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 
Abstract—Propagation of electro-elastic waves in a piezoelectric 

waveguide with finite stacks and a defect layer is studied using a 
modified transfer matrix method. The dispersion equation for a 
periodic structure consisting of unit cells made up from two 
piezoelectric materials with metallized interfaces is obtained. An 
analytical expression, for the transmission coefficient for a 
waveguide with finite stacks and a defect layer, that is found can be 
used to accurately detect and control the position of the passband 
within a stopband. The result can be instrumental in constructing a 
tunable waveguide made of layers of different or identical 
piezoelectric crystals and separated by metallized interfaces. 
 

Keywords—Defect mode, Bloch waves, periodic phononic 
crystal, piezoelectric composite waveguide. 

I. INTRODUCTION 

LECTRO-MECHANICAL coupling in piezoelectric 
materials significantly changes the properties of acoustic 

waves in periodic structures and reveals new properties 
compared to those of purely elastic crystals. These properties 
have been studied in one, two and three dimensional 
piezoelectric periodic structures [1]-[7]. 

Due to the electro-mechanical coupling, piezoelectric 
phononic crystals become sensitive to the electric properties of 
the interfaces, here again exhibiting new and distinctive 
acoustic effects [8], [9]. Reflection spectra of electro-elastic 
waves in periodic structures consisting of transverse isotropic 
piezoelectric layers with interfaces covered by thin metallized 
coatings was theoretically investigated in [10], [11]. 

Bloch waves in piezoelectric periodic waveguides suggest 
even richer underlying physics than in layered optical 
waveguides and hence their properties are of particular interest 
[12]. Identification of band gaps, frequencies of possible 
standing waves, trapped modes, and slow waves in periodic 
piezoelectric waveguides can lead to advances in imaging 
devices, delay line device technologies, and the prevention 
and filtering of unwanted vibrations. Trapping waves due to 
thickness variations and mechanisms of slow waves near cut-
off frequencies in an elastic waveguide have been investigated 
in [13], [14]. Using matrix methods, these problems in in-
plane and out-of-plane elasticity for waves in periodic 
waveguides have been studied in [15], [16]. 

Piezoelectric periodic waveguides with full contact 
interfacial conditions have been discussed in [17]-[19]. 
Electrically shorted interfaces however cannot be obtained 
from full contact interfacial conditions as a particular case 
since the amplitudes at interfaces become connected via 
degenerate matrices which cannot be inverted. Therefore, this 
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has to be investigated as a separate problem. When there is not 
a full interfacial contact, for example electrically shorted or 
magnetically shorted interfaces between layers, the wave 
process is described by only one dispersion relation as oppose 
to two for full contact interfaces [7]. In this case, only one 
coupled electro-elastic wave propagates in the system 
combining both elastic and electro-magnetic effects. 

In this paper, the problem of elastic wave propagation in 
periodic waveguides is solved by a modal decomposition 
approach based on eigenfunction expansion of the elastic 
displacements, stresses, magnetic and electric fields, where the 
eigenfunctions are the orthogonal wave-field modes of an 
infinite homogeneous waveguide [17]. Using the Sylvester 
theorem for unimodular matrices [20], an analytical 
expression for reflection transmission coefficients is found.  It 
is further shown that, if the number of layers in the waveguide 
is large enough, the reflection coefficient reaches a value close 
to unity when the resonant conditions of the Bragg type are 
satisfied (i.e., when the value of the wave number lies inside 
the forbidden zones of the Bloch spectrum). 

In order to control the frequency band structure, including 
the location and bandwidth of stopbands, tunable periodic 
structures can be designed by introducing defect layers into 
the structure, changing the geometry and altering the elastic 
characteristics of these inclusions [21], [22]. In this paper, we 
propose a novel tunable phononic waveguide with a defect 
mode made by inserting a dielectric layer into a piezoelectric 
waveguide with metalized interfaces. An analytical formula 
for the reflection/transmission coefficient which is found can 
be used to develop a tunable phononic waveguide. 

II. THE STATEMENT OF THE PROBLEM AND MODAL 

EXPANSION 

In this section, we obtain an analytical expression for the 
dispersion equation for electro-magneto-elastic coupled shear 
(SH) waves propagating along a finite-width periodic 
waveguide without the defect layer. The unit cell has length 
  and occupies a region x    , z  , 0 y h  . 

