 + CT R̄C

Φ12 = −LΛ1 − CS + PD − CT R̄D

Φ13 = PA− CT R̄A

Φ14 = ςX12 −X13 +XT
13

Φ22 = Q2 − 2Λ1 + 2SD +DT R̄D

Φ23 = SA+DT R̄A, Φ33 = −Q2 +AT R̄A− 2Λ2

Φ44 = −Q1 + ςX22 −X23 −XT
23

Proof: The proof of the Theorem 2 is consequence of

Theorem 1 by choosing E = 0. Hence the proof is omitted.

IV. EXAMPLE

In this section,we provide a numerical example to

demonstrate the effectiveness and less conservatism of our

delay-dependent stability criteria.
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Example 1 Consider a delayed neural network in (5) with

parameters as

C =

⎡
⎣1.6305 0 0

0 1.9221 0
0 0 2.5973

⎤
⎦ ,

A =

⎡
⎣−2.5573 −1.3813 1.9574
−1.0226 −0.8845 0.5045
1.0378 1.5532 0.6645

⎤
⎦ ,

B =

⎡
⎣ 0.0265 −0.0793 0.4694
−0.5955 1.3352 −0.9036
−0.1497 −0.6065 −0.1641

⎤
⎦ ,

D =

⎡
⎣ 0.0265 0.1157 0.0578

0.3186 −0.1363 −0.0876
−0.2037 −0.0112 0.4225

⎤
⎦

Let L = diag{0, 1.4, 2}.

Then,by the Matlab LMI control toolbox, the maximum

allowed delay satsfying the LMI in (9) and (10) can be

calculated as ς = 2.147.In the case when ς = 2.147,a set of

solution to the LMI in (9) and (10) can be found as follows:

P =

⎡
⎣ 7.6578 −2.1251 2.8789
−2.1251 10.9619 −0.3941
2.8789 −0.3941 8.7152

⎤
⎦ ,

Q1 =

⎡
⎣ 14.5700 −6.9799 −21.6701
−6.9799 17.8915 −30.0815
−21.6701 −30.0815 19.5754

⎤
⎦ ,

Q2 =

⎡
⎣12.8705 −5.3385 4.8151
−5.3385 30.7599 −1.4672
4.8151 −1.4672 9.9393

⎤
⎦ ,

R1 =

⎡
⎣ 3.9484 0.4578 −0.1203

0.4578 4.9871 0.2531
−0.1203 0.2531 1.7812

⎤
⎦ ,

R2 =

⎡
⎣ 0.5124 −0.1203 0.2881
−0.1203 0.1611 −0.1624
0.2881 −0.1624 0.1627

⎤
⎦ ,

E =

⎡
⎣1.2579 0 0

0 0.1451 0
0 0 2.1674

⎤
⎦ ,

S =

⎡
⎣4.1450 0

0 1.2451 0
0 0 2.7134

⎤
⎦ ,

E =

⎡
⎣0.3170 0 0

0 0.1756 0
0 0 1.0904

⎤
⎦ ,

Λ1 =

⎡
⎣1.7890 0 0

0 0.9681 0
0 0 0.1245

⎤
⎦ ,

Λ2 =

⎡
⎣0.0126 0 0

0 0.0686 0
0 0 0.3412

⎤
⎦ .

V. CONCLUSION

In this paper, we concerned with the problem of stability

analysis for neural networks with distributed delay. The

distributed delay is assumed to be unbounded.

Delay-dependent stability conditions have been obtained,

which can be easily checked by MATLAB LMI Toolbox.

Numerical examples have shown the less conservatism and

effectiveness of the proposed conditions.
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