
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2383

Abstract—The users are now expecting higher level of

DSP(Digital Signal Processing) software quality than ever before.
Prevention and detection of defect are critical elements of software
quality assurance. In this paper, principles and rules for prevention and
detection of defect are suggested, which are not universal guidelines,
but are useful for both novice and experienced DSP software
developers.

Keywords—defect detection, defect prevention, DSP-software,
software development, software testing.

I. INTRODUCTION
S application area of DSP(Digital Signal Processing) is
expanding fast, demand for DSP software grows rapidly,

and higher percentage of total cost is expended on
DSP-software development. While size and complexity of DSP
software increase, we face serious challenge of building DSP
software with high quality [1].

In order to achieve higher level of software quality,
prevention and detection of defect must become the focus of
attention [2]. Defect detection aims at finding faults in software
by testing and then correcting them. On the other hand, defect
prevention focuses resources on correcting flaws of
development process, thereby preventing the defects from
being creating in the first place as much as possible, so that less
effort is needed to detect and fix them later.

To avoid common complications in prevention and detection
of DSP-software defect, we should follow certain rules. The
following principles and methodologies enable us to create
reliable DSP-software and to establish an efficient
development mechanism for a group of developers.

II. DEFECT PREVENTION IN DSP-SOFTWARE DEVELOPMENT
Prevention activities can be as simple as providing checklists,

improving product document, and enhancing development
tools. Defect prevention can improves DSP-software quality,
provides continuous improvement of development process.

Defect prevention can result in significantly lowered field
defect rates. A reduction of 50% in the defects that arise during
development generally will result in a 50% reduction in the
field defects as well. Moreover, the resources that were
formerly spent correcting defects can be put toward developing
additional function and reducing the overall development cycle

Deng Shiwei is with the Beijing Institute of System Engineering, P.O. BOX
9702-19, Beijing 100101, China.

time, both of which reflect higher software quality in the
broader sense.

Defect prevention provides a continuous focus on process
improvement. The development process is used here in the
broad sense denoting all of the formal and informal stages and
steps, methodologies, techniques, and tools that are used to
develop software.

Defects occur because of flaws in the development process
or difficulties in its execution. For example, defects can result
from failures to thoroughly prepare or educate developers,
failures to communicate changes, or failures to provide
adequate time or proper tools for checking design closure.
Preventive actions on the other hand can address each one of
these shortcomings by improving or fixing the development
process.

Defect prevention not only fine tunes an current
development process and practices but also encourages
identifying and implementing new processes, methods, and
tools. For example, new design methods or tools might be
introduced as the result of suggested action. Once the new
process or method is introduces, further preventive actions can
help refine and fine tune that development process.

The principles of defect prevention described here are in
reference to a particular implementation within IBM
Corporation known as the Defect Prevention Process [3]. The
Defect Prevention Process provides a framework for achieving
the objectives of preventing defects, and continuously
improving processes. The Defect Prevention Process has
proven effective in improving software quality at a reasonable
cost for implementation.

There are four key elements in the defect prevention, as
showed in Fig.1. In general, a successful implementation of the
defect prevention process incorporates all these elements.
However, a DSP-software development team may develop
variations or adaptations of these key elements, depending on
its particular needs or its development process. In general the
activities of the Defect Prevention Process are repeated for each
major development stage or step, for example high-level design,
low-level design, coding, unit test, etc. If the development
project is organized into teams of developers, the defect
prevention activities are conducted at the team level.

A. Causal analysis of defects and problems
The regular analysis of defects and problems occurring in

DSP-software development process is performed, and
preventive actions are suggested. Causal analysis is done by the

Defect Prevention and Detection of
DSP-software

Deng Shiwei

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2384

developers, that is, by the people who created the defects.
During each development stage, defects are detected through

inspections, reviews, or testing. When a number of defects have
been collected, a causal analysis meeting is held by the team.
The team reviews the defects, determines their root causes and
proposes actions to prevent similar defects in the future.

During the causal analysis meeting, the developers identify
the causes of the defects that have occurred. Usually the
developer who created the defect can best identify its cause but
many times a discussion involving the entire team will help
clarify contributing causes. The team tries to propose actions
that will eliminate the causes and thus prevent recurrence of the
defect. In addition, actions may be proposed that have no direct
bearing on the specific causes or even on the defect in question,
but which are good suggestions to be implemented for the team.

Suggested actions can address process improvements, tools
improvements and enhancements, education offerings or
improvements to existing education, improvements in
communication procedures or project management practices,
and changes to software itself. Suggested actions need to be
described with specific details, not simply as vague suggestions
for improvement, so that the action team can implement them
readily.