Each cell is made of two different hexagonal piezoelectric 
materials: (1) of length 1a and (2) of length 2a  (β = a1 + a2) 

with crystallographic axes directed along the Oz direction 
(Fig. 1). 
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Fig. 1 Periodic waveguide with a unit cell made of two piezoelectric 
media 

 
The interconnected elastic and electro-magnetic excitations 

are described by the equations and constitutive relations (1)-
(3) [8]. 
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where ik  is the stress tensor,   is the mass density, iu  is the 

displacement vector field, iD  and iE  are components of the 

electric displacement and electric field intensity, B  and H  
are the magnetic field induction and intensity vectors, 

respectively. In constitutive relations (3), ijklc  is the stiffness 

tensor, ijke  and kls  are the piezoelectric and strain tensors, and 

ij  
is the dielectric permittivity matrix. 

Harmonic time dependence, exp(i )t  for all the physical 

variables with   as wave angular frequency is assumed 
henceforth. We assume that waves propagate in the (x,y) 
plane. Taking notations zH i H , zu u  the system of 

equations (1)-(3) can be reduced to the uncoupled system of 
equations (4), (5) 
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and constitutive relations expressed via ( , )H x y and ( , )u x y  
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where 2
44 15 11G c e   . Dimensionless coordinates x xh   and 

y yh   will be introduced and the tilde sign will be omitted 

henceforth. Two types of boundary conditions on the 
waveguide walls will be considered: 
1) Displacement-clamped and electrically-shorted 
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2) Traction free and magnetically-closed 

 

       ,0 0, ,0 0, ,1 0, ,1 0.yz yzH x x H x x        (9) 

 
The solution of (4)-(5) can be written as 

i i( ( , ), ( , )) ( ( ), ( ))(e ,e )qx sxu x y H x y u y H y  leading to an 

eigenvalue problem with discrete eigenvalues nq  and ns , and 

corresponding mode solutions ( ( , ), ( , ))n nu x y H x y with 
 

  ( )( , ) ,n n nu x y a x r y    ( , ) ,n n nH x y e xc z y
       

(10) 

 

 ( , ) ( ) ,yn n nE x y v x z y  ( , ) ( ) ,xzn n nx y Gw x r y     (11) 

 

 
 

sin

c
)

s
(

on
n

n

p y

y
r

p
y


 


,    
 

cos
,

sin
n

n
n

p y
z y

p y

 


         (12) 

 

where 15e e  and is included in the expression of ( , )nH x y  to 

harmonise the dimensions of all the wave-field functions and 
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0c  is the velocity of the transverse wave in the medium, c is 

the speed of the electromagnetic wave, 1, 2i   correspond to 

the upper and lower terms in (12) with np n  and 

( 1)np n  , 0,1, 2n    respectively, corresponding to 

solutions for boundary conditions (8) and (9), and the 
notations (15) are introduced within a homogeneous material 
[17]. 
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where exp( )n nA iq x  and exp( )n nC is x  correspond to forward 

propagating, exp( )n nB iq x  and exp( )n nD is x  are the 

reflected waves, and ,n nA B , ,n nC D are constants. 

A. Solution for a Periodic Piezoelectric Waveguide with 
Metallized Interfaces 

The interface conditions between two different 
homogeneous materials are continuity conditions for the 
displacement and the normal stresses 
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and, since the layers are separated by thin metallized coatings, 
zero electrical field at both sides of the interfaces (Fig. 1). 
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Using (11)-(13), the boundary conditions at the interfaces 

0x  and 1x a can be written as 
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where the superscripts 1,2 indicate the first and second 
material, respectively. 