B. An action team to implement preventive actions
The sufficient resources to implement the preventive action

in a timely way should be provided.
Defect prevention must include a means of implementing the

suggested actions that insures that they are implemented in a
timely way. Timely action implementation requires that
appropriate resources are allocated by management. The people
who implement the actions should have the appropriate scope
and authority within the team to effect changes to the team’s
processes and practices. And they should have the appropriate
skills to be able to implement the actions. In addition the time
that is devoted to action implementation should be protected
from erosion by other development responsibilities the people
may have.

The Defect Prevention Process calls for an action team to be
established to implement the preventive actions. The action
team consists of developers from the area who work part-time
to implement actions.

Action team members are selected based on the skills needed.
A software development team typically needs action team
members to handle process changes, education offerings, and
tool development and enhancement. The action team also needs
representatives from the key technical areas in the development
team, for example, design, development, test. Finally, a
manager from the area is needed to handle suggestions for
project management improvements and to assist in obtaining
help for actions needing resources outside the action team.

C. Periodic, timely feedback to developers
The regular reviews of the details of the DSP-software

development process are conducted with developers, and
feedback on the process changes that have occurred from

implemented actions is provided. This periodic feedback is
usually done in a kickoff meeting at the beginning of each
development stage or step.

Many actions result in information that is kept in on-line files
that can be accessed by the developers. Such materials include,
for example, development process documentation, product
technical information, checklists, common error lists,
development guidelines and conventions, educational
materials, project management guidelines, and tools
documentation. The materials are typically placed in on-line
repositories with appropriate indexes and search capabilities
for easy access. Such repositories preserve the area’s technical
process and software product knowledge.

Having on-line repositories, however, is not enough to
ensure that the appropriate knowledge will be used by the
developers during development. It has been found that periodic
reviews of this information are needed to remind developers of
the process details that are critical to their work in a particular
stage. It is necessary to provide feedback in a timely way, at the
appropriate points in the development process.

The form that this period feedback tacks is the stage kickoff
meeting. Stage kickoffs are generally held by the team at the
beginning of each development stage and are conducted by the
team’s technical leader. The team leader reviews the
development process for that stage, focusing on areas that have
been weak in the past, emphasizing new practices, and
reviewing other enhancements to the team’s process, methods,
and tools.

It is important that stage kickoff meetings be integrated into
the development process, at the beginning of each development
stage, and that the developers be directly involved. It has been
found that simply holding stage kickoffs can achieve
significant reductions in defects for that stage

D. Tracking analysis of data from the prevention process
A data base of the preventive actions is provided for tracking,

and data about the defect prevention process itself is provided
for management control.

Data are collected from the Defect Prevention Process to
provide both the tracking of action status by the action team and
the measurement of the process as a whole for management.
The forms of data collection and tracking include:

(1) A means of tracking actions as they are implemented, to
ensure that the actions are implemented in a timely manner and
are implemented correctly. The action team maintains a data
base containing each action and uses reports from it to review
and handle newly created actions, open actions being
implemented, and recently closed actions. Among the data that
are kept for each action is its priority, target data, estimated cost,
and estimated effectiveness.

(2) A means of measuring the Defect Prevention Process to
ensure that the required activities are being done and that the
level of investment in prevention intended by management is
being achieved. Management uses these data to maintain its
focus on the process. The action data base can be used to
produce monthly management reports on the level of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2385

investment in the process, that is, the time spent in
prevention-related meetings, for action implementation and on
education on the process, and the work flow in the process, that
is, the number of actions open at the beginning of the time
period, actions created and closed during the period, and
actions remaining at the end of the period. Management can use
these data to monitor the team’s adherence to the process.

(3) A means of validating the effectiveness of the
improvements once they are implemented. Certain types of
defects that occur frequently can be tracked to see whether they
recur after preventive actions have been implemented. To
accomplish this, the action team can monitor selected types of
defects. If the defects recur, further preventive steps can be
taken.

Fig. 1 Defect prevention process.

The key to a successful implementation of the defect

prevention is the integration of prevention activities in the
DSP-software development process. In particular, the causal
analysis and feedback activities must become part of the basic
practices of the development team, much as inspections have
been integrated in many development teams. The prevention
activities should not be a separate or isolated effort or one that
conducted solely at the end of the development cycle. Rather, it
should have a continuous focus throughout the DSP-software
development cycle, involving all developers.