An inner product can be defined as 
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which has an orthogonality feature within the same material. 
Taking the inner product of (18) with a single mode m gives 
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For electrically open boundary conditions at interfaces 
when the wave characteristics are continuous, the transfer 
matrix coupling the wave fields in neighboring cells can be 
constructed directly by joining the wave fields at the interfaces 
[7]. The transfer matrix in the case of electrically shorted 
boundary conditions (19) is not possible to construct since, in 
this case, the interface matrices are degenerate and impossible 

to invert. In this case, using (19), the amplitudes    i
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where matrices 
( )jQ , ( )jV  and  ( )jW have elements 
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and I is an identity matrix, and mn  is the Kronecker delta 

operator. 
Writing the Bloch-Floquet conditions as 
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where k  is the Bloch wave number, and using the transfer 
matrices (23) across the interfaces, the problem can be written 
in the following form (25) 
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is the transfer matrix within a homogeneous material, and ( )
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For homogeneous boundary conditions on the guide walls, 
the matrix L in (23) becomes an identity matrix, the 
propagating modes are separated from each other, and each 
gives rise to the dispersion equation [8] by (27) 
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Without the piezoelectric effect, (27) will describe the 

propagation of the acoustic wave in the periodic waveguide 
with the dispersion equation cos( )k A  . 

Dispersion equation (27) is the same both for displacement-
clamped and electrically-shorted (8), and traction free and 
magnetically-closed boundary conditions (9) on the 
waveguide walls. In the case of boundary condition (8), mode 

0n   leads to a trivial solution for the displacement and 
electromagnetic field independent of ,y  ( , ) ( )H x y H x  
which due to electrically shorted interface conditions leads to 
no wave propagation. In the case of boundary condition (9) 
mode, 0n   leads to a solution for the displacement that is 
independent of y, ( , ) ( ),u x y u x  and a trivial solution for the 

electromagnetic field function, giving the propagation only of 
an acoustic wave described by the dispersion equation 
cos( )k A   with the piezoelectric effect present only in the 

piezoelectrically stiffened elastic modulus G . 
For a superlattice with cells composed of two identical 

piezoelectric materials ( 1 ,e e 2e e )
 

of equal widths 

2 1a a a  , the dispersion equation (27) takes the form (28): 
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where the parameters q and s are expressed by (14) without 
indices. It is clear from (28) that, for electrically shorted 
interfaces between two constituent materials in the waveguide, 
band gaps are possible if these materials are identical. In this 

case, however, the opposite polarization will not affect the 
band structure. 

III. REFLECTION/TRANSMISSION OF ACOUSTIC WAVES IN A 

PIEZOELECTRIC WAVEGUIDE WITH FINITE STACKS 

In this section, we investigate the reflection/transmission 
properties of a finite stack of cells in a piezoelectric 
waveguide by coupling the wave fields in neighboring layers 
via a matrix propagator. We consider a structure consisting of 

a stack of M cells, each containing a pair of layers ja , j= 1,2 

made from different piezoelectric crystals and one additional 
single layer, thus 2M+1 layers altogether (Fig. 1). On each 
side the waveguide has two infinite piezoelectric substrates 
made from material 2. 

From (4)-(7), the complete magneto-elastic wave field in 
the mth cell is 
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where the factor exp( ( - ))i py t is omitted, and all the 

parameters apart from p have superscripts (j) which are also 
omitted, (j=1,2) correspond to the material number in the unit 
cell. We will investigate the transmission properties of only 
acoustic waves since the piezoelectric effect does not have a 
noticeable effect on electromagnetic waves. From (29) and 

(17), the amplitudes ( )jC and ( )jD in the expression for 
( )j
yE can be expressed via the amplitudes ( )jA and ( )jB  

 
(1) (1) (1) (1)

1 1
(1) (1)i ( ) i ( )(1) (1)

(1) (1)(1) (1)

a s q a s qC Ae e

D B

 
 

 
 

 

    
              

, 

( 2) (1) ( 2) (1)

( 2) (1) ( 2) (1)
1 1

(2) i ( ) (2) i ( )(2) (2)

(2) (2)-i ( ) -i ( )(2) (2)

s q s q

a s q a s q

e eC A

D Be e

  

 

 
 

 
 

    
             

   (30) 

( ) ( )

( )

( )
( )

2( )

(1 )

( 1)

j j
j

j
j

ia s q
j

ia sj

ip e

s e










 

 

The amplitudes ( )jC and ( )jD will be eliminated by 

substituting (30) into the expression for 
( ) ( )j
xz x  in the 

boundary conditions (16). Formula (16) will have only the 
incident and reflected amplitudes ( )jA and ( )jB of a coupled 
magneto-elastic wave. Then, a 2 2  unimodular transfer 
matrix S coupling the amplitudes of forward and backward 
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travelling waves 
(1)
mA  and 

(1)
mB in 1a  layers of the two 

neighbouring cells (m) and (m+1) can be constructed such that 
 

(1) (1)
1

(1) (1)
1

Sm m

m m

A A

B B





   
      

   
                                (31) 

 

where (1) (2)S S S , the elements of matrices (1)S  and (2)S are 
 

( 2)
(1) (2)

-
(1)

(1
(1

) (1)*
1 )1 22

( 1) ( 1)

2
i qeS S    

 
 

 

 






 , 

    ( 2)
(1) (2)

2
(1

1 1 * i
12 2 ) 1)1 (

( 1) ( 1)
,

2
e qS S    

 


 





 


            (32) 

 (1) ( 2)
1

(1) (2)
-i

(2
(2) (2)*

11 ) 2)2 (2

( 1) ( 1)

( 2)

a q q
S eS

  
  

  

 

 








 , 

 

     (1) ( 2)
1

(1) (2)
2 2 *

12 21 (2) (2)

( 1) ( 1)
,

( 2)

i a q q
S S e

  
  

  

 

  
 

           (33) 

 
( ) ( ) ( )

( )

( )
( )

( )
2

2

1 2e
,

1

j j j
j j

j
j

ia s q i s

s

j
a

ia

j e

e
 





 



 

2 ( )
( )

( ) ( )

j
j

j j

p

q s

  ,  (34) 

 
and * in the superscript denotes the complex conjugate. The 
amplitudes of the incident IA , reflected RB  and transmitted 

TA  acoustic waves in the two substrates will thus have the 

relation: 
 

(2) (1)S S S
0

I T

R

M
I T

A A

B

   
   

  
                      (35) 

 

Here, 
(2)
IS  is the transfer matrix of the bulk waves at the 

interface between the front substrate (made from material 2a ) 

and the 1a layer, and 
(1)
TS  is the transfer matrix at the interface 

between the 1a layer and the end substrate (made from 

material 2a ).  Hence, the elements of both matrices 
(2)
IS  and 

(1)
TS  can be obtained from the corresponding elements of the 

matrices (2)S  and (1)S  by taking the limit 2a  . At acoustic 

frequencies,  ( )js  is always imaginary and writing 
( ) 2 2 2 ( )2i / ij js p h c p   , (j=1,2) in (34) 2

can be 

written as 
 

(2)
2

(2) (2)
* 2

2

e
i ( coth )

sinh

a q

a p
a p

 


  
i

 
, 

(2)
(2)
* (2)

p

q

  . (36) 

 

As 2a  , only the term 
(2)  in (34) will be affected, 

becoming in the limit 
(2) (2)i    . On the other hand, 

following [10], for the matrices (2)S and (1)S  the 

approximation 
(2) (2)i     can be made at acoustic 

frequencies. Thus, with a good accuracy, we can assume that 
 

(2) (2)S SI  , 
(1) (1)S ST  .                          (37) 

 
The transfer matrix can be rewritten as 
 

(2) (1) 1ˆS S S SM M
I T

 ,                          (38) 
 
where 

(2) (1)Ŝ S S                 (39) 
 
is a unimodular transfer matrix connecting the amplitudes of 
incident and reflected waves in the 2a layers of (m)th and 

(m+1)th cells 
 

(2) (2)
1

(2) (2)
1

Ŝm m

m m

A A

B B





   
      

   
                            (40) 

 
Using the Sylvester’s theorem for a  2 2  unimodular 

matrix, (38) can be written as (41) 
 

1

11 1 1211 121

* ** *
12 11 112 11

ˆ ˆˆ ˆ
Ŝ =

ˆ ˆˆ ˆ

M

M M MM

M N M

S U U S US S

S U S U US S







   
   

      
   (41) 

 

where 
sin(( 1) )

sin( )M

M k
U

k





  and where the Bloch wave 

number k is defined by  
 

*
11 11

ˆ ˆcos( ) = ( ) / 2k S S  .           (42) 
 