III. STRATEGIC APPROACH TO DSP-SOFTWARE TESTING
From a procedural point of view, testing within the context

of software engineering is actually a series of four steps that are
implemented sequentially [4], as showed in Fig.2. Unit testing
focuses on each module individually, assuring that it functions
properly as a unit. Unit testing makes heavy use of white-box
testing techniques, exercising specific paths in module’s
control structure to ensure complete coverage and maximum
error detection. After modules are assembled to form the
complete software package, integration testing addresses the
verification of program construction. Black-box test case
design techniques are the most prevalent during integration
testing, although a limited amount of white-box testing may be
used to ensure coverage of major control paths. After the
software has been integrated, validation testing provides final

assurance that software meets all functional and performance
requirements. Black-box testing techniques are used
exclusively during validation. Once validated, software must
be combined with other system elements, e.g. hardware.
System testing verifies that all elements mesh properly and that
overall system function is achieved.

Fig. 2 Software testing steps.

For DSP-software development, the testing process includes

following steps:

A. Unit testing
The core algorithms are developed and simulated using

high-level tools and languages, such as C++, Matlab,
MathCAD, LabView, and SystemView. These tools usually
allow developers more conveniently to prove the algorithm's
main idea and to roughly outline the smaller independent
algorithms and submodules that you need to develop.

The C code for each small algorithm and submodule is
develop, which is platform-independent, maintainable, and
flexible code and able to be simulated on a PC before porting to
a DSP.

Each small algorithm or submodule is tested independently
on a PC. For each submodule, we can create a stand-alone test
environment to test the submodule before integration with the
whole system.

B. Integration testing
Integrating and simulating environment is developed to

enable the integration of small algorithms and submodules. We
should create such an environment for the whole system to
simulate it on a PC. This environment usually provides a rich
set of visualization tools that allow us to observe the behavior
of the system as a whole and of each separate algorithm.

To enable the development and execution of different test
cases with a set of different input test vectors, a test
environment should also be created, which may be a part of the
simulation environment. We should test this environment on its

Stage
kickoff
meeting

Causal
analysis
meeting

Development
stage

Action team Repositories Action

database

Continuous
process

improvement
Kickoff
package
for stage

Implemented
actions

Suggested
actions

Feedback
at start
of stage Defects

Unit
testing

Integration testing

Validation
testing

System
testing

Unit
testing

Unit
testing

Module

Other
system factors

Validated
software

Tested
module

Integrated
software Software

requirements

Design
Information

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2386

own to ensure that it completely covers all possible algorithm
states.

After small algorithms and submodules are integrated using
integration and simulation environment, we should test these
elements together as a whole system using the PC test
environment before porting to a DSP microprocessor. The
simulation should cover as many configurations and states of
the system as possible. We should achieve all the required
characteristics of the algorithm/system at this stage before
porting to DSP hardware.

C. Validation Testing
Usually, converting the whole C source code into assembly

code is unnecessary, which would make the code more difficult
to be maintained and debugged, we convert only critical
functions to assembly code of DSP, maintaining a C-like
interface.

Using various input test vectors or test cases that cover all
possible function states, we can create output test vectors for
each function and the whole system on a PC and DSP
simulation environment. Comparing these output test vectors
bit by bit allows us to test the bit exactness of conversion.

Before testing bit exactness of the output vectors that
assembly files generate, we must first test whether the C code
gives a bit-exact result when we compile and run it under
different compilers and platforms, such as 16- and 32-bit
compilers and PC and DSP platforms.

D. System Testing
We should use the same C code that you used in the PC

model (or, for converted functions, their bit-exact DSP
assembly version) in the real-life system. The test configuration
should be as close to real-life conditions as possible, and testing
should include as many counterpart devices as possible, for
example for interoperability. If any problems are found during
real-time testing, we should return to the first step of this
process to correct and the C code.

IV. CONCLUSION
When developing DSP applications, software developers can

encounter a number of typical obstacles. A poorly organized
development process can create many problems, some of which
pop up immediately and some of which become apparent much
later in the software life cycle. To avoid these common
complications, we should follow certain rules and
methodologies.

Using the principles and methodologies of defect prevention
and detection, we can create reliable, high quality software.
Following the framework of defect prevention also enables us
to establish an efficient software development mechanism for a
group of developers.

REFERENCES
[1] N. Abkairov and A. Nazarov, “Tools of the trade: successful

DSP-software development and testing,” EDN magazine, pp.71-74,
Feb.21, 2002.

[2] J. Tian, Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement, Wiley-IEEE Computer Society Press, 2005,
pp.27-40.

[3] R. G. Mays, "Applications of defect prevention in software development,"
IEEE Journal on Selected Areas in Communications, vol.8, no.2,
pp.164-168, Feb.1990.

[4] R. S. Pressman, Software Engineering: A Practitioner's Approach, Sixth
Edition. McGraw-Hill, 2004, pp.386-419.