From (35), (37) and (41), the reflection/transmission 
problem can be written as 

 

11 1 12

* *
12 11 1

ˆ ˆ

ˆ ˆ 0
I M M M

M M M

T

R

S U U S U

S U S U U

A A

B




    
          

. (43) 

 
From (43) we find that the reflection coefficient is 
 

*
12

11 1

Ŝ
=

Ŝ MI M

R MU
R

U

B

A U 




 ,                        (44) 

 
and 

2
2 12

2 2
12

ˆ| |
| |

ˆ| | (sin( ) / sin(( 1) ))

 
 

S
R

S k M k 


 
 .      (45) 

 

At the band edges, where k n  , the reflectivity will be 

given by 
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2

2 12

2 2
12

ˆ| |
| |

ˆ| | (1/ (

 

1 )
 

 )

S
R

S M


 
,                      (46) 

 

and the transmissivity by
2 2| | 1 | |T R  . Within the band 

gaps, where k  is complex, ik n    , formula (45) takes 

the form (47) 
 

2
2 12

2 2
12

ˆ| |
| |

ˆ| | (sinh( ) / sinh(( 1) ))

S
R

S M 


 
.    (47) 

 
It follows from (47) that the reflection coefficient will 

approach unity as the number of cells increases and the total 
reflection regions will precisely coincide with the stopband for 
Bloch waves. 

A. Transmissions Coefficient in the Piezoelectric Composite 
Waveguide with a Defect Layer 

We now introduce a defect layer Z as shown in Fig. 2, such 
that the waveguide has a mirror symmetry about this layer. 

 

 

Fig. 2 Finite stack piezoelectric waveguide between two infinite 
substrates and a defect layer 

 
The transfer matrix now will have the form of (48): 
 

ˆ
0

ˆS Z SM MI T

R

A A

B

   
   

  
,                       (48) 

 
and Sylvester’s theorem can be used to obtain an expression 
for the transmission coefficient 
 

2 2
11 2 2 2 1 3 1

1T

I M M M M

A
T

A Z U Z U U Z U   

 
 

 ,     (49) 

 

where 11 12
* *
12 11

Z Z
Z

Z Z

 
  
 

 is the transfer matrix through the defect 

layer and the following notations are introduced: 
 

* *
2 11 11 12 12 12 12

ˆ ˆ ˆ2Z S Z S Z S Z   ,  2
3 12

*
11 2 11 1111

ˆ ˆZ | ˆ .| Z Z SS S Z 
 

 
The analytical expression (49) for the transmission 

coefficient can be used to investigate the defect mode in a 

waveguide with a finite stack of cells, each cell composed of 
either two different or two identical piezoelectric elements. 

IV. NUMERICAL RESULTS 

Numerical calculations have been carried out for two 
piezoelectric phononic crystals. Material parameters of PZT-4 
and BaTiO3 have been used for one photonic crystal and PZT-
4 for the piezoelectric waveguide with identical layers (Table 
I). 
 

TABLE I 

MATERIAL CONSTANTS OF PZT-4, 3LiIO
 
AND 3BaTiO  

Material 

Elastic 
constant 

10
44 10c  N/m2 

Piezoelectric 
constant 

15e C/ m2 

Permittivity 

11 1110 F/m 

Density 

 310 kg/ 

m3 

PZT-4 2.56 12.7 646 7.6 

3LiIO  1.78 0.89 6.434 3.402 

3BaTiO  5.43 11.6 1.744 6.02 

 
Fig. 3 shows wave trapping for the lowest mode for a 

BaTiO3 and LiIO3 waveguide, where the horizontal lines show 
the cut-off frequencies in two materials. The nature of the 
trapping is the same as that described in detail in [17].  For a 
waveguide with short thin cells ( h  ), the mode is localized 

near the interfaces between the two materials for all values of 
the reduced wave number (Fig. 3(a)). As the length of the unit 
cell increases compared to the waveguide height (Fig. 3(b)), 
the dispersion curves for the piezoelectric waveguide become 
flatter. Due to a large difference between the acoustic 
impedances of BaTiO3 and LiIO3, the frequency region of the 
piezoelectric waveguide with trapped waves is large and for 
longer cells includes several modes (Fig. 3(b)). 
 

 

(a)             (b) 

Fig. 3 Band structure for a LiIO3 and BaTiO3 piezoelectric phononic 
crystal for 1n  (a) β/h=0.5, (b) β/h=1.5. Solid lines and dashed 
lines show the band structure with and without the piezoelectric 
effect. Horizontal lines show the cut-off frequencies in the two 

materials 
 
The transmission coefficients in Fig. 4 confirm the above 

results, showing full reflection when the Bragg resonance 
conditions are satisfied (i.e., when the value of the wave 
number lies inside the forbidden zones of the Bloch spectrum) 
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and the number of layers is sufficiently large. 
 

 

(a) (b) 

Fig. 4 Absolute value of the transmission coefficient for a LiIO3 and 
BaTiO3 piezoelectric phononic crystal for M=50 (a) β/h=0.5, (b) 
β/h=1.5. Vertical gray lines show the cut-off frequencies in each 

material 
 
A superlattice made up of a unit cell with identical PZT-4 

material also demonstrates frequency gaps and increasing cut-
off frequencies for longer unit cells (Figs. 5 (a), (b)). The 
frequency gaps in this case are only in the middle of the 
Brillouin zone, where the first gap remains always the largest, 
and as can be seen also from the reflection coefficient (Fig. 6) 
does not have significant change in its width. 

 

 

(a) 
  

 

(b) 

Fig. 5 Superlattice with identical PZT-4 crystals in both layers of the 
unit cell a) β/h=0.5, b) β/h=1.5. Dashed lines show the band 

structure without piezoelectric effect. Horizontal lines show the cut-
off frequencies 

 

Another interesting feature here is that the Bloch wave 
number can have a real value below the cut-off frequency.  
This is better shown for longer unit cells (Fig. 5(b)) and does 
not happen when the piezoelectric effect is neglected.  This 
can also be shown analytically from the dispersion equation 
(28) where below cut-off acoustic frequencies ω2/c0

2 - p2 < 0 
and ω2/c2 - p2 < 0.  If we expand the right-hand side of (28) as 
a series with respect to a small parameter θ, the first term of 

series is      
      

2 sin
cos  +  cos  - cos

sin

ap q
aq as

q
a

as
F

s
q  . 

Since    0 cosh / 1F h  , it follows that there is not 

propagating mode. At the cut-off frequency 0 0c p h  , taking 

into account that  2

0 / 1c c  ,  0F   can be approximated 

as 0 01 - tanh( 2)<1a a   .  This means that there exists a region 

below the cut-off frequency where the waveguide supports an 
evanescent mode. 
 

 
(a) 

 

 
(b) 

Fig. 6 Absolute value of the transmission coefficient, identical pzt-4 
crystals in both layers of the unit cell, M=100, (a) β/h=0.5, (b) 

β/h=1.5. Vertical gray lines show the cut-off frequency 
 
Due to the fixed electro-potential condition, a superlattice 

with identical elements in the unit cell demonstrates a much 
sharper resonant enhancement of transmission (Fig. 6). Since 
each interface in this case provides a reflection proportional to 
only the electromechanical coupling parameter 1   [10], near 

the Bragg resonance, where 0T   for a sufficiently large 

number of layers, the transmission coefficient experiences a 
sharp decrease compared to waveguides with a unit cell made 
of different piezoelectric materials (Fig. 4). 
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V. TUNABLE PASSBAND IN THE PIEZOELECTRIC COMPOSITE 

WAVEGUIDE 

We now use the transmission coefficient (45) to investigate 
the transmission properties of SH waves in the piezoelectric 
waveguide with a defect layer (Fig. 2). 

Fig. 7 compares the transmission spectrum of the 
piezoelectric composite waveguide LiIO3 and BaTiO3 with 
and without a defect layer.  Without a defect layer (Fig. 7 (a)), 

a typical propagation feature with an acoustic bandgap is 
observed.  The presence of a defect layer (Figs. 7 (b) and (c)) 
shows broadening of the forbidden band.  Further, a passband 
with a transmission peak of 100% appears within the bandgap. 

Increasing the thickness of the defect layer from dc = β  
(Fig. 7 (b)) to 5.1cd  (Fig. 7 (c)) moves the passband from 

01/ 8.7c   to 4.8/ 01 c , demonstrating that the passband 

can be tuned by changing the thickness of the defect layer. 
 

 

(a)               (b)               (c) 

Fig. 7 Absolute values of the transmission coefficient for a LiIO3 and BatiO3 piezoelectric phononic crystal for β/h=0.5, M=25 (a) Without a 
defect layer, (b) With a defect layer thickness cd , (c) With a defect layer thickness 5.1cd  

 

 

(a)  (b)  (c) 

Fig. 8 Absolute values of the transmission coefficient, identical PZT-4 crystals in both layers of the unit cell for β/h=0.5, M=25, (a) Without a 
defect layer, (b) With a defect layer thickness cd , (c) With a defect layer thickness 5.1cd

 
 

Fig. 8 shows similar results for a piezoelectric waveguide 
with cells composed of an identical piezoelectric material 
PZT-4.  The transmission spectrum for a waveguide without a 
defect layer is shown in Fig. 8 (a). Figs. 8 (b) and (c) show 
that the presence of a defect layer results in a slight 
broadening of the bandgap and the appearance of a 100% 
transmission passband within the bandgap. Changing the 
thickness of the defect layer from dc = β (Fig. 8 (b)) to dc = 
1.5β (Fig. 8 (c)) moves the passband from 

01/ 2.263c   to 

01/ 2.262c   though in this case without changing the 

width of stop band. 
 

VI. CONCLUSION 

The propagation of elasto-electromagnetic coupled SH 
waves in a quasi-one dimensional periodic piezoelectric 
waveguide is considered within the full system of Maxwell’s 
equations. Such a setting of the problem with perfectly 
matched physical fields at the interfaces allows the 
investigation of Bloch-Floquet waves in a wide range of 
frequencies including both acoustic and electromagnetic 
waves. The complete dispersion relation is described by two 
coupled equations and include information about a coupled 
elasto-electromagnetic wave and acousto-optic resonances 
called phonon-polariton. Without the piezoelectric effect the 
two equations decouple; one describes the propagation of an 
electromagnetic wave in a photonic crystal, and the other one 
expresses an acoustic wave in a phononic crystal. 
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In the case when there are not full interfacial contacts, the 
wave process is described by only one dispersion relation 
which in the absence of the piezoelectric effect describes the 
propagation of only one acoustic wave in a phononic crystal. 
In this case, only one coupled electro-elastic wave propagates 
in the system combining both elastic and electro-magnetic 
effects. 

The structure of wave propagation strongly depends on the 
ratio of the length of the unit cell to the height of the 
waveguide β/h and differences between the elastic and 
electromagnetic properties of the piezoelectric layers. 

When the unit cell in the waveguide is made from two 
different constituent materials, wave trapping occurs with the 
waves exponentially decaying in one layer, creating a stop 
band below the lowest of the two cut-off frequencies where no 
propagation is possible. 

In the case of electrically shorted interface conditions band 
gaps exist also when the constituent materials in the cells of 
the waveguide are identical. In this case the periodic system 
becomes a periodic system of interfaces where the magnetic 
field intensity experiences discontinuity. There is only one 
cut-off frequency and instead of trapping there are evanescent 
modes propagating below the cut-off frequency. The reflection 
of an electro-elastic wave is caused by the equipotential 
condition on the interfaces. Since the parameter of 
electromechanical coupling is normally very small, the 
reflection coefficient experiences a sharp increase near the 
resonances providing sharpening of certain properties 
compared to periodic structure made from different 
piezoelectric layers with both metallised and non-metallized 
interfaces. 

Controlling wave propagation properties including slowing 
down the propagation of light or sound or creating passband 
inside the stopband is also possible by introducing some 
disorder in periodically layered structures. We have found an 
analytical expression for the transmission coefficient that can 
be used to accurately detect the position of the passband inside 
a stopband. This can have applications in designing tunable 
waveguides which can even be made of layers of identical 
piezoelectric crystal separated by metallized interfaces. 
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